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Abstract: Cryptolepine, neocryptolepine and isocryptolepine are naturally occurring indoloquinoline
alkaloids with various spectrum of biological properties. Structural modification is an extremely
effective means to improve their bioactivities. This review enumerates several neocryptolepine
and isocryptolepine analogues with potent antiproliferative activity against MV4-11 (leukemia),
A549 (lung cancer), HCT116 (colon cancer) cell lines in vitro. Its activity towards normal mouse
fibroblasts BALB/3T3 was also evaluated. Furthermore, structure activity relationships (SAR) are
briefly discussed. The anticancer screening of neocryptolepine derivatives was performed in order to
determine their cytotoxic and growth inhibitory activities across the JFCR39 cancer cell line panel.

Keywords: cryptolepine; neocryptolepine; isocryptolepine; antiproliferative activity; structure
activity relationships

1. Introduction

1.1. Antitumoral Activity of Cryptolepine

Cryptolepine (1), neocryptolepine (2), and isocryptolepine (3) are typical indoloquinoline alkaloids
isolated from the roots of Cryptolepis sanguinolenta [1,2].

These alkaloids are composed of the tetracyclic indoloquinoline ring system, which only differ with
respect to the orientation and site of their indole and quinoline ring junctures (Figure 1). By introducing
the appropriate motif at the certain positions, their derivatives can increase better biological activity
than the mother core [3].

Molecules 2019, 24, 2121; doi:10.3390/molecules24112121 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-0284-5958
https://orcid.org/0000-0003-4980-6606
https://orcid.org/0000-0002-4709-808X
http://www.mdpi.com/1420-3049/24/11/2121?type=check_update&version=1
http://dx.doi.org/10.3390/molecules24112121
http://www.mdpi.com/journal/molecules


Molecules 2019, 24, 2121 2 of 12Molecules 2019, 24 FOR PEER REVIEW  2 

 

 

Figure 1. Structures of typical indoloquinolines from Cryptolepis sanguinolenta. 

Many researchers have achieved the structural modification of cryptolepine scaffold for the 
purpose of improving antitumor activity, while the pharmacological properties of the analogues are 
being studied deeply.  

The bioactivities of many antitumoral agents are related to their interactions with the DNA 
molecule, which is regarded as a classical target for these drugs in clinical use. The basic mechanism 
of antitumoral activity of these drugs is to affect the replication, expression, transcription and other 
physiological functions of the DNA, which causes the tumor cell death [4]. 

In 1990, Yamato et al. synthesized the indoloquinoline derivatives 4 (Figure 2), and screened its 
biological properties in vitro and in vivo. The compounds 4 showed potential antitumor activity 
(P388 leukemia in mice), DNA intercalative property, and ability to induce topoisomerase II 
dependent DNA cleavage [5]. 

 
Figure 2. Structures of cryptolepine derivatives. 

In 1997, Deady et al. studied a series of cryptolepine derivatives 5 and evaluated their 
antitumoral activity in a series of murine and human tumor cell lines such as the mice lung cancer 
cells (LLC), mice leukemia cells (P388), human leukocyte cells (JL). These compounds appear to be 
mixed topoisomerase I/II inhibitors in the human leukemia cell lines studied [6]. 

In 1998, Bonjean et al. verified the cryptolepine alkaloids bound tightly to DNA as a typical 
intercalating agent by various means of absorption, such as fluorescence, circular, and linear 
dichroism, as well as by a relaxation assay using DNA topoisomerases. At the same time, they 
provided direct evidence that DNA is the primary target of cryptolepine. The mechanism of the 
compounds inhibiting tumor cell proliferation is mainly based on the synthesis of DNA inhibition, 
not the inhibition of proteins and RNA [7].  

In 2002, Lisgarten, John N., reported that cryptolepine interacts with the DNA fragment 
d(CCTAGG)2 in a base-stacking intercalation mode by using X-ray crystallography. It was found that 
cryptolepine intercalated between pyrimidine bases of the fragment in the form of π-π accumulation. 
This is the first single crystal structure of DNA intercalator complex, which is the small molecule to 
bind a non-alternating (pyrimidine-pyrimidine) DNA sequence [8]. 

Figure 1. Structures of typical indoloquinolines from Cryptolepis sanguinolenta.

Many researchers have achieved the structural modification of cryptolepine scaffold for the
purpose of improving antitumor activity, while the pharmacological properties of the analogues are
being studied deeply.

The bioactivities of many antitumoral agents are related to their interactions with the DNA
molecule, which is regarded as a classical target for these drugs in clinical use. The basic mechanism
of antitumoral activity of these drugs is to affect the replication, expression, transcription and other
physiological functions of the DNA, which causes the tumor cell death [4].

In 1990, Yamato et al. synthesized the indoloquinoline derivatives 4 (Figure 2), and screened its
biological properties in vitro and in vivo. The compounds 4 showed potential antitumor activity (P388
leukemia in mice), DNA intercalative property, and ability to induce topoisomerase II dependent DNA
cleavage [5].
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Figure 2. Structures of cryptolepine derivatives.

In 1997, Deady et al. studied a series of cryptolepine derivatives 5 and evaluated their antitumoral
activity in a series of murine and human tumor cell lines such as the mice lung cancer cells (LLC), mice
leukemia cells (P388), human leukocyte cells (JL). These compounds appear to be mixed topoisomerase
I/II inhibitors in the human leukemia cell lines studied [6].

In 1998, Bonjean et al. verified the cryptolepine alkaloids bound tightly to DNA as a typical
intercalating agent by various means of absorption, such as fluorescence, circular, and linear dichroism,
as well as by a relaxation assay using DNA topoisomerases. At the same time, they provided direct
evidence that DNA is the primary target of cryptolepine. The mechanism of the compounds inhibiting
tumor cell proliferation is mainly based on the synthesis of DNA inhibition, not the inhibition of
proteins and RNA [7].

In 2002, Lisgarten, John N., reported that cryptolepine interacts with the DNA fragment
d(CCTAGG)2 in a base-stacking intercalation mode by using X-ray crystallography. It was found that
cryptolepine intercalated between pyrimidine bases of the fragment in the form of π-π accumulation.
This is the first single crystal structure of DNA intercalator complex, which is the small molecule to
bind a non-alternating (pyrimidine-pyrimidine) DNA sequence [8].
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In 2012, Boddupally et al. have synthesized a series of 11-substituted cryptolepine derivatives 6
(Figure 2). The compound 6 showed the most potent anticancer activity with IC50 = 0.97 µM against
HCT-116 colon cancer cell line and IC50 = 2.33 µM against Raji lymphoma cells in further cytotoxic test
in vitro. At the same time, this compound showed a strong inhibition of c-MYC expression [9].

Gu and Lu demonstrated the binding of aniline-substituted cryptolepine derivatives with
calf-thymus DNA presumably via an intercalation mechanism and studied the binding mode of
these derivatives with duplex DNA by Surflex-dock software. They reported that these derivatives
intercalated into the base-pairs, and reacted with DNA via mainly π-π interaction with medium,
moreover the functional groups substituted on aniline ring affected the binding abilities [10,11].

The aim of this review is to present an overview of the potential of neocryptolepine and
isocryptolepine as scaffolds for the design and development of new anticancer drugs. Both compounds
have also the linearly arranged tetracyclic plane as same as cryptolepine, so they can be expected as
candidates of antitumoral agent, although they have a slightly weaker capability to intercalate into
DNA and inhibit human topoisomerase II [12].

1.2. Antitumoral Activity of Neocryptolepines and Isocryptolepines

In our group, we have synthesized an array of novel neocryptolepine derivatives 7, and
their congeners 8, 11-aminoalkylamino-substituted chromeno[2,3-b]indoles 9, and isocryptolepine
derivatives 10 (Figure 3). Then the antiproliferative activities of these compounds were tested in vitro
against MV4-11 (human leukemia), HCT116 (human colon cancer), and A549 (human non-small cell
lung cancer) and BALB/3T3 (normal murine fibroblasts) cell lines.
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We focused our attention on modifying the neocryptolepine structure at four positions: (1)
the side chain at C11, introducing the various amino groups, e.g., -NH(CH2)nNH2 (n = 2,3,4),
-NH(CH2)3N(C2H5)2, -NH(CH2)3OH, -NHCH2CH(OH)CH2NH2, -NHCH2CH(CH3)CH2NH2,
-NHCH2CH(CH3)NH2, -NHCH2C(CH3)2NH2, and so on; (2) replacing the H atom at C2 with
MeO, Br, Cl, Me, and replacing H at C9 with COOMe; (3) altering the Me from N5 to N6, (4) changing
the N5 to O atom and (5) incorporating metal ion coordinated with diamine side chain [13–18].

In addition, we have also engaged in modifying isocryptolepine derivatives in three ways:
the amino substituent effect at C6, and N11 methyl localization effect, and the substituent group effect
at C2 of quinoline moiety [19].

Some compounds with higher antiproliferative activity are listed in Tables 1 and 2. The SAR
(structure activity relationships) studies reveal that the most necessary strategy is introducing
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ω-aminoalkylamino group in the side chain. Among the tested 84-neocryptolepine derivatives
and 44-isocryptolepine derivatives, the most potent compounds with higher activity contain the
-NH(CH2)3NH2 side chain.

Table 1. Cytotoxic effect of neocryptolepine derivatives [13–16].

No.
Substituent IC50 µM

R1 R2 R3 R4 R5 BALB/3T3 MV4-11 A549 HCT116

7a H NH(CH2)3NH2 H Me - 0.884 ± 0.115 0.066 ± 0.023 0.205 ± 0.079 0.302 ± 0.056
7b Cl NH(CH2)3NH2 H Me - 0.401 ± 0.015 0.068 ± 0.018 0.761 ± 0.169 0.195 ± 0.044
7c Br NH(CH2)3NH2 H Me - 0.869 ± 0.018 0.012 ± 0.002 0.543 ± 0.256 0.274 ± 0.050
7d OMe NH(CH2)3NH2 H Me - 0.978 ± 0.021 0.102 ± 0.021 0.407 ± 0.117 0.155 ± 0.042
7e Cl NHCH2CH(OH)CH2NH2 H Me - 0.896 ± 0.042 0.042 ± 0.014 0.197 ± 0.028 0.138 ± 0.050
7f Br NHCH2CH(OH)CH2NH2 H Me - 0.864 ± 0.015 0.057 ± 0.015 0.190 ± 0.027 0.117 ± 0.055
7g H NH(CH2)3NH2 COOMe Me - 0.933 ± 0.047 0.044 ± 0.011 0.820 ± 0.456 0.176 ± 0.055
7h Br NH(CH2)3NH2 COOMe Me - 0.773 ± 0.023 0.050 ± 0.016 0.302 ± 0.138 0.164 ± 0.070
7i Cl NH(CH2)3NH2 COOMe Me - 0.833 ± 0.030 0.056 ± 0.035 0.194 ± 0.063 0.116 ± 0.078
7j Cl NH(CH2)3NH2 Br Me - 0.834 ± 0.067 0.076 ± 0.034 0.464 ± 0.011 0.284 ± 0.142
8 Cl NH(CH2)2NH2 H - Me 0.437 ± 0.400 0.456 ± 0.123 8.282 ± 0.585 6.989 ± 1.416
9 OMe NH(CH2)2NH2 H - - 6.87 ± 1.74 0.12 ± 0.07 9.29 ± 1.10 1.93 ± 0.24

Cisplatin 8.53 ± 3.53 2.36 ± 0.68 7.83 ± 2.60 3.47 ± 0.77
Doxorubicin HCl 1.08 ± 0.03 0.006 ± 0.002 0.33 ± 0.10 0.39 ± 0.10

Table 2. Cytotoxic effect of isocryptolepine derivatives [17].

No.
Substituent IC50 µM

R1 R2 R3 BALB/3T3 MV4-11 A549 HCT116

10a H NH(CH2)3NH2 H 1.05 ± 0.13 0.12 ± 0.01 0.17 ± 0.05 0.26 ± 0.11
10b OMe NH(CH2)3NH2 H 0.31 ± 0.03 0.12 ± 0.05 0.16 ± 0.03 0.07 ± 0.03
10c NO2 NH(CH2)3NH2 H 0.36 ± 0.15 0.15 ± 0.06 0.35 ± 0.22 0.10 ± 0.02
10d H NH(CH2)3NH2 Me 0.95 ± 0.24 0.11 ± 0.04 0.18 ± 0.03 0.06 ± 0.02
10e NO2 NH(CH2)3NH2 Me 0.08 ± 0.02 0.05 ± 0.01 0.11 ± 0.07 0.01 ± 0.00
10f H NH(CH2)3NH(CH3)2 H 1.18 ± 0.20 0.41 ± 0.31 0.87 ± 0.27 0.55 ± 0.17
10g Cl NH(CH2)3NH(CH3)2 Me 0.82 ± 0.08 0.08 ± 0.03 0.57 ± 0.31 0.10 ± 0.02

Among them, 11-(3-amino-2-hydroxy)propylamino derivatives 7e and 7f were the most cytotoxic
with a mean IC50 value of 0.042 µM and 0.057 µM against the MV4-11 cell line, 0.197 µM and 0.190 µM
against the A549 cell line, and 0.138 µM and 0.117 µM against the HCT116 cell line.

We propose the reason that the amino terminus domain in the side chain would react with negative
charged phosphate groups in DNA, which increases the insertion ability of the complex to DNA.

The methyl localization effect is an important additional contributor to increase the activity.
The activity is greatly reduced (10~30 fold lower) by changing the Me group from N5 to N6 (i.e., 8) of
neocryptolepine derivatives. The Me group can increase the activity of isocryptolepine derivatives, as
found by a comparison of the compounds 10e and 10c.

Replacing H atom at the C2 with MeO, Br, Cl, Me, or replacing H at C9 by COOMe can improve
the antiproliferactive activity of neocryptolepine derivatives. Each group contributes differently
to the antiproliferactive activity of different tumor cells. For example, 7c with Br at C2 shows the
best antiproliferactive activity against MV4-11 leukemia cells, and this modification did not increase
antiproliferactive activity against normal BALB/3T3 cells, but unexpectedly it decreases 2-fold the
antiproliferactive activity against A549 lung cancer cells. It can be suggested that this modification
increases the selectivity of the tested compound, improving their effect on leukemic cells, without
increasing possible adverse effects on normal cells. The substituent effect at C2 of isocryptolepine
core also can change the activity; NO2 is the effective group to increase the activity against cancer but
unfortunately also normal cells (10c and 10e). Therefore, we must examine our best to find an effective
substituent for further improving the activity.

We boldly tried to replace the 5-nirtogen atom with oxygen atom, forming 9, which significantly
drop the antiproliferactive activity [16].
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From all the assay data, isocryptolepine analogues are more potential as the anticancer drug
candidates in comparison with the neocrytolepine analogues, compound 10e (or 10a) shows the higher
antiproliferactive activity against A549 and HCT116 cancer cell, and lower antiproliferactive activity
against normal cells comparing 7a, when amino-substituent is NH(CH2)3NH2 and substituent group
is H at C2.

The mode of neocryptolepine and isocryptolepine binding to DNA was studied using UV-VIS
absorption spectroscopy with salmon fish sperm DNA. From the DNA binding studies, it can be
proven that the methyl localization effect and the substituent group effect at C2 of quinoline moiety
influence the capability to intercalate into DNA. Two effects improve the activity of isocryptolepine to
interact with DNA, the binding constant of 10f-DNA was 1.05× 106 L/mol and 10g-DNA was 4.84 × 106

L/mol [19]. The activity of neocryptolepine to interact with DNA varied; the binding constant of
7c-DNA was 2.93 × 105 and 8-DNA was 3.28 × 105 L/mol [13].

In a series of neocrytolepine analogues, 7c shows the best antiproliferactive activity against
MV4-11 leukemia with IC50 0.012 ± 0.002 µM. Compounds 7f and 7i show almost the same highest
antiproliferactive activity against A549 lung cancer cells with IC50 0.190 ± 0.027 µM and 0.194 ±
0.063 µM, and the antiproliferative activity against HCT116 colon cancer cells with IC50 0.117 ±
0.055 µM and 0.116 ± 0.078 µM. Analogue 7b unfortunately shows 2-fold higher cytotoxic activity
against normal BALB/3T3 cells with the IC50 0.401 ± 0.015 µM than other studied neocrytolepine
analogues and 20-fold higher than cisplatin [13].

In series of isocryptolepine analogues, 10e shows the best antiproliferactive activity against cancer
cell lines with IC50 0.05 ± 0.01 µM (MV4-11), IC50 0.11 ± 0.07 µM (A549), and IC50 0.01 ± 0.00 µM
(HCT116). Unfortunately, this compound had also 4~15 fold higher cytotoxic activity against normal
BALB/3T3 cells with the IC50 0.08 ± 0.02 µM. These two simultaneous modifications at C2-NO2 and
at N11-Me showed 15- and 100-fold increased cytotoxicity of 10e in comparison to doxorubicin and
cisplatin, cytostatic used as a control.

In 2016, in vitro antiproliferative activities of neocryptolepine derivatives were evaluated by
Okada (Table 3). The compounds 7a and 7d showed the highest anticancer activity, having IC50 values
of 0.50 µM and 0.20 µM against the breast cancer MDA-MB-453 cell line, at the same time 7a having
0.64 µM and 2.7 µM against WiDr (colon adenocarcinoma) and SKOv3 (ovarian cancer) cell lines,
7d having 0.37 µM and 1.3 µM against WiDr (colon adenocarcinoma) and SKOv3 (ovarian cancer)
cell lines.

Table 3. Antiproliferative activity of neocryptolepine derivatives against cell lines of the breast cancer
MDA-MB-453, WiDr (colon adenocarcinoma) and SKOv3 (ovarian cancer).

Compound MDA-MB-453 IC50(µM) WiDr IC50(µM) SKOv3 IC50(µM)

Neocryptolepine 7.48 ± 4.42 N.T. N.T.
7a 0.50 ± 0.24 0.64 ± 0.13 2.7 ± 0.42
7d 0.20 ± 0.09 0.37 ± 0.07 1.3 ± 0.18

Cisplatin 7.6 ± 0.7 a 8.84 ± 0.52 c 18.2 ± 0.1 d

Doxorubicin 0.086 ± 0.006 b 0.089 e 0.52

N.T.: not tested, a Rakic et al. (2012), b Sandhu et al. (2012), c Kuo et al. (2010), d Ganta et al. (2014), e Molphy et al.
(2014).

Recently, we reported the in vitro antiproliferative activity of 11-substituted neocryptolepines with
branchedω-aminoalkylamino chain. These 2-substituted 5-methyl-indolo[2,3-b]quinoline derivatives
were prepared by nucleophilic aromatic substitution (SNAr) of 11-chloroneocryptolepines 2 with
appropriate 1,2- and 1,3-diamines (Scheme 1). Many of the prepared neocryptolepine derivatives
showed submicromolar antiproliferative activity of less than µM against the human leukemia MV4-11
cell line (Table 4).
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For further studying cytotoxic and growth inhibitory activities of neocryptolepine derivatives,
the anticancer screening was performed across the JFCR39 cancer cell line panel, evaluated at five
concentration levels (100, 10, 1.0, 0.1, and 0.01 µM) (Table 5). The results (the means of GI50, TGI,
and LC50 values) showed that 7d have potent anticancer activity against the melanoma (LOX-IMVI)
and lung (NCIH522, A549, and DMS273) cancer cell lines in the JFCR39 panels. Compound 7d shows a
notable cytotoxicity against the breast (BSY-1, LC50 = 0.82 µM), CNS (SF-539, LC50 = 0.60 µM, SNB-75,
LC50 = 0.91 µM), colon (HCC2998, LC50 = 0.74 µM), lung (NCI-H522, LC50 = 0.71 µM, A549, LC50 = 0.85,
DMS273, LC50 = 0.70, DMS114, LC50 = 0.72 µM), and ovarian (VCAR-4, LC50 = 0.48 µM) cancer cell
lines [20].
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Table 5. Growth inhibitory (GI50) and cytotoxic (LC50) activities of compounds 7d, 7k and 7q across
the JFCR 39 panel.
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Tissue of
Origin

Cell Line
7d 7k 7q

GI 50
(µM)

TGI
(µM)

IC50
(µM)

GI 50
(µM)

TGI
(µM)

IC50
(µM)

GI 50
(µM)

TGI
(µM)

IC50
(µM)

Breast

HBC-4 0.06 0.80 9.5 0.08 0.61 6.1 1.3 4.3 19
BSY-1 0.11 0.30 0.82 0.12 0.35 3.5 2.0 5.2 20
HBC-5 0.06 0.33 3.4 0.09 0.41 4.1 0.86 10 53
MCF-7 0.04 0.24 17 0.03 0.31 3.1 0.87 7.9 44

MDA-MB-231 0.08 0.33 6.9 0.07 0.34 3.4 0.50 4.1 44

CNS

U251 0.04 0.47 17 0.05 0.55 7.9 0.7 13 58
SF-268 0.05 0.59 26 0.06 0.75 4.7 0.94 14 76
SF-295 0.10 0.81 14 0.11 0.55 2.9 1.3 14 49
SF-539 0.05 0.20 0.60 0.07 0.23 0.63 0.7 3.9 22
SNB-75 0.13 0.34 0.91 0.15 0.38 0.93 3.3 15 42
SNB-78 0.12 0.78 25 0.20 0.98 5.2 2.9 20 62

Colon

HCC2998 0.05 0.22 0.74 0.07 0.23 0.69 1.0 2.9 8.0
KM-12 0.06 0.64 23 0.09 0.59 4.6 0.72 7.0 64
HT-29 0.04 0.54 24 0.06 0.64 28 0.56 5.6 46

HCT-15 0.72 6.9 50 1.0 3.7 100 0.58 5.8 49
HCT-116 0.04 0.57 22 0.04 0.80 5.1 0.43 2.3 15

Lung

NCI-H23 0.06 0.28 1.8 0.07 0.36 2.5 1.2 4.8 98
NCI-H226 0.08 0.49 25 0.09 0.63 6.2 0.74 4.8 44
NCI-H522 0.04 0.20 0.71 0.04 0.18 0.57 0.42 1.8 5.5
NCI-H460 0.05 0.27 3.4 0.05 0.23 1.7 0.45 2.6 20

A549 0.06 0.23 0.85 0.05 0.26 1.9 0.68 2.5 8.3
DMS273 0.04 0.18 0.70 0.05 0.18 0.61 0.42 1.6 4.7
DMS114 0.08 0.26 0.72 0.10 0.33 1.10 1.1 3.7 18

Melanoma LOX-IMVI 0.03 0.11 1.1 0.03 0.11 0.75 0.31 1.5 7.6

Ovarian

OVCAR-3 0.06 0.28 8.0 0.05 0.30 42 0.64 4.6 82
OVCAR-4 0.04 0.15 0.48 0.04 0.16 59 0.52 2.7 19
OVCAR-5 0.05 0.35 9.5 0.05 0.26 42 0.56 3.1 32
OVCAR-8 0.05 0.33 23 0.05 0.43 100 0.48 3.4 100
SK-OV-3 0.13 1.0 20 0.13 1.2 54 1.2 7.4 51

Renal
RXF-631L 0.27 1.4 7.4 0.19 0.67 3.0 1.1 3.0 18

ACHN 0.27 2.1 20 0.25 2.2 10 0.7 7.1 51

Stomach

St-4 0.06 0.43 3.8 0.12 0.60 3.7 0.72 4.9 44
MKN1 0.09 0.38 12 0.11 0.47 3.1 1.1 3.6 14
MKN7 0.04 0.34 23 0.06 0.48 36 0.9 8.0 69

MKN28 0.05 0.9 37 0.05 1.1 58 0.55 12 100
MKN45 0.05 1.0 28 0.05 1.1 8.0 0.44 6.2 100
MKN74 0.05 1.0 52 0.06 0.94 8.0 0.56 6.8 100

Prostate
DU145 0.1 0.34 17 0.09 0.43 3.3 1.2 4.0 22
PC-3 0.16 1.3 70 0.16 1.3 22 2.0 12 56

CNS: Central nervous system; GI50: 50% growth inhibition concentration (µM); TGI: Total Growth inhibition
concentration (µM); LC50: Lethal concentration (µM).

Table 5 shows that all of the compounds are highly potent against the melanoma (LOX-IMVI)
and lung (NCI-H522, A549, and DMS273) cancer cell lines in the JFCR39 panels. Compounds
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7d and 7k are more potent than compound 7q towards the cancer cell lines in the JFCR39 panel.
Compounds 7d and 7k show a similar growth inhibitory activity (GI50 > 0.01 µM) against the 31 and
28 cell lines, respectively, of the JFCR39 panel. Compound 7k shows a notable cytotoxicity against
the breast (BSY-1, LC50 = 0.82 µM), CNS (SF-539, LC50 = 0.60 µM, SNB-75, LC50 = 0.91 µM), colon
(HCC2998, LC50 = 0.74 µM), lung (NCI-H522, LC50 = 0.71 µM, A549, LC50 = 0.85, DMS273, LC50 = 0.70,
DMS114, LC50 = 0.72) and ovarian (VCAR-4, LC50 = 0.48 µM) cancer cell lines. Compound 7q shows
a mentionable cytotoxicity for the CNS (SF-539, LC50 = 0.63 µM, SNB-75, LC50 = 0.93 µM), colon
(HCC2998, LC50 = 0.69 µM), lung (NCI-H522, IC50 = 0.57 µM, DMS273, LC50 = 0.61 µM), and melanoma
(LOX-IMVI, LC50 = 0.75 µM) cancer cell lines. Compound 7q displayed a strong growth inhibitory
activity (GI50 < 1 µM) for 28 panels in the JFCR39 panel of the various cell lines. DMS273 (lung cancer)
and NCI-H522 (lung cancer) are the most sensitive cell lines of the 39 cell lines (GI50 = 0.42 µM for both
and LC50 = 4.7 µM and 5.5 µM respectively). Compound 7q also showed a strong antitumor effect on
LOX-IMVI (melanoma, GI50 = 0.3 µM, LC50 = 7.6 µM).

In our group, we achieved the synthesis of the artemisinin-indoloquinoline hybrids and studied
their antiproliferative activity (Figure 4). The artemisinin-neocryptolepine hybrids 11a, 11b and the
artemisinin-isocryptolepine hybrids 12 showed the potent antiproliferative activity, based on the data
in Table 6.
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Table 6. Antiproliferative activity of the artemisinin-indoloquinoline hybrids against cell line of MV4-11,
A549 and HCT116, and cytotoxicity against normal mice fibroblast BALB/3T3 [21].

Compound R1 R2 R3 MV4-11 A549 HCT116 BALB/3T3

11a Cl CH3 CH3 0.072 ± 0.022 4.555 ± 2.086 0.893 ± 0.397 6.423 ± 0.996
11b CO2Me CH3 CH3 0.075 ± 0.001 5.060 ± 0.911 2.206 ± 0.687 5.945 ± 1.163
12 CO2Me H H 0.086 ± 0.020 0.649 ± 0.080 0.130 ± 0.014 0.768 ± 0.155

In 2017, Li Wang synthesized the novel tacrine-neocryptolepine hybrids, and evaluated as
inhibitors of human AChE (hAChE) and human BuChE (hBuChE) (Figure 5). Compound 13 was a
highly potent hAChEI having IC50 = 0.95 ± 0.04 nM, and a highly potent hBuChE having IC50 = 2.29 ±
0.14 nM [22].Molecules 2019, 24 FOR PEER REVIEW  9 
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2. Compare Study

The COMPARE analysis assesses the correlation coefficient between the fingerprints of the test
compounds and those of the various reference compounds [23]. This system provides an information
intensive approach to identify the molecular targets of new compounds. The JFCR39 COMPARE
analysis-guided assay is a successful means to find new anticancer drug candidates. The COMPARE
analysis is carried out by calculation of the Pearson correlation coefficient (r value) between the
fingerprints of compounds X and Y. The r value is then used to determine the degree of similarity, that
is, the higher the r value, the greater the similarity of X to Y. Generally, an r value of 0.5 < r < 0.75
between two agents suggests they might have a similar mechanism of action (Figure 6).
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Figure 6. Growth inhibitory- and cytotoxic activities of compounds (A) 7d, (B) 7k, and (C) 7q across
a panel of the JFCR39 cell lines. The mean graph was produced by computer processing of the 50%
growth inhibition (GI50) and the 50% lethal concentration (LC50) values. The logarithm of the GI50

and the LC50 values for each cell line is indicated. The X-axis shows the difference on a logarithmic
scale between the mean of Log GI50/Log LC50 values for all 39-cell lines (MG-MID, expressed as 0 in the
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fingerprint) and the Log GI50/Log LC50 for each cell line in the JFCR39 panel. Columns to the right of
0 indicate the sensitivity of the cell lines to a given compound, and columns to the left indicate their
resistance. The MG-MID mean of the Log GI50/Log LC50 values for all 39 cell lines; delta difference
between the MG-MID and the Log GI50/Log LC50 value for the most sensitive cell line; range difference
between the Log GI50/Log LC50 values for the most resistant cell line and the most sensitive cell line.

The COMPARE analysis revealed that compounds 7d and 7k have a very good match to
actinomycin D (r = 0.7 for both). Similarly, compound 7k has a slight similarity to paclitaxel (r = 0.64).
Compound 7q shows some resemblance to vindesine sulfate (r = 0.58) and aclarubicinHCl (r = 0.57).

3. Conclusions

Indoloquinoline alkaloids are important scaffolds for antitumoral drug development. This review
discussed the SAR of neocryptolepine and isocryptolepine, and presents the useful methods for
improving the antitumoral activity of neocryptolepine and isocryptolepine analogues. The amino
substituent effect and methyl localization effect are now available strategies, but the substituent group
effect at the benzene ring of the quinoline moiety has no effect on regular SAR. Thus, the antitumoral
activity is highly related to the activity of interacting with DNA. The computer-assisted database
analysis, COMPARE, suggested that 7d and 7k have a mode of action similar to actinomycin D. It also
suggested that 7l has a mode of action similar to vindesine sulfate or aclarubicin HCl. However,
the new compounds may have other unique modes of action since the correlation coefficients (r) were
at relatively low levels, which present an interesting possibility to examine in further studies.
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