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Abstract: In this paper, we studied the aggregation of amphiphilic polymer epoxy-terminated
polydimethylsiloxane (PDMS-E) grafted gelatin (PGG) in water induced by methanol, ethanol,
2-propanol, acetone, tetrahydrofuran (THF), and 1,4-dioxane. The aggregation pattern of the
polymer was monitored by infrared spectroscopy, X-ray diffraction, transmission electron microscopy,
and scanning electron microscopy. It was revealed that the aggregate morphology showed clear
dependence on the solvent polarity. The PGG aggregates had regular spherical morphology in polar
solvents, including water, methanol, ethanol, 2-propanol, and acetone. The coating performance was
evaluated by X-ray photoelectron spectroscopy and friction experiment, and PGG and acetone coating
exhibited excellent coating performance on the surface of pigskin. Gel was formed in acetone and
tetrahydrofuran (THF) with the slow evaporation of solvent, and this property can possibly be applied
to industrial sewage treatment. White precipitate and soft film were formed in non-polar 1,4-dioxane.
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1. Introduction

The aggregation of protein/peptide–polymer conjugates in a selective solvent has attracted
increasing attention due to their capacity for the formation of a variety of hierarchical nano-
and micro-structures or gel [1], which can be applied to biosensors [2], functional materials [3],
bioimaging [4], tissue engineering [5] or drug delivery [6–9]. The aggregation of the conjugates is
a synergistic effect of intermolecular noncovalent interactions, including hydrogen bonding, π-π,
electrostatic, hydrophobic, and van der Waals interactions [10]. The synergistic effect can be disturbed
by solvent polarity or solvent selectivity [11–14].

The polarity of solvents can influence the power of hydrogen bonding interaction between solute
molecules and solvents [15]. Hydrogen bonding between biomolecules and solvents are considered
as a dominant factor among the synergistic effect [16]. Even tiny amounts of solvents (e.g., water)
will disturb the synergistic effect of the intermolecular noncovalent interactions and further change
the aggregation of the conjugates [10]. Sahnawaz Ahmed report that the peptide-perylenediimides
conjugate formed fiber-like morphology in relatively non-polar solvents (THF and CHCl3), while in
more polar solvents (MeOH, acetone) spherical morphology could be found. Their result showed that
the aggregations of the peptide-perylenediimides conjugate clearly depend on the solvent polarity.
In polar solvents, the conjugate aggregates more efficiently than in the non-polar solvents, and with
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decrease in solvent polarity, the dimension of the nano-structures increased [17]. Matthews and Gil
report that crystallization of peptides can be tuned by ethanol or methanol for preparation of biological
materials [18,19].

The polarity of a solvent molecule is related to its dielectric constant (
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and nonpolar solvents tetrahydrofuran and 1,4-dioxane, are selected to induce the aggregation of 
mono epoxy-terminated polydimethylsiloxane (PDMS-E) grafted gelatin (PGG) that was synthesized 
in our previous work [20]. Alcohol, which is thought of as a protic solvent, can be used as both the 
hydrogen donor and acceptor. Acetone, 1,4-dioxane, and tetrahydrofuran, which are aprotic solvents 
but contain highly electronegative oxygen, are more likely to accept hydrogen, being that they are 
hydrogen acceptors [21]. The differing of hydrogen bonding ability in a series of solvents of varying 
polarity can dramatically affect morphologies, sizes, and functions of aggregates [22–26]. 

In addition, solvent selectivity is an essential factor for disturbing aggregation patterns of 
amphiphilic block copolymers with covalently bonded but distinctive blocks. For example, under 
selectivity solvent mediation, amphoteric block polymer as a material can form various shapes of 
asymmetric nanoparticles [27,28], nanorings [29], hollow spheres, and so on [30]. Gelatin, as a 
renewable, cheap, and water soluble protein material, has been widely used in packaging and 
pharmaceutical and medical applications [31]. PDMS is an inorganic polymer exhibiting excellent 
performances, such as non-toxicity, air permeability, pliability, low glass transition temperature, is 
stable and easy to disperse, and it is widely used in the chemical or biological industries [32–34]. The 
compatibility between gelatin and PDMS in selective solvent plays an important role in inducing 
aggregation of PGG, and following this the diverse aggregation patterns that emerge in a series 
solvent of varying polarity. 

In this study, infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and 
scanning electron microscopy were used to characterize the aggregation pattern of PGG. The regular 
spherical morphology formed in polar solvents, including water, methanol, ethanol, and acetone, 
which presented a desired coating on the pigskin with excellent wear-resistance and radiation 
resistance. Gel was formed in acetone and THF with the slow evaporation of solvent, and this 
property can possibly be used for industrial sewage treatment. 

2. Results and Discussion 

2.1. Chemical Modification of Gelatin by PDMS-E 

The chemical modification of gelatin through grafting reactions between free –NH2 groups and 
PDMS-E was performed in water. We can see in Figure 1 that grafting density is significantly affected 
by surfactant structure and concentration. Also, the conversion degree of free –NH2 groups reached 
the first peak values (24.77%) at 3.0 g L−1. The results show that the variation of the conversion degree 
with the increase of concentration is not monotonic. It can be deduced that the structure and 
concentration of surfactants has a large effect on grafting density. Grafting density is enhanced by 
the compatibility of the two phases and affects aggregation of product in the select solvent. In the 
work, the reaction condition (SDS, 3.0 g L−1) is chosen, which brings the highest grafting density. 
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is larger than 25, it is a strong polar solvent. In the paper, solvents,
including strong polar water, methanol, and ethanol, medium polar solvents 2-propanol and acetone,
and nonpolar solvents tetrahydrofuran and 1,4-dioxane, are selected to induce the aggregation of
mono epoxy-terminated polydimethylsiloxane (PDMS-E) grafted gelatin (PGG) that was synthesized
in our previous work [20]. Alcohol, which is thought of as a protic solvent, can be used as both the
hydrogen donor and acceptor. Acetone, 1,4-dioxane, and tetrahydrofuran, which are aprotic solvents
but contain highly electronegative oxygen, are more likely to accept hydrogen, being that they are
hydrogen acceptors [21]. The differing of hydrogen bonding ability in a series of solvents of varying
polarity can dramatically affect morphologies, sizes, and functions of aggregates [22–26].

In addition, solvent selectivity is an essential factor for disturbing aggregation patterns of
amphiphilic block copolymers with covalently bonded but distinctive blocks. For example, under
selectivity solvent mediation, amphoteric block polymer as a material can form various shapes of
asymmetric nanoparticles [27,28], nanorings [29], hollow spheres, and so on [30]. Gelatin, as a
renewable, cheap, and water soluble protein material, has been widely used in packaging and
pharmaceutical and medical applications [31]. PDMS is an inorganic polymer exhibiting excellent
performances, such as non-toxicity, air permeability, pliability, low glass transition temperature, is
stable and easy to disperse, and it is widely used in the chemical or biological industries [32–34].
The compatibility between gelatin and PDMS in selective solvent plays an important role in inducing
aggregation of PGG, and following this the diverse aggregation patterns that emerge in a series solvent
of varying polarity.

In this study, infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and
scanning electron microscopy were used to characterize the aggregation pattern of PGG. The regular
spherical morphology formed in polar solvents, including water, methanol, ethanol, and acetone, which
presented a desired coating on the pigskin with excellent wear-resistance and radiation resistance. Gel
was formed in acetone and THF with the slow evaporation of solvent, and this property can possibly
be used for industrial sewage treatment.

2. Results and Discussion

2.1. Chemical Modification of Gelatin by PDMS-E

The chemical modification of gelatin through grafting reactions between free −NH2 groups and
PDMS-E was performed in water. We can see in Figure 1 that grafting density is significantly affected
by surfactant structure and concentration. Also, the conversion degree of free −NH2 groups reached
the first peak values (24.77%) at 3.0 g L−1. The results show that the variation of the conversion
degree with the increase of concentration is not monotonic. It can be deduced that the structure and
concentration of surfactants has a large effect on grafting density. Grafting density is enhanced by the
compatibility of the two phases and affects aggregation of product in the select solvent. In the work,
the reaction condition (SDS, 3.0 g L−1) is chosen, which brings the highest grafting density.
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isopropanol alcohol are protic solvents that can be both hydrogen donor and acceptor. Acetone, THF, 
and 1,4-dioxane, which contains highly electronegative oxygen atoms, can be regarded as hydrogen 
acceptors [21]. The difference of hydrogen bonding ability for these solvents induces diverse 
aggregation. In addition, the selectivity of gelatin component and PDMS component in solvent can 
lead to a spontaneous aggregation. 

Figure 2 shows that PGG presented different morphologies in different solvents. Spherical 
aggregates were formed in methanol, ethanol, isopropanol alcohol, and acetone system at a PGG 
solution/solvent ratio of 1:1 (v/v; Figure 2a–d), and smaller-scale spherical aggregates were observed 
as the PGG solution/solvent ratio decreased to 1:2 (v/v; Figure 2g–i). However, in the acetone system, 
the decreasing PGG solution/acetone ratio resulted in the formation of coacervate (Figure 2d versus 
Figure 2j). Interestingly, a double-layer structure was formed in the THF-water system at a PGG 
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solution/THF ratio of 1:2 (v/v, Figure 2k). Disordered aggregates were observed in the 1,4-dioxane 
system (Figure 2f,l). These results suggest that the morphology transformations of PGG aggregates 
closely depend on the solvent polarity and the hydrogen bonding ability. In polar protic solvent, 
including methanol, ethanol, and isopropanol alcohol, spherical aggregates tend to form. With the 
increasing ratio of solvent, the scale of aggregate decreases. However, in nonpolar aprotic solvents 
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Figure 1. Conversion degree of free −NH2 groups at 5% (w/w) gelatin with the increasing of sodium
dodecyl sulfate (SDS) concentration from 0 g L−1 to 3.5 g L−1. Data represent mean ± SD, N = 3.

2.2. Aggregation of PGG Induced by Solvents

In this study, organic solvents, including methanol, ethanol, isopropanol alcohol, acetone, THF,
and 1,4-dioxane, were selected to tune the aggregation of PGG in water. From the data of dielectric
constant, it can be inferred that the order in which polarity decreases is: water > methanol > ethanol
> isopropanol alcohol > acetone > THF > 1,4-dioxane. In addition, water, methanol, ethanol, and
isopropanol alcohol are protic solvents that can be both hydrogen donor and acceptor. Acetone,
THF, and 1,4-dioxane, which contains highly electronegative oxygen atoms, can be regarded as
hydrogen acceptors [21]. The difference of hydrogen bonding ability for these solvents induces diverse
aggregation. In addition, the selectivity of gelatin component and PDMS component in solvent can
lead to a spontaneous aggregation.

Figure 2 shows that PGG presented different morphologies in different solvents. Spherical
aggregates were formed in methanol, ethanol, isopropanol alcohol, and acetone system at a PGG
solution/solvent ratio of 1:1 (v/v; Figure 2a–d), and smaller-scale spherical aggregates were observed
as the PGG solution/solvent ratio decreased to 1:2 (v/v; Figure 2g–i). However, in the acetone system,
the decreasing PGG solution/acetone ratio resulted in the formation of coacervate (Figure 2d versus
Figure 2j). Interestingly, a double-layer structure was formed in the THF-water system at a PGG
solution/solvent ratio of 1:1 (v/v) (Figure 2e). The structure evolved to spherical aggregate at a PGG
solution/THF ratio of 1:2 (v/v, Figure 2k). Disordered aggregates were observed in the 1,4-dioxane
system (Figure 2f,l). These results suggest that the morphology transformations of PGG aggregates
closely depend on the solvent polarity and the hydrogen bonding ability. In polar protic solvent,
including methanol, ethanol, and isopropanol alcohol, spherical aggregates tend to form. With the
increasing ratio of solvent, the scale of aggregate decreases. However, in nonpolar aprotic solvents THF
and 1,4-dioxane, complex morphologies can be obtained, such as double-layer, disordered aggregates
or coacervates.
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Figure 2. Morphologies of PGG when PGG solution was mixed with methanol (a,g), ethanol (b,h),
isopropanol alcohol (c,i), acetone (d,j), THF (e,k), and 1,4-dioxane (f,l) at solution/solvent (v/v) ratios of
1:1 (a–f) and 1:2 (g–l).

Mirsky and Pauling were the first to suggest that hydrogen bonding was the dominant force
of protein folding [35]. This folding force becomes more favorable as the number of polar groups
increases [36]. This means that hydrogen bonding, which is affected by solvent polarity, plays a
prominent role in controlling the conformation of the protein component. In general, the FTIR spectra
of the different samples showed similar peaks and bands of amide A [37], amide I, amide II, and
amide III, although with slight differences in the location of the peaks. IR spectroscopy is one of
the powerful tools for studying secondary structures of biopolymers. The signals of α-helix, β-sheet,
β-turn, and random coil structures, which are located precisely in the amide I, II, and III bands, can be
provided [38]. Accurate analysis of the amide III region signal peak is a feasible way to quantify the
secondary structure of proteins [39–41]. In this region, 1330–1295 cm−1 is designated as the region of
the α-helix content, 1295–1270 cm−1 corresponds to the region of the β-turn content, 1270–1250 cm−1

and 1250–1220 cm−1 correspond to the regions of random coil and β-sheet content, respectively.
Savitzky-Golay software is used to do 5-point smoothing and deconvolution. Figure S3 shows the IR
spectra of the samples of PGG (blank) and PGG in different mixed solvents system. Their secondary
structures exhibited obvious differences. Quadratic polynomial integral calculation was carried out
according to the literature reports. The statistics of secondary structure content are shown in Table 1.

Table 1. Secondary structure content of epoxy-terminated polydimethylsiloxane (PDMS-E) grafted
gelatin (PGG) after PGG solution was mixed with six organic solvents (PGG solution/solvent v/v = 1:1).
Results are mean ± standard deviations of duplicate analysis. Values followed by different letters in the
same line are significantly different (p ≤ 0.05, N = 3).

Solvents Blank Methanol Ethanol 2-Propanol Acetone Tetrahydrofuran 1,4-Dioxane

α-Helix 24.45 ± 0.18 b 27.99 ± 0.16 a 28.07 ± 0.31 a 14.59 ± 0.42 d 17.73 ± 0.08 c 24.48 ± 0.11 b 12.55 ± 0.34 e

β-Sheet 31.31 ± 0.07 b 26.55 ± 0.20 d 21.50 ± 0.03 f 29.83 ± 0.17 c 33.54 ± 0.36 a 30.18 ± 0.23 c 24.79 ± 0.16 e

β-Turn 17.50 ± 0.12 c 11.34 ± 0.28 d 18.71 ± 0.15 a 18.33 ± 0.10 ab 18.50 ± 0.29 ab 17.95 ± 0.13 bc 18.65 ± 0.22 ab

Random
Coil 26.73 ± 0.26 f 33.86 ± 0.40 c 31.73 ± 0.22 d 37.24 ± 0.06 b 30.21 ± 0.15 e 27.39 ± 0.17 f 44.01 ± 0.31 a

α-Helix+
β-Sheet 55.76 ± 0.24 a 54.54 ± 0.33 a 49.57 ± 0.29 c 44.42 ± 0.45 d 51.27 ± 0.40 b 54.66 ± 0.30 a 37.34 ± 0.49 e

Helix/Coil 0.91 ± 0.27 a 0.83 ± 0.16 ab 0.88 ± 0.06 a 0.39 ± 0.17 ab 0.59 ± 0.07 ab 0.89 ± 0.18 a 0.29 ± 0.02 b

Table 1 shows that the content of secondary structures in PGG aggregates was obviously affected
by solvents. It is found that the sum of α-Helix + β-Sheet shows a certain regularity. In the protic
solvent system, the sum of the α-Helix + β-Sheets tends to decrease with the reduction of polarity. In
the aprotic solvent, the sums of α-Helix + β-Sheets are larger in THF and acetone systems. In addition,
the Helix/Coil ratio shows the aggregation state of PGG in a select solvent. In protic solvents, the
Helix/Coil ratios are higher in water, methanol, and ethanol systems, and the ratio tends to decrease
with the decrease of polarity. In fact, stable emulsions were formed in water, methanol, and ethanol
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systems, and the solutions were stratified in 2-Propanol. The results indicate that the higher Helix/Coil
ratios induce the stable aggregations in protic solvent. In aprotic solvent, the Helix/Coil ratios are
higher in THF and acetone systems, and ordered gel phase was observed in acetone and THF systems
with the evaporation of solvent for 2 h. Unexpectedly, The Helix/Coil of PGG-1,4-Dioxane sharply
reduced, suggesting an additional phase transition into an unordered structure. The results indicate
that hydrogen bonding ability dependent on the solvent polarity should play a significant role in
improving interactions between components. In fact, stable emulsions were formed in water, methanol,
and ethanol systems, whereas ordered gel phases were observed in acetone and THF systems with
the evaporation of solvent for 2 h. These results suggest that the structure of α-Helix and β-Sheet can
promote the formation of the ordered and stable aggregation structures.

The XRD patterns of all of the studied samples are listed in Figure 3. The peaks located in the
region of 2θ of around 8◦ and 20◦ are associated with the diameter of the triple helix and the intensity
of the reconstructed triple-helix structure of collagen [42]. With the addition of organic solvents, the
peak at 2θ = 8◦ has changed, which interferes with the reassembling of the triple-helix structure of
gelatin during the induction process. The diffraction around 20◦ were broad and there were no sharp
peaks. The peak intensity was weakened as solvent changed from THF, to 1,4-dioxane, to acetone, to
2-propanol, to methanol, to ethanol, and to water, indicating decrease in crystallinity. The peak moved
towards a smaller angle, indicating that the covalent structures in different solvents were different.
There were also peaks at multiple angular positions (13–14◦, 32◦, 42◦, etc.), indicating a weak phase
separation within the system [43]. The solvent did not improve the non-crystalline properties of PGG,
and there was a slight phase separation in the system. The solvent changed the conformation of PGG
and increased the content of the ordered structure, but the disordered structure was still dominant.
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2.3. Coating Performance

The coating performance of PGG was evaluated. Figure 4a shows that the friction resistance of
PGG/acetone coating was the highest under both sweat and wet conditions. Acetone is a good solvent
for PDMS. In acetone, PDMS should gather on the surface of aggregate. The size of the aggregate in
acetone was smaller than that in ethanol, which was beneficial to the coating of aggregates on the
surface of finished pigskin. The excellent flexibility and low Tg were conducive to enhancing the
resistance to friction. Therefore, the friction resistance times of PGG/acetone coating were more than
that of PGG/ethanol. Under both wet and sweat conditions, the friction resistances of these coatings
were consistent.
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Due to the similar compositions and structures of gelatin and collagen, PGG showed excellent
adhesion to the surface of collagen–based materials. After UV irradiation for 2 h, the casein
coating turned brownish-yellow, while the PGG coating had no obvious change in color (Figure 4c),
which demonstrated that the PGG coating had excellent optical stability under UV radiation.
Therefore, the PGG shows excellent coating performance for the pigskin substrate and has a good
commercialization potential.
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conditions (b); casein and PGG coatings under UV radiation (c).

X-ray photoelectron spectroscopy (XPS) analysis can help to evaluate the performances of the
coatings. The detailed XPS spectra of silicon in Figure 5 indicate several components. After coating,
the Si 2p spectrum can be fitted into one peak centered at 101.5 eV. This peak can be assigned to silicon
in Si–O bonds. In addition, the contents of silicon in the samples are obtained by XPS spectra, which
are described in Table 2. Furthermore, PGG/acetone coating shows the highest silicon content, which
helps to improve the friction resistance of the coating. This result is consistent with the results of the
friction experiments.
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Table 2. XPS Elemental Analyses of different coatings. Results are mean ± standard deviations of
duplicate analysis. Values followed by different letters in the same line are significantly different
(p ≤ 0.05, N = 3).

Coating Si 2p (%)

PGG coating 19.52 ± 0.19 b

PGG/acetone(1:1) coating 20.56 ± 0.28 a

PGG/acetone(1:2) coating 20.90 ± 0.22 a

PGG/THF(1:1) coating 20.34 ± 0.16 a

PGG/THF(1:2) coating 18.85 ± 0.21 b

PGG/ethanol(1:1) coating 18.04 ± 0.13 c

2.4. Gel formation and Its Application

Figure 6 shows the SEM images of gel formed in acetone and THF. Gel formation can be driven by
hydrophobic interactions, π-π stacking, and intermolecular hydrogen bonding (H-bonding) [44–47].
These interactions are inherent in the self-aggregation behavior of natural amino acids [45].
By utilizing these three driving forces, specific properties and functions of macromolecules can
be obtained. For example, the convenient preparation of gels has been achieved through hydrophobic
interactions [48]. A highly stable gel has been prepared by intermolecular hydrogen bonding between
polymer chains and solvents [49]. The addition of solvent might lead to PGG aggregation and decreased
solubility [50]. The addition of a polar solvent to the PGG solution increases the polarity of the solution
and the interaction between the solvent and the reaction solution, thereby promoting the formation of
the gel. The temperature and pH are constant during gel formation (room-temperature). In this study,
PGG solution formed a physical gel in polar aprotic solvents by solvent-induced changes of hydrogen
bonding, such as hydrogen bonding acceptor, which can break intramolecular hydrogen bonding, and
induce intermolecular hydrogen bonding. Figures 6a–e and 6f–j show that, as the PGG solution/acetone
or THF (v/v) ratio decreased from 1:1 to 1:5, the solvent–PGG interactions, especially the hydrogen
bonding, became strong enough to result in the aggregation of metastable gelator molecules and
increase in gel orientation [43].
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Figure 6. SEM images of gels formed in different solvents: (a–e) Acetone was the solvent and PGG
solution/solvent (v/v) ratio changed from 1:1 to 1:5; (f–j) THF was the solvent and PGG solution/solvent
(v/v) ratio changed from 1:1 to 1:5.

Figure 7 shows that the gel was still stable as the PGG solution/solvent ratio decreased to 1:10
(v/v). This phenomenon offers the possibility of using PGG for organic wastewater treatment in the
current chemical industry, such as the pharmaceutical and catalysis industries. Gelatin and PDMS
chains in PGG are non-toxic. They are widely used in the chemical industry. Therefore, PGG cannot
cause secondary pollution.
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3. Materials and Methods

3.1. Materials

Type A gelatin from pigskin was purchased from China National Pharmaceutical Group
Corporation (Beijing, China) and used after dialysis. The isoelectric point (pI, 8.5) of the dialyzed
gelatin after complete deionization was determined by fluorescence spectroscopy. Sodium dodecyl
sulfate (SDS) was purchased from Alfa Aesar and recrystallized from ethanol before use. Ally glycidyl
ether (AGE) and chloroplatinic acid hexahydrate (H2Pt6Cl6•6H2O) were obtained from Alfa Aesar.
Hexamethylcyclotrisiloxane (D3, >95%), n–butyllithium (C4H9Li, >99%), and chlorodimethylsilane
(C2H7ClSi, >99%) were purchased from Sigma–Aldrich (St. Louis, MO, USA). Benzene, deionized
water (conductivity = 2.06 µS cm−1, dielectric constant ε = 80.40), methanol (ε = 32.70), ethanol
(ε = 24.50), isopropanol alcohol (ε = 17.90), acetone (ε = 20.70), tetrahydrofuran (THF, ε = 7.58),
and 1,4-dioxane (ε = 2.25) solvents (China National Pharmaceutical Group Corporation) were all of
analytical reagent (AR) grade and strictly dehydrated before use.

3.2. Synthesis of α–[3–(2,3–epoxy–propoxy)propyl]–ω–butyl–polydimethylsiloxanes (PDMS-E)
Grafted Gelatin

D3, C4H9Li, and C2H7ClSi were used to synthesize polydimethylsiloxanes with a Si–H group at
one end (PDMS-H) through anionic addition polymerization. First, 10 mL of benzene were added to a
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flask and then 24 mL of C4H9Li were added. After reducing pressure and ventilation with argon gas,
45.99 g of D3 resolved in 40 mL of benzene was added to the flask. After reaction for 30 min, 50 mL of
THF was added into the system to react for 8 h. Then, 11 mL of C2H7ClSi was injected into the flask to
stop the reaction. The solution was first filtered by a sand-core filter to remove the lithium chloride
precipitate. Then, the filtrate was distilled under reduced pressure at 50 ◦C (−0.01 Mpa) to remove
the low-boiling-point solvent. Subsequently, the temperature was increased to 90 ◦C to remove the
unreacted D3 to obtain purified PDMS-H (Figure S1 (SI)). PDMS-E was then prepared by hydrolyzation
of PDMS-H and AGE under Pt–catalyst (Mw = 1.14 × 103 g mol−1, Mw/Mn = 1.16, Figure S2 (SI)).

All gelatin samples were prepared from a stock solution of dialyzed gelatin in order to minimize
experimental errors. The 130-mL stock solution was prepared by dissolving gelatin in distilled water
(5 wt%) and stirring for 3 h at 50 ◦C. Subsequently, the pH of the stock solution was adjusted to
10.0 using NaOH solution (2.0 mol L−1, about 220 µL). SDS was added to the gelatin solution with
SDS concentration set at 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 g/L−1. The solution was stirred for 6 h.
Then, PDMS-E was added to the above solution at 50 ◦C at a rate of 20 drops/min−1 with stirring
until the epoxy groups or primary amino groups ratio reached 0.8:1.0 (mol:mol). The reaction was
allowed to continue for another 24 h. After reaction for 24 h, the solutions were cooled to 5 ◦C for
concentration, and the content of free −NH2 groups was tested by the Van Slyke method at 40 ◦C and
trinitrobenzenesulfonic acid (TNBS) assay at pH = 10.5 [20]. Finally, the pH of the reaction solution
was adjusted to 7.0 with HCl solution (2.0 mol L−1, about 150 µL).

3.3. Aggregation of PGG in Mixed Solvent

The 130 mL stock solution was divided into 13 equal parts. One part was used as blank, and
organic solvents were added to the other parts. The organic solvents included methanol, ethanol,
isopropanol alcohol, acetone, THF, and 1,4-dioxane. We calculated the amount of water in the reaction
liquid, and based on this, we set the amount of solvent, adding different proportions of solvent.
The volume ratios of reaction liquid to solvent were set to 1:1 or 1:2.

3.4. Characterization

High-resolution transmission electron microscopy (HR-TEM) images were acquired on a Tecnai
JEM-2100 (Japan Electronics Co., Ltd., Tokyo, Japan) equipped with a charge coupled device (CCD)
camera (Gatan Bioscan, Pleasanton, CA, USA) at 100 kV with a point resolution higher than 0.19 nm.
Fourier transform infrared (FTIR) spectra were recorded using a Bruker Tensor–27 Fourier-transform
infrared spectrometer (spectral range between 4000 and 450 cm−1, Bruker Co., Billerica, MA, USA).
Solution samples were dried by freeze drying. Thirteen samples were obtained and were measured
at room temperature in the solid state using a single reflection diamond attenuated total reflectance.
X-Ray diffraction (XRD) patterns were characterized using a Bruker D8 advanced X-ray powder
diffractometer with Cu-Ka radiation (λ = 1.5418 Å). Scanning electron microscopy (SEM) images were
performed on FEI Quanta 200 with accelerating voltage 20 kV. The X-ray photoelectron spectroscopy
(XPS) were carried out by a Thermo Fisher Scientific ESCALAB 250 spectrometer (ThermoScientific
Co., Waltham, MA, USA) with a pass energy of 20 eV and a power of 60W (=5 mA × 12 kV) under the
Al Kα line (1486.6 eV).

3.5. Coating Performance

First, a piece of pigskin was degreased after fleshing and then re-tanned with resin. The finished
pigskin was cut into samples with size of 30 cm × 30 cm and sixteen samples were obtained. Second,
160 g of PGG solution was mixed into ethanol or acetone at Vsolvent:Vsolution = 2:1 (v/v). Solid
content was about 15% in the mixed system. Casein paint sample was prepared by dissolving 1.5 g of
256# (trade name of casein paint, made in San Francisco; casein paint, derived from milk protein, is a
fast-drying, water-soluble medium used by artists) into 100 g of water. Third, 30.0 g of mixture of PGG
solution and ethanol or acetone was coated onto the surface of the finished pigskin. Additionally, 10.0 g
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of PGG solution and 10.0 g of 256# solution were directly coated onto the surface of finished pigskin,
respectively. All coated pigskin samples were laid in an environment with the ideal temperature
and humidity for three days and then tested for their resistance to friction under dry, wet, and sweat
conditions. Uncoated finished pigskin was used for reference. The samples were placed in the friction
machine for testing. The degree of surface wear was designed and friction times were compared
for different coatings. In addition, the pigskins coated with 10.0 g of PGG solution and 10.0 g of
256# solution were compared in their resistance to radiation. The samples were laid under UV light
(λ = 365 nm) for 2 h and the color variation was compared. Finally, the pigskin coated with 10.0 g of
PGG solution was used to test the adhesion index of the coating layer.

4. Conclusions

In this paper, the aggregation of PGG in water was tuned by six organic solvents, including
methanol, ethanol, 2-propanol, acetone, tetrahydrofuran, and 1,4-dioxane. TEM, IR, XRD, and SEM
analyses showed that the aggregation pattern of PGG was affected by the solvent polarity and selectivity.
PGG showed regular spherical morphology in polar solvents, including water, methanol, ethanol,
2-propanol, and acetone, and exhibited excellent coating performance on the surface of pigskin. Gel was
formed in acetone and THF with the slow evaporation of solvent, and gel orientation increased with
increase in the volume proportion of organic solvent. This property offers the possibility of applying
PGG to organic sewage treatment in the chemical industry.

Supplementary Materials: Including synthetic route of epoxy polysiloxane (Figures S1 and S2), IR spectroscopy
characterization of blank and solvent-polymer films (Figure S3).
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