### N1-propargylguanosine modified mRNA cap analogs: synthesis, reactivity, and applications to the study of cap-binding proteins

Michal Kopcial<sup>1,2,3</sup>, Blazej A. Wojtczak<sup>2</sup>, Renata Kasprzyk<sup>1,2,3</sup>, Joanna Kowalska<sup>3</sup> and Jacek Jemielity<sup>2\*</sup>

- <sup>1</sup> College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw
- <sup>2</sup> Centre of New Technologies, University of Warsaw
- <sup>3</sup> Faculty of Physics, University of Warsaw
- \* Correspondence: j.jemielity@cent.uw.edu.pl; Tel.: +48 22 55 43 774, Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097, Warsaw

#### Supporting Information (SI2)

| Tables                                                                                      |
|---------------------------------------------------------------------------------------------|
| Table S1. Murine eIF4E binding affinity assay IC50 and KD values. 2                         |
| Table S2. Half-life for $m^7 Gp_3 G$ and compound ${\bf 4}$                                 |
| Figures                                                                                     |
| Figure S1. Murine eIF4E binding affinity assay                                              |
| Figure S2. Absorption, emission and excitation spectra of probes 16a-d, 17a-20a             |
| Figure S3. Probe <b>16a-d</b> hydrolysis by hDcpS enzyme monitored by emission spectroscopy |
| Figure S4. Probe <b>16a-d</b> hydrolysis by PDE-I enzyme monitored by emission spectroscopy |
| Figure S5. Probe binding affinity for meIF4E measured by microscale thermophoresis          |
| Figure S6. Probes affinity binding with hDcpS measured by microscale thermophoresis         |
| Compound characterization                                                                   |
| m <sup>7</sup> Gp <sub>3</sub> G-N1-propargyl (1)                                           |
| m <sup>7</sup> GpCH <sub>2</sub> ppG-N1-pr <b>(2)</b>                                       |
| m <sup>7</sup> GpNHppG-N1-propargyl (3)                                                     |
| m <sup>7</sup> GppCH <sub>2</sub> pG-N1-propargyl (4)                                       |
| m <sup>7</sup> GppNHpG-N1-propargyl <b>(5)</b>                                              |
| m <sup>7</sup> Gp <sub>3</sub> G-N1-5FAM <b>(6)</b>                                         |
| m <sup>7</sup> Gp₃G-N1-СуЗ <b>(7)</b>                                                       |
| m <sup>7</sup> Gp <sub>3</sub> G-N1-Cy5 <b>(8)</b>                                          |
| m <sup>7</sup> Gp <sub>3</sub> G-N1-Py <b>(9)</b>                                           |
| m <sup>7</sup> Gp <sub>3</sub> G-N1-biotin <b>(10)</b>                                      |

| m <sup>7</sup> GpCH <sub>2</sub> ppG-N1-5FAM <b>(11)</b> | 26 |
|----------------------------------------------------------|----|
| m <sup>7</sup> GpNHppG-N1-5FAM <b>(12)</b>               | 28 |
| m <sup>7</sup> GppCH <sub>2</sub> pG-N1-5FAM <b>(13)</b> | 30 |
| m <sup>7</sup> GppNHpG-N1-5FAM <b>(14)</b>               | 32 |
| propargyl-N1-Guo <b>(16)</b>                             | 34 |
| propargyl-N1-GMP <b>(17)</b>                             | 35 |
| propargyl-N1-GMP-Im <b>(18)</b>                          | 37 |
| propargyl-N1-GpCH <sub>2</sub> p <b>(22)</b>             | 39 |
| propargyl-N1-GpNHp <b>(23)</b>                           | 40 |

#### Tables

| Compound            |                   | IC <sub>50</sub> (μM) |                   |
|---------------------|-------------------|-----------------------|-------------------|
| Compound            | 20°C              | 30°C                  | 37°C              |
| 1                   | 2.92 ± 0.19       | 3.57 ± 0.25           | 3.68 ± 0.70       |
| 2                   | 6.57 ± 0.49       | 6.37 ± 0.73           | 8.20 ± 0.79       |
| 3                   | 3.06 ± 0.16       | 3.48 ± 0.22           | 3.75 ± 0.89       |
| 4                   | 5.51 ± 0.33       | $6.04 \pm 0.46$       | 8.10 ± 0.61       |
| 5                   | 1.85 ± 0.15       | 2.16 ± 0.20           | 3.21 ± 0.33       |
| m <sup>7</sup> Gp₃G | 3.04 ± 0.26       | 3.46 ± 0.30           | 3.31 ± 0.87       |
| Compound            |                   | <i>K</i> ⊳ (μM)       |                   |
|                     | 20°C              | 30°C                  | 37°C              |
| 1                   | 0.268 ± 0.040     | 0.305 ± 0.045         | 0.371 ± 0.082     |
| 2                   | 0.610 ± 0.094     | 0.548 ± 0.095         | 0.836 ± 0.121     |
| 3                   | $0.281 \pm 0.041$ | 0.297 ± 0.043         | $0.379 \pm 0.100$ |
| 4                   | 0.511 ± 0.075     | 0.520 ± 0.078         | 0.826 ± 0.109     |
| 5                   | 0.168 ± 0.026     | 0.182 ± 0.029         | 0.324 ± 0.048     |
| m <sup>7</sup> Gp₃G | 0.279 ± 0.045     | 0.294 ± 0.046         | 0.334 ± 0.096     |

Table S1. Murine eIF4E binding affinity assay  $IC_{50}$  and  $K_D$  values.

#### Table S2. Half-life for m<sup>7</sup>Gp<sub>3</sub>G and compound **4**

| Compound        | m <sup>7</sup> Gp₃G | 1     |  |  |  |
|-----------------|---------------------|-------|--|--|--|
| Half-life [min] | 5.703               | 15.75 |  |  |  |

#### Figures





Competitive binding of five eIF4E ligands **1-5** and  $m^7Gp_3G$  as a control at three different temperatures ((a) 20°C, (b) 30°C and (c) 37°C), using previously described pyrene fluorescence intensity binding assay [1]; (d) comparison of calculated  $K_D$  values. Data shown are average values ± SD of 3 independent experiments.



Figure S2. Absorption, emission and excitation spectra of probes 16a-d, 17a-20a.

Absorption spectra were recorded in 0.1 M NaOH for probes containing fluorescein (**16a-20a**) or 50 mM Tris/HCl, 200 mM KCl, 0.5 mM EDTA, pH=7.6 for all others (**16b-d**). Emission and excitation



spectra were recorded in 50 mM Tris/HCl, 200 mM KCl, 0.5 mM EDTA, pH=7.6 for 100 nM compound (except 200 nM for **16d**).

Figure S3. Probe **16a-d** hydrolysis by hDcpS enzyme monitored by emission spectroscopy



Figure S4. Probe **16a-d** hydrolysis by PDE-I enzyme monitored by emission spectroscopy



## Figure S5. Probe binding affinity for meIF4E measured by microscale thermophoresis

Binding affinities of compounds **6**, **11** and **12** for meIF4E determined by MST measurements. Three independent measurements were conducted (except for **12**, n=4), error bars represent standard deviation.



# Figure S6. Probes affinity binding with hDcpS measured by microscale thermophoresis

Binding affinity of compounds **11** and **12** for hDcpS determined by MST measurements. Three independent measurements were conducted (except four for **12**, n=4), error bars represent standard deviation.

### Compound characterization







































































































