Supplementary Materials

An Unexpected Iron(II)-Based Homogeneous Catalytic System for Highly Efficient CO₂-to-CO Conversion under Visible-Light Irradiation

Zi-Cheng Fu,^{1,} Cheng Mi,^{1,} Yan Sun,¹ Zhi Yang,¹ Quan-Qing Xu¹ and Wen-Fu Fu^{1,2,*}

¹College of Chemistry and Engineering, Yunnan Normal University, Kunming 650092, (P.R. China)

²Key Laboratory of Photochemical Conversion and Optoelectronic Materials and HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, (P.R. China)

Determination and Calculation of Apparent Quantum Yield. Apparent Quantum Yield (Φ) was calculated from the equation:

 $\Phi = (\text{number of CO molecules} \times 2)/(\text{number of incident photons}) \times 100\%$

The numbers of photons absorbed were determined by an irradiance meter (FZ-A Beijing Normal University Photoelectic Instrument Factory).

Figure S1. ¹NMR and MS spectra of Fe(phen)₃Cl₂ (1), [Fe(phen)₂(CH₃CH₂OH)Cl]Cl (2) and BIH.

Figure S2. The perspective view and labeling scheme for $Fe(phen)_3^{2+}$ with thermal ellipsoids at 30% probability.

Compounds	$[Fe(phen)_3]Cl_2 \bullet 2CH_2Cl_2 \bullet 2H_2O$			
formula	$C_{38}H_{32}Cl_6FeN_6O_2$			
formula weight	873.25			
<i>T</i> [K]	113(2)			
crystal system	triclinic			
space group	P-1			
crystal size [mm]	0.20×0.18×0.12			
a [Å]	10.786(2)			
<i>b</i> [Å]	11.622(2)			
<i>c</i> [Å]	16.356(3)			
α [°]	96.311(3)			
β/ [°]	93.396(2)			
γ[°]	113.079(4)			
V [Å] ³	1862.9(6)			
Ζ	2			
$D_{\rm c}/{ m g~cm^{-3}}$	1.577			
μ [mm ⁻¹]	0.880			
$2\theta_{\text{max}}$ [°]	55			
unique reflections	8416			
parameters	490			
$R_{\rm int}$	0.0397			
goodness of fit	1.052			
$R1, wR2[I > 2\alpha(I)]$	0.0392, 0.1068			
R1, wR2[all data]	0.0464, 0.1101			
max, min peaks (e Å ⁻³)	1.063, -1.177			

Table S1. X-ray crystallographic date for catalyst 1.

Figure S3. CV of 1 mM Fe(phen)₃²⁺ in DMF solution containing 0.1 M ⁿBu₄NPF₆ under an Ar (black) and CO₂ atmosphere (red) at 25 °C, respectively, using a glassy carbon electrode with a scan rate of 100 mV·s⁻¹.

Figure S4. Photosensitizer-concentration and irradiation time dependence of CO production in 4 mL CO₂-saturated DMF/TEOA solution (v/v, 7:1) containing BIH (0.022 M), Fe(phen)₃Cl₂ (0.15 μM) and Ru(bpy)₃²⁺ (0.17, 0.33, 0.67 mM) after irradiation for 1, 3 and 6 h at 298 K.

Figure S5. Photosensitizer-concentration and irradiation time dependence of H₂ evolution in 4 mL CO₂-saturated DMF/TEOA solution (v/v, 7:1) containing BIH (0.022 M), Fe(phen)₃Cl₂ (0.15 μM) and Ru(bpy)₃²⁺ (0.17, 0.33, 0.67 mM) after irradiation for 1, 3 and 6 h at 298 K.

Figure S6 BIH-concentration dependence of CO and H₂ productions in 4 mL CO₂saturated DMF/TEOA solution (v/v, 2.5:1) containing Fe(phen)₃Cl₂ (0.03 μ M) and Ru(bpy)₃²⁺ (0.67 mM) after irradiation 13 h at 298 K.

Figure S7. A comparison of DLS results in 4 mL CO₂-saturated DMF/TEOA solution (v/v, 7:1) containing BIH (0.022 M), Fe catalyst (0.15 μM) and Ru(bpy)₃²⁺ (0.67 mM) (a) before and (b) after irradiation for 2 h at 298 K.

Figure S8. CO evolution of during bright LED visible-light irradiation in 4 mL CO₂saturated DMF/TEOA solution (v/v, 4:1) containing 6.7×10^{-4} M Ru(bpy)₃²⁺, 0.033 M BIH without Fe(II) complex.

Figure S9. Mass spectra of the gaseous products using $Fe(phen)_3^{2+}$ as catalyst for photocatalytic reduction of ${}^{13}CO_2$ in the presence of $Ru(bpy)_3^{2+}$ in 4 mL DMF/TEOA solution.

Table S2. Concentration dependence of photocatalytic CO and H₂ evolution on $[Fe(phen)_2(CH_3CH_2OH)Cl]Cl$ (2) in 4 mL CO₂-saturated DMF/TEOA solution (v/v, 7:1) containing 6.7×10^{-4} M Ru(bpy)₃²⁺ and 0.022 M BIH after irradiation for 2 h at 298 K.

[cat. 2] µM	[ps] mM	CO µmol	H ₂ µmol	Selectivity of CO
30	0.67	119.86	20.56	85.4%
15	0.67	63.93	9.14	87.5%
3.00	0.67	30.80	4.29	87.8%
0.15	0.67	19.90	0.99	95.3%