Supporting Information

Hydro/Deutero Deamination of Arylazo Sulfones under Metal- and (Photo)Catalyst-Free Conditions

Hawraz I. M. Amin^{1,2}, Carlotta Raviola¹, Ahmed A. Amin³, Barbara Mannucci⁴, Stefano Protti^{1,*} and Maurizio Fagnoni^{1,*}

- ¹ PhotoGreen Lab, Department of Chemistry, University of Pavia. Viale Taramelli 12, 27100 Pavia, Italy; hawraz_px@yahoo.com (H.I.M.A.); carlotta.raviola01@universitadipavia.it (C.R.)
- ² Chemistry Department, College of Science, Salahaddin University-Erbil, Erbil 44001, Iraq
- ³ Chemistry Department, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq; ahmed.dezaye@su.edu.krd
- ⁴ Centro Grandi Strumenti (CGS), University of Pavia, V. Bassi 21, 27100 Pavia, Italy; barbara.mannucci@unipv.it
- * Correspondence: stefano.protti@unipv.it (S.P.); fagnoni@unipv.it (M.F.); Tel.: +390382987314

Table of contents

1. Optimization of the procedure for the reductive dediazoniation of	
arylazo sulfones	S 3
2. MS spectra of compounds $2-d^1-14-d^1$ and ¹ H and ¹³ C NMR of $13-d^1$	S 5
3. ¹ H and ¹³ C NMR spectra of compounds 1h, 1k, 1l, 1q	S26
4. References	S34

1 Optimization of the procedure for the reductive dediazoniation of arylazo sulfones.

hv (456 nm) Solvent			
	∣		
Entry	Conditions	2 (% yield)	
1	1a (0.025 M), MeOH	48	
2	1a (0.025 M), MeOH-H ₂ O 9:1	50	
3	1a (0.025 M), MeOH-H ₂ O 4:1	51	
4	1a (0.025 M), MeCN	30	
5	1a (0.025 M), MeCN-H ₂ O 9:1	38	
6	1a (0.025 M), MeCN-H ₂ O 4:1	43	
7	1a (0.025 M), Acetone	54 ^b	
8	1a (0.05 M), Acetone	49 ^b	
9	1a (0.1 M), Acetone	34 ^b	
10	1a (0.025 M), THF	59	
11	1a (0.025 M), THF-H ₂ O 9:1	56	
12	1a (0.025 M), THF-H ₂ O 4:1	61	
13	1a (0.025 M), <i>i</i> PrOH-H ₂ O 9:1	76	
14	1a (0.025 M), <i>i</i> PrOH-H ₂ O 4:1	71	
15°	1a (0.025 M), <i>i</i> PrOH-H ₂ O 9:1	с	

Table S1. Irradiation of arylazosulfone 1a in different solvents.^a

^a A solution of **1a** in the chosen medium (1 mL) was nitrogen purged for 5 min, then irradiated by means of a 34 W Kessil Lamp ($\lambda_{em} = 456$ nm). The reaction course was monitored by GC analyses and the amount of **2** quantified by a calibration curve. ^b 4-Acetylphenyl methylsulfone (<10%) detected by GC-MS ^c Blank experiment, no consumption of **1a** observed.

As depicted in Table S1, irradiation of a 0.025 M solution of **1a** in methanol as well as in different methanol-water mixtures (entries 1-3) afforded a moderate yield of acetophenone **2**. A similar behavior was observed in acetonitrile containing mixtures (entries 4-6), while when moving to acetone, a noxious effect on the yield of **2** was observed when increasing the concentration of **1a** (entries 7-9). Furthermore, small amounts (<10% yield) of the by-product 4-acetylphenyl methyl sulfone (GC-MS: 198 (6), 183 (100), 121 (54))^{S1} were detected. Better yields were obtained by choosing THF as the (co)solvent (up to 61% yield, entries 10-12). However, when shifting to aqueous isopropanol (entries 13,14), conversion of **1a** to **2** was found to occur in a satisfactory yield (76% in

*i*PrOH-H₂O 9:1 mixture). Finally, no consumption of **1a** took place in the absence of irradiation (entry 15). The protocol described in entry 13 was thus adopted to investigate the versatility of the reaction.

2. MS spectra of compounds $2-d^1-14-d^1$ and ¹H and ¹³C NMR of $13-d^1$

¹⁰⁰] 90 85 80 75 70 65 60 55 50 45 30 25 20 15 10 5 40 40 40Relative Abundance 51_52 118 121 126 133 140 144 153 156 159 170 172 182 184 191 193 201 205 120 130 140 150 160 170 180 190 200 m/z 87 92 95 106 108 90 100 110

77,99 100 95 90 85 75 70 66 55 50 40 40 15 10 10 5 40,29 40 156,86 51,15 <u>52</u>,15 75,13 7<u>9</u>,52 160,07 Ш 73,<u>00</u> 80,99 80 53,20 62,11 0 60 92,97 105,98 117,00 130,00 90 100 110 120 130 143.00 153.30 161.28 171.36 177.62 195.21 201.49 140 150 160 170 180 190 200 70 50 m/z

Reference: S8

Reference: S12

13-*d*¹ (¹³C NMR, 75 MHz)

3 ¹H and ¹³C NMR spectra of compounds 1h, 1i, 1k, 1l, 1q

4. References

S1 Hanson, P.; Hendrickx, R. A. A. J.; Smith, J. R. L. An investigation by means of correlation analysis into the mechanisms of oxidation of aryl methyl sulfides and sulfoxides by dimethyldioxirane in various solvents, *Org. Biomol. Chem.* **2008**, *6*, 745–761. DOI: 10.1039/B714707D.

S2 Burglova, K.; Okorochenkov, S.; Hlavac, J. Efficient Route to Deuterated Aromatics by the Deamination of Anilines, *Org. Lett.* **2016**, *18*, 3342–3345. DOI: 10.1021/acs.orglett.6b01438.

S3 Janni, M.; Peruncheralathan, S. Catalytic selective deuteration of halo(hetero)arenes, *Org. Biomol. Chem.* **2016**, *14*, 3091-3097. DOI: 10.1039/C6OB00193A.

S4 Miura, Y.; Oka, H.; Yamano, E.; Morita, M. Convenient Deuteration of Bromo Aromatic Compounds by Reductive Debromination with Sodium Amalgam in CH₃OD, *J. Org. Chem.* **1997**, *62*, 1188–1190. DOI: 10.1021/jo9619037.

S5 Bank, S.; Schepartz, A.; Giammatteo, P.; Zubieta, J. Substituent effect on the electrochemical oxidation of arylmethyl anions. 3. Effect of methyl substitution on diarylmethyl anions, *J. Org. Chem.* **1983**, *48*, 3458–3464. DOI: 10.1021/jo00168a017.

S6 Berger, S; Diehl, B. W. K. Correlation between deuterium isotope effects and ¹³C-NMR chemical shifts in substituted benzenes, *Tetrahedron Lett.* **1987**, *28*, 1243–1246. DOI: 10.1016/S0040-4039(00)95336-X.

S7 Discekici, E. H.; Treat, N. J.; Poelma, S. O.; Mattson, K. M.; Hudson, Z. M.; Luo, Y.; Hawker, C. J.; de Alaniz, J. R. A highly reducing metal-free photoredox catalyst: design and application in radical dehalogenations, *Chem. Commun.* **2015**, *51*, 11705–11708. DOI: 10.1039/C5CC04677G.

S8 Barthez, J. M.; Filikov, A. V.; Frederiksen, L. B.; Huguet, M.-L.; Jones, J. R. Lu, S.-Y. Microwave-enhanced metal- and acid-catalysed hydrogen isotope exchange reactions, *Can. J. Chem.* **1998**, *76*, 726–728. DOI: 10.1139/v98-045.

S9 Mutsumi, T.; Iwata, H.; Maruhashi, K.; Monguchi, Y.; Sajiki, H. Halogen–deuterium exchange reaction mediated by tributyltin hydride using THF-d⁸ as the deuterium source, *Tetrahedron* **2011**, *67*, 1158–1165. DOI: 10.1016/j.tet.2010.12.007.

S10 Grainger, R.; Nikmal, A.; Cornella, J.; Larrosa, I. Selective deuteration of (hetero)aromatic compounds via deutero-decarboxylation of carboxylic acids, *Org. Biomol. Chem.* **2012**, *10*, 3172–3174. DOI: 10.1039/c2ob25157d.

S11 Nose, M.; Suzuki, H. Convenient One-pot Procedure for Converting Aryl Sulfides to Nitroaryl Sulfones, *Synthesis*, **2002**, *8*, 1065–1071. DOI: 10.1055/s-2002-31950.

S12 Corrie, T. J. A.; Ball, L. T.; Russell, C. A.; Lloyd-Jones G: C. Au-Catalyzed Biaryl Coupling To Generate 5- to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus π -Complexation, *J. Am. Chem. Soc.* **2017**, *139*, 245–254. DOI: 10.1021/jacs.6b10018.

S13 Wang, Y.; Shen, J.; Chen, Q.; L.; Wang, He, M. Nickel-catalysed CO bond reduction of 2,4,6-triaryloxy-1,3,5-triazines in 2-methyltetrahydrofuran, *Chin. Chem. Lett.* **2019**, *30*, 409–412. DOI: 10.1016/j.cclet.2018.09.009.

S14 Liu, C.; Chen, Z.; Su, C.; Zhao, X.; Gao, Q.; Ning, G.-H.; Zhu, H.; Tang, W.; Leng, K.; Fu, W.; Tian, B.; Peng, X.; Li, J.; Xu, Q.-H.; Zhou, W.; Loh, K. P. Controllable deuteration of halogenated compounds by photocatalytic D₂O splitting. *Nat. Commun.* **2018**, *9*, 80. DOI: 10.1038/s41467-017-02551-8.