

Supplementary Materials Pressure-induced Polymorphism of Caprolactam: A Neutron Diffraction Study

Ian B. Hutchison ¹, Craig L. Bull ², William G. Marshall ^{2‡}, Andrew J. Urquhart ³ and Iain D.H. Oswald ^{1,*}

- ¹ Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; ian.b.hutchison@gmail.com
- ² ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, UK; craig.bull@stfc.ac.uk (C.L.B.);
- ³ Department of Health Technology, Technical University of Denmark, Produktionstorvet, 2800 Kgs. Lyngby, Denmark; anur@dtu.dk
- * Correspondence: iain.oswald@strath.ac.uk; Tel.: +44-0141-548-2157
- [‡] Deceased on 5 November 2015

Table S1. Crystallographic details for the X-ray determined structures. For all structures: C₆H₁₁NO, M_r = 113.16. Experiments were carried out on a Bruker Kappa Apex2 diffractometer with Mo K α radiation. Refinement was on 73 parameters. H-atom parameters were constrained.

	EA1	EA2	EA3	But1				
Crystal data								
Crystal system, space	Monoclinic,	Monoclinic,	Monoclinic,	Monoclinic,				
group	C2/c	C2/c	C2/c	$P2_{1}/c$				
Temperature (K)	123	300	300	300				
Pressure (GPa)	ambient	0.64	1.63	1.20				
<i>a, b, c</i> (Å)	18.8703 (18),	18.8380 (18),	18.3060 (16),	8.480 (1), 6.8718				
	7.6517 (7),	7.6205 (4),	7.4101 (3),	(5), 9.7502 (19)				
	9.5444 (9)	9.4652 (5)	9.3417 (4)					
β (°)	111.538 (4)	112.023 (4)	111.924 (4)	94.219 (12)				
V (Å3)	1281.9 (2)	1259.63 (16)	1175.55 (13)	566.63 (14)				
Z	8	8	8	4				
μ (mm ⁻¹)	0.08	0.08	0.09	0.09				
Crystal size (mm)	$0.2\times0.15\times0.1$	$0.2 \times 0.1 \times 0.05$	$0.2\times0.1\times0.05$	$0.2 \times 0.1 \times 0.05$				
	D	ata collection						
Diffractometer	Bruker SMART	Bruker SMART	Bruker SMART	Bruker SMART				
	APEX2 area	APEX2 area	APEX2 area	APEX2 area				
	detector	detector	detector	detector				
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan				
correction	SADABS2016/2	SADABS2016/2	SADABS2016/2	SADABS2016/2				
	(Bruker,2016/2)	(Bruker,2016/2)	(Bruker,2016/2)	(Bruker,2016/2)				
	was used for	was used for	was used for	was used for				
	absorption	absorption	absorption	absorption				
	correction.	correction.	correction.	correction.				
	wR2(int) was	wR2(int) was	wR2(int) was	wR2(int) was				
	0.0572 before	0.0569 before	0.0551 before	0.0686 before				
	and 0.0336 after	and 0.0376 after	and 0.0402 after	and 0.0458 after				
	correction. The	correction. The	correction. The	correction. The				
	Ratio of	Ratio of	Ratio of	Ratio of				
	minimum to	minimum to	minimum to	minimum to				

				•			
	maximum	maximum	maximum	maximum			
	transmission is	transmission is	transmission is	transmission is			
	0.9423. The $\lambda/2$	0.9176. The $\lambda/2$	0.9165. The $\lambda/2$	0.9000. The $\lambda/2$			
	correction	correction	correction	correction			
	factor is Not	factor is Not	factor is Not	factor is Not			
	present.	present.	present.	present.			
T_{\min} , T_{\max}	0.702, 0.745	0.684, 0.745	0.683, 0.745	0.670, 0.745			
No. of measured,	5777, 1317, 1213	2843, 475, 405	2630, 444, 393	2570, 306, 256			
independent and							
observed $[I > 2\sigma(I)]$							
reflections							
Rint	0.020	0.025	0.024	0.038			
$ heta_{\max}$ (°)	26.4	23.2	23.3	23.3			
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.625	0.555	0.556	0.555			
Refinement							
$R[F^2 > 2\sigma(F^2)], wR(F^2),$	0.033, 0.087,	0.029, 0.071,	0.030, 0.078,	0.030, 0.078,			
S	1.11	1.11	1.03	1.10			
No. of reflections	1317	475	444	306			
No. of restraints	0	51	51	51			
Data completeness	100%	52%	53%	37%			
max, min (e Å ⁻³)	0.25, -0.17	0.06, -0.06	0.09, -0.06	0.07, -0.07			

	But2	But3	Recryst1	Recryst2			
Crystal data							
Crystal system, space	Monoclinic,	Monoclinic,	Monoclinic,	Monoclinic,			
group	P21/c	$P2_{1}/c$	P21/c	$P2_{1}/c$			
Temperature (K)	300	300	300	296			
Pressure (GPa)	1.70	2.18	0.7	0.7			
<i>a, b, c</i> (Å)	8.4244 (14),	8.3465 (13),	8.651 (3), 6.948	11.0794 (19),			
	6.8435 (6), 9.674	6.8128 (14),	(2), 9.950 (2)	6.0418 (3),			
	(2)	9.5998 (15)		9.6662 (5)			
β (°)	94.322 (15)	94.289 (13)	94.03 (2)	107.896 (9)			
V (Å3)	556.13 (16)	544.35 (16)	596.5 (3)	615.74 (12)			
Z	4	4	4	4			
μ (mm ⁻¹)	μ (mm ⁻¹) 0.09		0.09	0.08			
Crystal size (mm) $0.2 \times 0.1 \times 0.05$		$0.2 \times 0.1 \times 0.05$	$0.2\times0.15\times0.05$	$0.2\times0.15\times0.05$			
Data collection							
Diffractometer	Bruker SMART	Bruker SMART	Bruker APEX-II	Bruker SMART			
	APEX2 area	APEX2 area	CCD	APEX2 area			
	detector	detector		detector			
Absorption	Multi-scan	Multi-scan	Multi-scan	Multi-scan			
correction SADABS2016/2		SADABS2016/2	SADABS2016/2	SADABS2016/2			
	(Bruker,2016/2)	(Bruker,2016/2)	(Bruker,2016/2)	(Bruker,2016/2)			
	was used for	was used for	was used for	was used for			
	absorption	absorption	absorption	absorption			
	correction.	correction.	correction.	correction.			
	wR2(int) was	wR2(int) was	wR2(int) was	wR2(int) was			

	0.1202 before	0.1450 before	0.0905 before	0.0571 before			
	and 0.0530 after	and 0.0577 after	and 0.0355 after	and 0.0385 after			
	correction. The	correction. The	correction. The	correction. The			
	Ratio of Ratio of Ratio of		Ratio of	Ratio of			
	minimum to	minimum to	minimum to	minimum to			
	maximum	maximum	maximum	maximum			
	transmission is	transmission is	transmission is	s transmission is			
	0.8670. The $\lambda/2$	0.6867. The $\lambda/2$	0.9144. The $\lambda/2$	0.9199. The $\lambda/2$			
	correction	correction	correction	correction			
	factor is Not	factor is Not	factor is Not	factor is Not			
	present.	present.	present.	present.			
T_{\min} , T_{\max}	0.646, 0.745	0.511, 0.745	0.681, 0.745	0.685, 0.745			
No. of measured,	2373, 284, 220	2137, 401, 302	2691, 451, 352	2691, 319, 293			
independent and							
observed $[I > 2\sigma(I)]$							
reflections							
$R_{ m int}$	Rint 0.047		0.037	0.024			
$ heta_{\max}$ (°)	23.2	23.3	23.3	23.3			
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	$\sin \theta / \lambda$ max (Å ⁻¹) 0.554		0.556	0.556			
Refinement							
$R[F^2 > 2\sigma(F^2)], wR(F^2),$	$R[F^2 > 2\sigma(F^2)], wR(F^2), 0.039, 0.106,$		0.039, 0.108,	0.027, 0.072,			
S	1.23	0.90	1.09	1.17			
No. of reflections	284	401	451	319			
No. of restraints	51	51	51	0			
Data completeness	36%	51%	53%	36%			
Δ>max, Δ>min (e Å ⁻³) 0.10, -0.09		0.18, -0.15	0.13, -0.12	0.05, -0.05			

Pressure (GPa)	Polymorph	a-axis (Å)	b-axis (Å)	c-axis (Å)	β (°)	Volume (Å ³)	r _{wp}
	Loading 1 – crystals from ethyl acetate						
0.213(9)	Ι	19.2487(16)	7.7647(6)	9.5543(8)	112.299(5)	1321.2(2)	2.965
0.283(7)	Ι	19.1743(12)	7.7397(9)	9.5317(7)	112.255(4)	1309.2(2)	1.736
0.479(9)	Ι	18.9732(13)	7.6630(11)	9.4928(8)	112.100(5)	1278.8(2)	1.891
0.678(8)	Ι	18.780(3)	7.5918(14)	9.4522(17)	111.970(12)	1249.8(4)	2.686
0.678(8)	II	11.0391(9)	5.9986(7)	9.6526(11)	107.830(9)	608.48(12)	2.686
0.943(11)	II	10.9381(6)	5.9179(5)	9.6067(7)	107.479(6)	593.13(8)	3.065
1.235(8)	II	10.8506(5)	5.8539(4)	9.5704(6)	107.129(5)	580.93(6)	2.559
1.39(5)	II	10.8082(5)	5.8201(6)	9.5519(8)	106.963(5)	574.72(8)	2.278
1.50(3)	II	10.7801(5)	5.8047(5)	9.5371(7)	106.858(5)	571.14(7)	2.171
1.761(14)	II	10.7242(6)	5.7704(5)	9.5068(8)	106.630(7)	563.70(8)	3.722
2.070(10)	II	10.6537(5)	5.7272(4)	9.4719(7)	106.334(7)	554.61(7)	1.325
2.070(10)	III	8.446(2)	6.781(4)	9.560(3)	94.52(3)	545.9(3)	1.325
2.340(11)	II	10.6097(16)	5.6984(11)	9.4456(11)	106.162(10)	548.49(15)	1.896
2.340(11)	III	8.191(7)	6.741(7)	9.526(4)	94.50(7)	524.3(8)	1.896
2.617(12)	II	10.559(3)	5.6664(13)	9.4202(15)	105.943(10)	542.0(2)	1.984
2.617(12)	III	8.203(6)	6.753(7)	9.463(5)	94.44(6)	522.6(7)	1.984
2.894(14)	II	10.5085(6)	5.6394(4)	9.3892(5)	105.726(5)	535.59(6)	1.843
2.894(14)	III	8.175(3)	6.740(2)	9.469(3)	94.44(3)	520.2(3)	1.843
3.16(3)	II	10.4696(15)	5.6185(12)	9.3634(13)	105.539(8)	530.66(15)	1.964
3.16(3)	III	8.179(7)	6.758(10)	9.460(4)	94.71(5)	521.1(9)	1.964
0.63(4)	Ι	19.371(16)	7.758(6)	9.502(7)	111.93(7)	1324.6(19)	4.793
0.63(4)	II	11.013(6)	6.045(8)	9.593(7)	107.735(17)	608.2(10)	4.793
0.24(3)	Ι	19.261(6)	7.767(3)	9.553(3)	112.344(18)	1321.7(8)	9.508
	Loading 2 – crystals from ethanol-d ₆						
0.235(13)	I	19.2556(17)	7.7647(9)	9.5524(9)	112.324(5)	1321.2(2)	2.599
0.436(12)	Ι	19.0531(12)	7.6934(9)	9.5069(7)	112.166(4)	1290.6(2)	1.976

Table S2. The unit cell parameters of caprolactam-*d*¹⁰ on compression derived from neutron powder diffraction data collected on the Pearl instrument. Two loading were performed using perdeuterated pentane and isopentane as the pressure transmitting medium.

0.94(4)	III	8.5531(11)	6.9059(7)	9.8477(12)	94.178(13)	580.13(12)	1.695
1.536(16)	III	8.4376(9)	6.8422(6)	9.7049(7)	94.298(10)	558.70(9)	1.535
2.001(15)	III	8.3813(16)	6.7978(8)	9.6285(7)	94.281(12)	547.05(13)	2.456
2.532(17)	III	8.302(2)	6.7669(10)	9.5468(7)	94.301(15)	534.85(17)	2.436
2.91(3)	III	8.2477(8)	6.7443(7)	9.4882(9)	94.326(11)	526.28(9)	3.693
3.381(18)	III	8.1913(15)	6.7262(9)	9.4337(9)	94.371(14)	518.25(13)	2.449
3.923(17)	III	8.1435(15)	6.7034(9)	9.3730(13)	94.338(14)	510.20(14)	2.251
4.39(2)	III	8.097(2)	6.6832(13)	9.3284(15)	94.26(2)	503.40(19)	3.107
4.97(5)	III	8.0579(17)	6.6547(11)	9.2829(13)	94.269(19)	496.40(15)	2.614
5.64(2)	III	8.0125(7)	6.6231(6)	9.2301(9)	94.189(10)	488.51(8)	2.989
4.99(3)	III	8.0524(16)	6.6547(10)	9.2789(10)	94.225(19)	495.88(14)	2.946
3.63(2)	III	8.169(2)	6.7201(14)	9.391(2)	94.37(2)	514.1(2)	3.295
1.46(3)	III	8.442(5)	6.857(2)	9.7115(14)	94.35(3)	560.6(4)	3.766
0.53(4)	II	11.0490(8)	6.0002(12)	9.6644(16)	107.787(8)	610.09(17)	3.066
0.21(5)	Ι	19.243(4)	7.767(2)	9.544(2)	112.279(15)	1319.9(6)	8.15

Figure S1. The 3rd Order Birch-Murnaghan Equation of State for Form II of caprolactam. Data points from the Pawley and Rietveld fits of the neutron diffraction data collected on the crystals obtained from ethyl acetate and with perdeuterated pentane/isopentane as the pressure-transmitting medium.

Figure S2. The decompression of Form II of caprolactam. At 0.63 GPa is a mixed phase of Form I and II and the transition to Form I is complete by 0.24 GPa. This was the lowest pressure achieved on decompression with the load taken off the sample. The sample was not left for any length of time so the pressure will not have had time to equilibrate.

Figure S3. The 3rd Order Birch-Murnaghan Equation of State for Form III of caprolactam. Data points from the Pawley and Rietveld fits of the neutron diffraction data collected on the crystals obtained from ethanol-*d*₆ and with perdeuterated pentane/isopentane as the pressure-transmitting medium.

Figure S4. a) The Pawley fit of the data at 2 tonnes on decompression (0.53 GPa) using the cell parameters of Form III of caprolactam; b) the diffraction patterns of caprolactam on decompression from 5.69 GPa.

Figure S5. Void space using 0.5 Å probe radius and 0.2 grid spacing for a) Form II at 1.2 GPa and b) Form III at 0.94 GPa using Mercury [35] The percentage of void space in Form II was 4% of unit cell volume compared with 1.5% for Form III.

Figure S6. The molecular volume of each form as a function of pressure. The two loadings are color coded black (Loading 1; crystal from ethyl acetate) and red (Loading 2; crystal from ethanol-*d*₆). Hollow symbols represent Form I and solid symbols represent Forms II and III. Form III is consistently denser over the entire compression range.

Figure S7. Rietveld fit of the 5.4 GPa data to Form III. The peak at 4.1 Å is due to the sample. The model used was taken from the geometry optimized structure and the orientation allowed to refine whilst keeping conformation of the molecule fixed.