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Abstract: Machine learning continues to make strident advances in the prediction of desired properties
concerning drug development. Problematically, the efficacy of machine learning in these arenas is
reliant upon highly accurate and abundant data. These two limitations, high accuracy and abundance,
are often taken together; however, insight into the dataset accuracy limitation of contemporary
machine learning algorithms may yield insight into whether non-bench experimental sources of data
may be used to generate useful machine learning models where there is a paucity of experimental
data. We took highly accurate data across six kinase types, one GPCR, one polymerase, a human
protease, and HIV protease, and intentionally introduced error at varying population proportions in
the datasets for each target. With the generated error in the data, we explored how the retrospective
accuracy of a Naïve Bayes Network, a Random Forest Model, and a Probabilistic Neural Network
model decayed as a function of error. Additionally, we explored the ability of a training dataset with
an error profile resembling that produced by the Free Energy Perturbation method (FEP+) to generate
machine learning models with useful retrospective capabilities. The categorical error tolerance was
quite high for a Naïve Bayes Network algorithm averaging 39% error in the training set required
to lose predictivity on the test set. Additionally, a Random Forest tolerated a significant degree
of categorical error introduced into the training set with an average error of 29% required to lose
predictivity. However, we found the Probabilistic Neural Network algorithm did not tolerate as
much categorical error requiring an average of 20% error to lose predictivity. Finally, we found that a
Naïve Bayes Network and a Random Forest could both use datasets with an error profile resembling
that of FEP+. This work demonstrates that computational methods of known error distribution like
FEP+ may be useful in generating machine learning models not based on extensive and expensive
in vitro-generated datasets.

Keywords: machine learning; error; FEP; anaplastic lymphoma kinase (ALK); Naïve Bayes Network;
Random Forest; drug discovery; cheminformatics; Neural Network

1. Introduction

Pharmaceutical development demands new approaches capable of confronting the ever-increasing
cost of drug discovery and drug development. With the rise of PubChem, ChEMBL, and additional
sources of information, pharmaceutical research has moved into the realm of big data analytical
techniques [1,2]. Several machine learning methods have emerged as robust platforms for big data and
cheminformatics like the Support Vector Machine (SVM), Naïve Bayes Network (NBN), Random Forest
(RF), neural net, and deep learning methods. Early work addressing the task of increasing efficiency
in drug development through the use of machine learning and big data techniques is encouraging.
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Guangli et al. reported a foundational study exploring the utility of SVM techniques in predicting
Caco-2 properties, and the team achieved modest success in predicting this key pharmacological
parameter for drug development [3]. Additionally, Kortagere and coworkers explored the utility of
SVM algorithms trained on molecular descriptors from Shape Signatures and the Molecular Operating
Environment (MOE) to predict pregnane X receptor activation and found an accuracy of 72–81% could
be achieved [4]. With regard to potency on a desired biological target, we reported preliminary success
in using NBNs prospectively against a desired target [5]. Our work is part of a significant body of work
emerging which shows that machine learning has a high degree of prospective predictive utility in the
drug development process when optimizing for potency against a desired target or off target [6–8].
Finally, work has emerged which uses metadata constructed on selectivity indices for enzyme isoforms
or viral mutants, and techniques are being developed which allow for the prediction of a biological
target, given some query small molecule structure [9,10].

However, the success of machine learning in these drug development applications is reliant on
preexisting experimental information in a research group or on large databases of experimental data.
The fundamental limitation of machine learning has been the necessity of biological activity data
generated from benchtop experiments. Technological advances in computing power and improvements
to techniques like the Free Energy Perturbation method (FEP/FEP+) are poised to alleviate this
need [11–14]. FEP and other techniques are an appealing format for generating virtual biological
data on which to train machine learning algorithms as these techniques can explore 100’s to 1000’s of
candidate molecules and they possess a high degree of accuracy (on the order of <1 kcal/mol) [11].
The potential opportunity for machine learning is to use techniques like FEP+ to create virtual data sets
of 100’s of compounds in a much shorter timeframe than wet lab experimental work and then use the
significantly quicker machine learning techniques trained on those 100’s of compounds to explore 10’s
of millions of possible synthetic targets. The reason for such a hybrid approach is that it is not currently
feasible to explore the millions of synthetic candidates for a given scaffold using FEP alone due to
computational cost [15,16]. Additionally, the success of FEP may only be limited to the target on which
the FEP calculations were conducted. The set of compounds explored by FEP may have other hurdles
in the development process that were not ascertainable at the time of FEP calculation. However, we
envision the data produced from FEP being used to construct machine learning algorithms which
can explore the 10’s to 100’s of millions of synthetically accessible and drug-like compounds in the
chemical space of interest. These millions of compounds can then be optimized for on target potency,
off target potency, resistance susceptibility for infection or cancer, and many other properties now being
predicted with machine learning. However, the initial hurdle to addressing this research direction was
to determine the amount of error contemporary machine learning algorithms could accommodate.
We therefore set out to discover the error profiles of a Naïve Bayes Network, a Random Forest, and a
Probabilistic Neural Network trained across ten contemporary biological targets.

2. Results and Discussion

2.1. Selection of Targets and Machine Learning Methods

We identified a series of contemporary biological targets that were either known to have produced
a drug or are currently being explored in drug discovery with well-distributed activity data, and N
is equal to the number of molecules used for each target (Table 1 and Figure 1, data cleaning details
below). Our selection parameters were that the target must have data in the ChEMBL database and
must have a single pocket of drug–protein interaction (details for molecular biology on each target
in the Supporting Information). The ChEMBL database was selected as our data source due to the
rigorous curation process activity data undergo before being incorporated [17].

Our design principles for our machine learning workflow revolved around creating a workflow
that would have the best accuracy characteristics at a given threshold of potency (IC50 value), and this
method is represented graphically in Figure 2; Figure 3 with anaplastic lymphoma kinase (ALK) is
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an example case. We used the KNIME Analytics Platform as our means of manipulating our data
and generating our machine learning algorithms [18]. The data were cleaned for missing IC50 values,
duplicate entries, and entries that did not have units in nM. Mutant enzyme data were removed in the
case of JAK2 (V617F) and HIV protease (strain V18, strain NL4-3 or any mutant). We used classification
algorithms for the NBN, RF, and Probabilistic Neural Network (PNN) algorithms in KNIME due to the
decreased computational cost associated with classification [19]. Additionally, we explored the Support
Vector Machine method initially as well. However, we were unsuccessful in building a predictive
algorithm with either a polynomial kernel, hypertangent kernel, or a radial basis function kernel using
similar techniques to the PNN method discussed below (Supporting Information). The classifier method
only gives a score which corresponds to the likelihood of whether the compound in question is good
(an IC50 < a predefined threshold) or bad (an IC50 > a predefined threshold) [20,21]. The training set for
each algorithm consisted of 80% of the data defined as active for a given threshold (e.g., IC50 < 20 nM
as active) and 80% if the data defined as inactive for the same threshold [19]. The test set was the
remaining 20% of each category. Our inputs for training the NBN and RF were extended connectivity
fingerprints (ECFP-4) as the independent variable and active/inactive as the dependent variable due
to the rapid computation associated with ECFP [5,9,22]. We initially only investigated ECFP-4 as
the independent variable, and, if inadequate predictive capability was encountered, we would use
additional calculated properties from the molecular structure as independent variables on which
machine learning could take place.

Table 1. Summary of the ten targets investigated.

Target Protein Family Species N Drug Stage

Anaplastic lymphoma kinase (ALK) Receptor Tyr Kinase H. sapiens 1343 Phase IV
Aurora B Ser/Thr Kinase H. sapiens 1481 Phase III

β-2 Adrenergic Receptor GPCR H. sapiens 641 Phase IV
c-Abl Tyr Kinase H. sapiens 1439 Phase IV

Factor Xa Protease H. sapiens 1657 Phase IV
HIV Protease Protease HIV 2544 Phase IV

JAK2 Non-receptor Tyr Kinase H. sapiens 3624 Phase IV
MEK1 MAP Kinase Kinase H. sapiens 823 Phase IV
PARP1 Polymerase H. sapiens 1933 Phase IV
TYRO3 Receptor Tyr Kinase H. sapiens 277 none
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of good as <20 nM gave us an NBN which, when tested on the 270 compounds in the 20% test set, 
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(Supporting Information). Another contender for the best algorithm was the <5 nM classification 
threshold; however, this algorithm only gave a ROC AUC of 0.874 and moderate enrichment despite 
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(PNN) algorithm.

For the PNN, we were unable to build an algorithm that had any predictive capacity using ECFP-4
as the algorithm requires variable inputs to be in numerical format and ECFP-4 is a bit array. Therefore,
we used 46 calculable properties as our independent variables, which were calculated using the RDKit
and CDK toolkit modules in KNIME, and the same active/inactive classification was our dependent
variable [23,24].

The performance of each model was evaluated in training using a leave-one-out cross validation
method for the NBN, while we used the standard algorithm for RF in KNIME and we used a 5-fold
cross validation for parameterization of the PNN [19]. We explored the active/inactive threshold by
stepwise increasing the IC50 value from 2.5 to 50 nM. The IC50 value that was capable of giving the
best ROC score, mean top 10% IC50, enrichment characteristics, sensitivity, and precision overall was
used as the definition of active/inactive for the error analysis.

2.2. Evaluation of Error Tolerance in ALK

We began our work with the anaplastic lymphoma kinase (ALK) dataset from ChEMBL and
sought to create control algorithms against which we could compare error introduced into the dataset.
We scanned the classification threshold from 5 to 25 nM, and we found that using a definition of
good as <20 nM gave us an NBN which, when tested on the 270 compounds in the 20% test set,
had a ROC AUC of 0.917, a mean top 10% IC50 of 6.7 nM, and good enrichment characteristics
(Figures 4 and 5; additional data in ALK Supporting Information). The other cutoffs explored gave
less satisfactory performances when NBNs trained at that threshold made predictions on the test set
(Supporting Information). Another contender for the best algorithm was the <5 nM classification
threshold; however, this algorithm only gave a ROC AUC of 0.874 and moderate enrichment despite a
mean top 10% IC50 of 5.3 nM. We therefore selected the classification threshold (the definition of good)
as <20 nM for the NBN in ALK.
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We repeated this analysis of the ALK dataset using a RF algorithm and found that the <20 nM
decision value gave the best top 10% IC50 at 3.3 nM, gave a ROC AUC of 0.913 and had excellent
enrichment characteristics (ALK Supporting Information). Again, we repeated this analysis for the ALK
dataset using the workflow in Figure 3 for a PNN algorithm and again found that the <20 nM decision



Molecules 2019, 24, 2115 6 of 17

value gave the best performance. The ROC AUC was 0.782 for a PNN trained with a <20 nM decision
value, and the model had a top 10% IC50 mean of 34.7 nM and modest enrichment characteristics (ALK
Supporting Information). These data are summarized in Table 2. As both definitions of good in the RF
model and the PNN model mirrored the NBN definition of good and the NBN experiment to find the
classification value was much faster than the RF or PNN experiments, we devised a system wherein
we would find the classification value in an NBN and confirm that this value performed well in a RF or
PNN. In subsequent cases where the classification value from the NBN performed well with a RF or
PNN, we would not explore all possible classification thresholds for an RF or PNN thus enabling us to
compare error tolerance on the same dataset across the three algorithm types.

Table 2. Summary of performance for the NBN, RF, and PNN on the ALK dataset.

Model ROC AUC Top 10% Mean
IC50 (nM) Sensitivity Precision Enrichment

Factor at 10%

ALK < 20 nM NBN 0.917 6.70 0.891 0.678 2.717
ALK < 20 nM RF 0.913 3.30 0.739 0.739 2.935

ALK < 20 nM PNN 0.782 34.7 0.533 0.645 1.789

After identifying the classification definition of good for ALK to be <20 nM, we turned our
attention to the task of designing a workflow capable of introducing error at specified populations
into our training data. Our experimental setup would be to create three random splits, one of which
would be the same as the control, and evaluate how introducing error into the three training sets
degraded retrospective predictivity on the unaltered test sets. The initial type of error chosen was a
general classification error where an active would be switched inappropriately and intentionally to an
inactive and/or vice versa. We would scan the percent error introduced from 5% error in the training
set increasing by 5% error in the training set up to the point of failure which was defined as either the
ROC AUC dropping below 0.7 or the top 10% mean IC50 exceeding 750 nM. With those clear objectives
defined, we envisioned the workflow as follows in Figure 6.
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A similar process would be used for the exploration of classification error in a PNN, and the
following workflow would be used (Figure 7). The compounds would be cleaned, and molecular
properties would be generated as in the control case for PNN generation. However, percent error
would be introduced in the training set as a classification error before the parameterization step.
This training set containing error would also be used to generate the PNN and the algorithm would be
used to make predictions about the unadulterated, error-free test data.
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Using the workflows outlined in Figures 6 and 7, we explored the error tolerance of the NBN on
the ALK dataset. In three different random splits, we found that the step-wise increase in error from
5–50% percent classification error in the training set led to a failure of predictivity at 45%, 45% and
50% error (Table 3 and ALK Supporting Information). As compared to the control, each split with the
indicated level of error had a significant decline in ROC AUC as well as a severe loss of predictivity in
the top 10%. The mean IC50 in the top 10% increased from 6.7 nM to 1400 nM in split 1 as the error
reached 45% in the training set. Additionally, the fold difference between the bottom 10% mean IC50

and the top 10% IC50 decreased from 2500 to 3.5. This represents a significant loss of predictive power
and increasing the error to 45% of the training set in the first random split resulted in an algorithm no
longer useful for prioritizing candidates for synthesis. Similar results were seen in the second and
third random splits with the third random split at 50% error suffering a reversal in potency as the top
10% of compounds were less potent on average than the bottom 10%.

Table 3. Performance statistics for failed NBNs generated with the specified error in each split.

Model %Error
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean
IC50 (nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM NBN Control 0.917 6.70 4200 17,000 2500
Split 1 Error 45 0.674 1400 4200 4900 3.5
Split 2 Error 45 0.632 900 3300 8100 9.0
Split 3 Error 50 0.539 2400 4100 1100 0.46

It can be seen that these levels of error reported in Table 3 are the points of failure in each random
split as we have included the performance statistics of the three splits at the error threshold just
before failure in Table 4 (i.e., 40%, 40%, and 45%; the representative set of statistics for each error
percentage can be found in the Supporting Information). While Table 4 represents a series of NBNs
with diminished predictive power as compared to the control, the ROC AUC is still acceptable for each.
Additionally, the enrichment capacity for actives at the top of the list is still largely preserved in each
random split with the indicated error. It is important to note that even at error percentages of 40%,
40% and 45%, useful NBNs can be generated which retain predictive power against a test set.
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Table 4. Performance statistics for NBNs with retained predictivity generated with the specified error
in each split.

Model %Error Before
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM NBN Control 0.917 6.70 4200 17,000 2500
Split 1 Pre-failure 40 0.742 53.5 4200 3100 58
Split 2 Pre-failure 40 0.747 275 3300 9200 33
Split 3 Pre-failure 45 0.703 130 4100 4500 35

Encouraged by the high tolerance for error seen in an NBN trained for ALK potency, we used a
similar approach to evaluate the performance of an RF as error was introduced to the dataset. In three
different random splits used to train an RF algorithm, we found that the step-wise increase in error
from 5–50% percent classification error in the training set led to a failure of predictivity at 30%, 40%,
and 40% error (Table 5 and ALK Supporting Information).

Table 5. Performance statistics for failed RFs generated with the specified error in each split.

Model %Error
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM RF Control 0.913 3.33 4200 16,000 4800
Split 1 Error 30 0.762 1800 4200 7500 4.2
Split 2 Error 40 0.677 383 3300 8500 22
Split 3 Error 40 0.691 113 4100 5100 45

Similar to the NBN results, each percent error failure threshold was said to be reached when there
was a significant decline in ROC AUC as well as a severe loss of predictivity in the top 10% as compared
to the control performance (failure to tolerate error was defined as a ROC AUC < 0.7 or a mean top
10% IC50 > 750 nM). The mean IC50 in the top 10% increased from 3.33 nM to 1800 nM in split 1 as the
error reached 30% classification error in the training set. Additionally, the fold difference between the
bottom 10% mean IC50 and the top 10% IC50 decreased from 4800 to 4.2. This represents a significant
loss of predictive power and increasing the error to 30% of the training set in the first random split
resulted in an algorithm no longer useful for prioritizing candidates for synthesis. Similar results were
seen in the second and third random splits; however, the enrichment in split 3 was still moderately
useful, even in the face of a loss of general accuracy, as the fold difference between top 10% and bottom
10% was 45-fold. The overall failure of the algorithm in split 3 is due to a significant contamination
of the top compounds with inactive compounds of >1000 nM IC50. Once again, we investigated the
performance statistics of the three splits at the error threshold just before failure, and these statistics are
reported in Table 6 (i.e., 25%, 35%, and 35%; the representative set of statistics for each error percentage
can be found in the Supporting Information). We found that the random forests generated on the three
splits with 25%, 35%, and 35% classification error had diminished predicative power as compared to
the control; nevertheless, the ROC AUC is still acceptable for each and the enrichment capacity for
actives at the top of the list was still largely preserved as in the NBN experiment.

Table 6. Performance statistics for RFs with retained predictivity generated with the specified error in
each split.

Model %Error Before
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM RF Control 0.913 3.33 4200 16,000 4800
Split 1 Pre-failure 25 0.828 362 4200 6400 18
Split 2 Pre-failure 35 0.739 111 3300 5600 50
Split 3 Pre-failure 35 0.746 19.5 4100 7600 390

Finally, we evaluated the tolerance for error seen in a PNN trained for ALK potency using the
workflow outlined in Figure 7. In three different random splits used to train a PNN algorithm, we found
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that the step-wise increase in error from 5–50% percent classification error in the training set led to
a failure of predictivity at 20%, 30%, and 15% error (Tables 7 and 8; ALK Supporting Information).
We initially used the parameters identified on the unaltered training set as the parameters used in all
PNNs created with increasing error in each split. Once a threshold was identified, the model was
reparametrized on the training data with the introduced error, and the performance was reevaluated to
confirm a lack of rescue through reparameterization. Reparameterization did not change the percent
error tolerated in the training set (Supporting Information). Of note is the significantly reduced error
tolerance that a PNN has for its training set as compared to an NBN and a RF trained on the same data.
The average point of failure of error introduced to a training set for a Probabilistic Neural Network
was 22% error as compared to an average of 37% for a Random Forest and an average of 47% error for
a Naïve Bayes Network. We turned our attention to exploring this initial result across the remaining
nine biological targets.

Table 7. Performance statistics for failed PNNs generated with the specified error in each split.

Model %Error
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM PNN Control 0.782 34.7 4200 19,000 550
Split 1 Error 20 0.654 726 4200 12,000 17
Split 2 Error 30 0.615 287 3300 7600 26
Split 3 Error 15 0.635 1200 4100 3300 2.8

Table 8. Performance statistics for PNNs with retained predictivity generated with the specified error
in each split.

Model
%Error
Before
Failure

ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM PNN Control 0.782 34.7 4200 19,000 550
Split 1 Pre-failure 15 0.701 14.0 4200 2700 190
Split 2 Pre-failure 25 0.706 637 3300 5500 8.6
Split 3 Pre-failure 10 0.736 375 4100 7400 20

2.3. Evaluation of Error Tolerance in Ten Biological Targets

We applied the above methods developed on ALK to the remaining nine targets. The percentage
of classification error that lead to a failure of the predictive algorithm on an unaltered test set (a ROC
AUC < 0.7 or a mean top 10% IC50 > 750 nM) is reported for each algorithm on three different random
splits of the data for each biological target (Table 9). The specific details for each algorithm generated
can be found in the Supporting Information for each biological target. Several surprising findings
emerged from this exploration of error. The first was that it was not always possible to parameterize a
PNN to where the algorithm could make predictions in the control test. This was the case when we
used the data from Aurora B kinase, JAK2 kinase, and TYRO3 kinase. We cannot currently comment
as to the reason for the failure of a PNN for these three targets except that it is likely not due to enzyme
type (the three are from separate biological families) nor is it due to data size as these datasets were
either the smallest dataset (TYRO3), largest dataset (JAK2), or intermediate in size (Aurora B) as can
be seen in Table 1. The second finding was that reparameterization did alter the percent error that
led failure in three cases. This is in contrast to our initial work in ALK where parameterization on
the original dataset was all that was needed to find the point of error for the error-containing data.
Once that error threshold was found in ALK, reparameterization did not rescue the predictivity of
the models. However, the point of error shifted dramatically in random split 1 in PARP1. In this
split, reparameterization rescued predictivity at 5% error and moved the point of failure to 25% error.
Split 3 had a modest change in percent error that led to failure as did split 3 in MEK1 (Supporting
Information). Finally, there were two targets which had a random split fail in the control stage: the
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NBN on split 3 for JAK2 and the RF on split 3 for TYRO3. In both cases, a new random seed number
was used, and that split was employed in the error tolerance analysis (Supporting Information).

Table 9. Summary of points of failure for each algorithm, random split and target.

Target Algorithm Split 1 Percent
Error of Failure

Split 2 Percent
Error of Failure

Split 3 Percent
Error of Failure

Mean Percent
Error of Failure

ALK NBN 45 45 50 47
RF 30 40 40 37

PNN 20 30 50 33
Aurora B NBN 30 30 35 32

RF 20 20 25 22
PNN - - - -

β-2 NBN 50 50 50 50
RF 35 25 45 35

PNN 10 20 5 12
c-Abl NBN 45 50 45 47

RF 35 25 35 32
PNN 30 25 15 23

Factor Xa NBN 35 45 45 42
RF 30 30 30 30

PNN 20 10 30 20
HIV Protease NBN 50 45 50 48

RF 35 20 15 23
PNN 25 15 25 22

JAK2 NBN 40 30 40 * 35
RF 40 30 35 35

PNN - - - -
MEK1 NBN 40 30 40 37

RF 30 35 25 30
PNN 5 5 25 ** 12

PARP1 NBN 5 45 50 33
RF 40 25 40 35

PNN 25 ** 5 25 ** 18
TYRO3 NBN 30 10 5 15

RF 20 5 5 * 10
PNN - - - -

* failed in the control step, therefore another random split was used. ** reparameterization shifted the point of failure.

After this analysis, we were curious as to the average percent classification error that would
lead to predictive failure in each algorithm category (Table 10). The NBN had an average threshold
resulting in failure of 39% classification error introduced to the training set, while an RF had a 29%
error threshold and the PNN had a 20% error threshold. These results suggest that the NBN is the
most tolerant of error of the three algorithms explored.

Table 10. Average percent classification error that leads to failure.

Model Average %Error Threshold

NBN 39
RF 29

PNN 20

2.4. Use of Error Profile in FEP+ on the ALK Dataset with an NBN and RF

Encouraged by the high degree of error tolerance by an NBN and a RF, we were curious to apply
the specific error profile observed in FEP+ to the ALK dataset in an effort explore preliminarily the
utility of FEP+ in generating datasets. FEP+ and other relative binding free energy (RBFE) calculations
allow for the computation of ∆∆GA,B, or the relative binding energy difference between a known
inhibitor, A, and candidate molecule of unknown potency, B [14,15]. The accuracy of these methods has
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been well explored, and Abel et al. have shown that 73% of data have a calculated relative energy of
binding < 1 kcal/mol away from the experimentally observed value [14]. However, medicinal chemists
frequently use IC50 rather than energy of binding as a decision parameter because it is often an easier
datapoint to attain, requiring roughly only 20% of the datapoints needed to acquire a Ki value [25].
This is in contrast to the inhibition constant, Ki, which requires time-intensive kinetic experiments or
the enthalpy of binding which requires a surface plasmon resonance approach or an isothermal titration
calorimetry approach [15]. However, there is a relationship between Ki and IC50: the Cheng–Prusoff

equation Equation (1). We have only included the relationship between IC50 and Ki for competitive
inhibitors below as we restricted our analysis to ALK, an enzyme for which most inhibitors compete
with ATP for the ATP-binding pocket of ALK [26].

IC50 = Ki

(
1 +

[S]
Km

)
(1)

Equation (1): The Cheng–Prusoff Equation relating Ki and IC50 for competitive inhibitors.
As we stated above, RBFE calculations give the ∆∆GA,B value between two compounds, one of

which is known to inhibit the desired target. We can use the molecule, A, with a known Ki as a reference
point to calculate the computationally determined ∆GA, given we know Ki for A and, thus, the Gibbs
free energy of A from Equation (2) [15].

∆GA = RT ln Ki (2)

Equation (2): Relationship between Gibbs free energy of binding and Ki.
Therefore the relationship between the calculated property in RBFE calculations, ∆∆GA,B,

the experimentally determined Ki of A and the theoretical Ki,theor of molecule B is as follows Equation
(3). This is because ∆GB is equal to the difference of ∆GA and ∆∆GA,B.

∆GB = ∆GA − ∆∆GA,B

∆GB = RT ln Ki,theor

Ki,theor = e(
∆GB
RT )
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and the theoretical Ki,theor for B.
Now that we had a way to relate the computationally derived ∆∆GA,B to a theoretical IC50 with

Equations (1) and (3), we could turn our attention to designing an initial retrospective experiment to
introduce error into the ALK dataset resembling the error found in FEP+. We needed to make two
assumptions in order to construct our analysis. The first assumption was that the error introduced by
our workflow would meaningfully reflect the real error generated by FEP+ or another RBFE in such
an analysis. In this situation, the error profile reported for FEP+ (27% with an energy of binding > 1
kcal/mol from the experimentally observed value) would be maximally damaging if it were introduced
as categorical error around the definition of good used in the NBN or RF. Therefore, we desired to
introduce 27% error to molecules that fell within an IC50 range that was ±1 kcal/mol of the energy of
binding associated with that IC50 value used as the definition of good (in the case of ALK, 20 nM). This
would effectively shift these compounds into the >1 kcal/mol error category. The logic of this can be
seen in that if a molecule was found experimentally to have an IC50 of 300 nM when FEP+ predicted a
Ki,theor that gave a theoretical IC50 of 10,000 nM, the overall result of this error is not relevant to the
classification algorithm. This is because both a 300 nM and a 10,000 nM compound would be classified
as inactive for a definition of good of <20 nM. However, if a molecule with an experimental value of
100 nM were incorrectly predicted to have an IC50 of 2 nM, this mistake would disrupt the predictivity
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of the machine learning algorithm. Thus, the most damaging error would be error that led to a blurring
of <20 nM and >20 nM when learning took place on the training data.

The second assumption was the nature of the relationship between the IC50’s in our dataset and
their Ki’s. We assumed relative uniformity in the concentration of ATP, [S], used in the ChEMBL
dataset as there are frequently used standard assay conditions in the determination of IC50’s for a given
target [27]. We used an ATP concentration of 300 µM as [S] given the work of Gunby and coworkers
in establishing a protocol for the ELISA-ALK assay often employed in the literature [28]. Finally,
the ALK Km for ATP was found to be 134 µM according to the work of Bresler et al [29]. With these
assumptions, we could find the window of IC50’s in which we would need to introduce 27% categorical
error. The first step in this process was to relate the 20 nM definition of good to an energy of binding
and then back calculate the IC50 values that were ±1 kcal/mol from that calculated energy of binding
(Supporting Information). This gave us an energy of binding of −11.19 kcal/mol for a 20 nM IC50 and
an energy range of −10.19 kcal/mol to −12.19 kcal/mol corresponding to an IC50 range of 109 nM to
3.7 nM. It was into this IC50 range that we could introduce 27% classification error in the training sets
for NBN and RF algorithms.

The results of this error exploration are reported in Table 11 and show that the classification error
of 27% introduced into the training set compounds with IC50’s between 109 and 3.7 nM did degrade
the predictivity of the NBN, but not to a point where the algorithm lost utility. The worst performance
was when split 3 was evaluated, and the mean top 10% IC50 was found to have a significantly reduced
potency. However, this was due to the second-to-last molecule ranked in the top 10% which had an
IC50 of 2400 nM. These results suggest that a useful NBN can be generated for a dataset generated
by FEP+.

Table 11. Performance statistics for NBNs with retained predictivity generated with 27% classification
error in molecules between 109 nM and 3.7 nM.

Model ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM NBN 0.917 6.70 4200 17,000 2500
Split 1 Error 0.916 18.0 4200 17,000 940
Split 2 Error 0.897 22.5 3300 7000 310
Split 3 Error 0.887 99.8 4100 14,000 140

We reproduced the above experiment but with the RF algorithm (Table 12). The classification
error of 27% introduced into the compounds with IC50’s between 109 and 3.7 nM did not significantly
degrade the predictivity of the RFs trained on the dataset. In all three cases, useful algorithms were
generated that possessed a high degree of decision-making concerning active and inactive compounds.
These results suggest that a useful RF can be generated for a dataset generated by FEP+. Additionally,
the RF outperformed the NBN in this task with the RF averaging a ROC AUC of 0.92, a top 10%
mean IC50 of 10.1 nM and a fold difference between mean top 10% IC50 and mean bottom 10% IC50

of 1800-fold. The NBN averaged a ROC AUC of 0.90, a top 10% mean IC50 of 46.8 nM and a fold
difference between mean top 10% IC50 and mean bottom 10% IC50 of 460-fold.

Table 12. Performance statistics for RFs with retained predictivity generated with 27% classification
error in molecules between 109 nM and 3.7 nM.

Model ROC
AUC

Top 10% Mean
IC50 (nM)

Mean IC50
(nM)

Bottom 10%
Mean IC50 (nM)

Fold Difference in
Mean Top 10% IC50

ALK < 20 nM RF 0.913 3.33 4200 16,000 4800
Split 1 Error 0.911 4.87 4200 17,000 3500
Split 2 Error 0.920 15.6 3300 12,000 770
Split 3 Error 0.930 9.74 4100 12,000 1200
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3. Materials and Methods

The literature data were acquired from the ChEMBL database by performing a target search for
each of the ten targets. These targets were evaluated for a single pocket of inhibition by performing a
literature review and a summary for each target is reported in the Supporting Information [30–53].
All cheminformatics processing and analysis, as well as machine learning, was performed in KNIME
3.7.0 and KNIME 3.7.1. The software was run on a Razer Blade 15 with an 8th Gen Intel core i7-8750H 6
core and 16 Gb of DDR4 system RAM. The first step involved filtering the data to ensure all compounds
had explicitly defined activities that were reported as nM. Next, molecules that had an exact value for
the IC50, a value reported as <10 nM or a value >999 nM were retained as these molecules were either
exactly known for IC50 or were considered potent (<10 nM) or lacking potency (>999 nM). All molecules
were sorted in order of increasing IC50 and duplicate entries were removed. The molecular structure
was generated using the CDK community expansion for KNIME and the ECFP-4 fingerprints were
calculated from the CDK structure. The molecules were then split according to whether they were
<X where X is an IC50 value that defines active and inactive categorically (5, 10, 15, 20, 25, etc. nM).
The actives and inactives were each split into an 80% training set and a 20% test set. An NBN or RF
was generated using the independent variable as the ECFP-4 and the category active/inactive as the
dependent variable. The algorithm was then fed into the predictor module for the corresponding
algorithm, and the performance of the NBN or RF was evaluated on the test set using the ROC Curve
(Java Script) and Enrichment Plotter modules. Rule based modules were used to sort out the true
positive/true negative/false positive/false negative statistics. The definition of good was selected in
accordance with which definition of good performed best in the ROC AUC, sensitivity, specificity,
top 10% mean IC50 and enrichment characteristics.

For the PNN control, the training data generated as above were fed into a 5-fold cross validation
where Theta minus and Theta plus were parametrized using accuracy as the scoring metric. These
parameters were used in the PNN algorithm tested on the reserved 20% test data. The values for
learning were calculated from the CDK molecular structure through the use of the RDKit Descriptor
Calculation and the CDK Molecular Properties modules. All IC50 values, publication data, and other
non-molecular data were removed from the training set after the active/inactive split so as to remove
confounding variables. A key feature for the control experiments was that once the definition of good
for an NBN was found, this value was used for the RF and PNN algorithms.

For the error tolerance experiments, the definition of good was used to split the data into active and
inactive sets using the previously identified definition of good, and each set was then split into an 80%
training set and a 20% test set as above. With the 80% training data, a variable percentage was removed,
shuffled, and split into actives/inactives where the class was inverted (e.g., a compound defined as
active had this definition inverted to inactive). These errors were then reintroduced to the training
set, and an NBN or RF was generated. The percent error was increased until the machine learning
algorithm had a ROC AUC < 0.7 or a mean top 10% IC50 > 750 nM. This was done in triplicate with the
actives partitioning, inactives partitioning and test error partitioning modules each using a random
seed of 1515533876005, 429, or 121783. In the cases where 121783 failed, 12178 was used instead.

For the PNN error tolerance experiments, the introduction of error was performed as was done
for the RF and NBN while using the parameters from the PNN control step. Once the error threshold
was identified, the model was reparametrized on the training set containing the percent error and the
model with the corrected parameters was evaluated for a ROC AUC < 0.7 or a mean top 10% IC50 >

750 nM. This was done in triplicate with the actives partitioning, inactives partitioning, and test error
partitioning modules each using a random seed of 1515533876005, 429, or 121783. In the cases where
121783 failed, 12178 was used instead.

For the error tolerance experiments using an error profile resembling FEP+, the definition of
good was used to split the data into active and inactive sets using the previously identified definition
of good, and each set was then split into an 80% training set and a 20% test set as above. With the
80% training data, those compounds that had an IC50 between 109 nM and 3.7 nM were removed,
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and 27% of those compounds were shuffled, and split into actives/inactives where the class was
inverted (e.g., a compound defined as active had this definition inverted to inactive). These errors
were then reintroduced to the training set, and an NBN or RF was generated. The performance of the
NBN or RF was evaluated using the same techniques in the RF or NBN control experiments.

4. Conclusions

We explored the behavior of nearly 600 machine learning algorithms generated with various
types of error on ten contemporary biological targets representing common target types pursued in
drug discovery and drug development. The categorical error tolerance was quite high for a Naïve
Bayes Network algorithm averaging 39% error in the training set required to lose of predictivity on the
test set (defined as a ROC AUC < 0.7 or a mean top 10% IC50 > 750 nM). This average was the result
of three random splits applied to the biological data for ten targets downloaded from the ChEMBL
database. Additionally, a Random Forest tolerated a significant degree of categorical error introduced
into the training set with an average error of 29% required to lose predictivity. However, we found
the Probabilistic Neural Network algorithm to be difficult to work with, and it did not tolerate as
much categorical error requiring an average of 20% error to lose predictivity. Additionally, the PNN
required a computationally expensive 5-fold cross validation parameterization step for each algorithm
generated. Finally, we explored the possibility of using FEP+ as a means to rapidly generate a dataset
for machine learning thereby increasing the number of molecules explorable from 100’s to 10’s of
millions. We trialed a 27% classification error within the 1 kcal/mol range of our IC50 category decision
value (20 nM) and found that both the NBN and RF retained a high degree of retrospective predictivity
in the face of this error. We found that the Random Forest, while less tolerant of general error in the ten
targets we explored, had a superior performance to the Naïve Bayes Network when exposed to the
27% error in the 1 kcal/mol window. Together, these error tolerance results suggest that contemporary
methods for calculating relative binding energies may be a method by which initial data may be rapidly
generated for 100’s of compounds for the purpose of using machine learning to quickly explore 10’s of
millions of possible synthetic candidates for a given target. Additionally, FEP+ may be used as a means
to increase data size by 100’s of compounds for isoforms of a given enzyme family. This potentially
could increase the likelihood of success for machine learning to optimize a given scaffold for desired
isoform selectivity.

Supplementary Materials: The following are available online, Supporting Information—Target Molecular
Biology, Activity Distribution, Support Vector Machine Experiments and Calculations; Supporting
Information—Performance Statistics of Machine Learning Algorithms; Excel of Retrospective Predictive
Performance for All Algorithms.
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