Supporting Information

Studies on Design, Synthesis of Marine Peptide analogues and their Promoting Proliferations on HUVECs and Zebrafish

Yinglin Zheng ¹, Yichen Tong ¹, Xinfeng Wang ¹, Jiebin Zhou ¹ and Jiyan Pang ^{1,*} Jiyan Pang: Email: <u>cespjy@mail.sysu.edu.cn</u>;

TABLE OF CONTENTS

NMR spectra of compound 1		3
NMR spectra of compound 2		4
NMR spectra of compound 3		5
NMR spectra of compound 4		6
NMR spectra of compound 5		7
NMR spectra of compound 6		8
NMR spectra of compound 7		9
NMR spectra of compound 8		10
Purities and retention times of all tested compounds	11-13	

The purities of all tested compounds were at least 95% and were determined by HPLC equipped with an UV detector at 210nm/254nm/280nm and 4.6*250mm(5 μ m) Chiralcel OD-H chiral column at 20°C. Ultrasonic degassing to all bought HPLC grade solvents for 30 minutes were done before used. Purity analysis were run with elution conditions. Elution condition: water: acetonitrile 40:60 (v/v), flow rate = 1 mL/min. It was stated if 0.1% acetic acid was added to the water. Table 1 is a summary of the purities and retention times of compounds

Comn	Elution condition								
Comp.	purity	Retention time / min							
1	97.09	3.169							
2	95.41	2.098							
3	99.87	5.371							
4	96.61	2.888							
5	98.17	3.977							
6	95.14	4.216							
7	98.95	2.337							
8	95.27	2.553							

Table 1: Purities and retention times of all tested compounds.

* the water phase was added 0.1% acetic acid.

Table 2: HPLC chromatography of compound 1

Table 4: HPLC chromatography of compound 3

Table 5: HPLC chromatography of compound 4

Table 7: HPLC chromatography of compound 6

Table 8: HPLC chromatography of compound 7

Table 9: HPLC chromatography of compound 8

m	۱V																		
1000-	检测器 A:214r	nm	33																
1000			10																
			~																
750-																			
1																			
500-																			
250-			N 10	~	(0	m 10	01	~	~ 4	2 12									*
1		4	811 5	12	20	<u>16</u> 35	53	52	8 8	4.0									¥
		÷		, in the second s	4	1	Ň		oi i	a↓ \$?€									₽
0-		<u> </u>	<u> </u>				A	1 . 1	1	A . A .									
0	0 1.0	2.0	3.0	4.0	5.0	6.0	7.0 8	0 9	0.0 1	0.0 1	1.0 1	2.0 13	3.0 14	1.0 15	0 16	5.0 17	7.0 18	3.0 19	.0 min