Populations Dynamics of Guanine Radicals in DNA strands - Direct versus Indirect Generation

Evangelos Balanikas¹, Akos Banyasz^{1,2}, Gérard Baldacchino¹ and Dimitra Markovitsi^{1,*}

- ¹ LIDYL, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France vangelis.balanikas@cea.fr (E.V.); gerard.baldacchino@cea.fr (G.B.); dimitra.markovitsi@cea.fr (D.M.)
- ² Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France; akos.banyasz@ens-lyon.fr (A.B.)
- * Correspondence: dimitra.markovitsi@cea.fr (D.M.)

Supporting Information

- Figure S1: Dependence of the radical decays in S1 on the excitation intensity
- Figure S2: post-irradiation steady-state differential spectra of TEL25/Na⁺
- Figure S3: normalized transient absorption spectra of TEL25/Na⁺
- Figure S4: Dependence of the radical decays in TEL25/Na⁺ on the excitation intensity
- Figurer S5: steady-state absorption spectra of D and TEL25/Na⁺
- Figure S6: melting curves of D and TEL25/Na⁺
- Estimation of the G radical and SO₄•- concentrations in reference [1].

Figure S1. Normalized transient absorption signals recorded for **S1** at 500 nm (**a**) and 305 nm (**b**) for excitation energies of 4 mJ (blue), 6 mJ (green) and 7 mJ (red).

Figure S2. Differential absorption spectra recorded for TEL25/Na⁺ at 0.5 ms (triangles) and 10 ms (squares; its intensity was normalized to that of 0.5 μ s the spectrum at 600 nm).

Figure S3. Differential steady-state spectrum corresponding to the absorbance of **TEL25/Na**⁺ before and after irradiation with 400 laser pulses of 6 mJ.

Figure S4. Normalized transient absorption signals recorded for **TEL25/Na**⁺ at 605 (**a**) and 305 nm (**b**) for excitation energies of 2 mJ (blue), 4mJ (green) and 6 mJ (red).

Figure S5. Absorption spectra of **D** (red) and **TEL25/Na**⁺ (green). The molar absorption coefficients ε were estimated, starting from the ε_{260nm} values provided by Eurogentec Europe for single strands at room temperature. In the case of **D**, we assumed that ε_{260nm} at 96°C corresponds to that of an equimolar mixture of **S1** and **S2** at the same temperature. In the case of **TEL25/Na**⁺, we simply considered that the ε_{260nm} value at 96°C is that of the single strand. We judge that the errors due these approximations do not exceed 15%.

Figure S6. Absorbance variation determined as a function of temperature for the duplex **D** at 260 nm and the **G**-quadruplex **TEL25/Na**⁺ at 295 nm.

Estimation of the G-radical and SO4[•] concentrations reactions in reference [1]:

The radical concentration, evaluated using a molar absorption of 1500 mol⁻¹cmL⁻¹ at 500 nm [2] and an absorbance of 0.01 (Figure 3 in reference [1]) is 6.7×10^{-6} molL⁻¹. We estimated [SO4^{•-}]⁰ considering the excitation energy (60 mJ), the excitation path length (0.2 cm), the excited volume (0.06 mL) and the Na₂S₂O₈ concentration (0.02 molL⁻¹) reported by the authors and taking into account the molar absorption coefficient of Na₂S₂O₈ at 308 nm (1 mol⁻¹Lcm⁻¹) and the quantum yield for SO4^{•-} formation (0.55) [3]. The resulting concentration, 13×10⁻⁶ molL⁻¹, is twice as high as that of **G** radicals.

(Na₂S₂O₈): 0.02 molL⁻¹ Excitation path length: 0.2 cm Molar absorption coefficient at 308 nm: 1 mol⁻¹Lcm⁻¹ Absorbance at 308 nm: 0.004 Incident excitation energy: 60 mJ Absorbed excitation energy: 60×(1-10^{-0.004})=0.55 mJ Absorbed photons: 1.4×10⁻⁹ einstein Quantum yield of the reaction: 0.55 SO4^{•-} formed par laser pulse: 7.7×10⁻¹⁰ mol Excited volume: 0.06 mL SO4^{•-} concentration: 1.3×10⁻⁵ molL⁻¹

References

- Rokhlenko, Y.; Cadet, J.; Geacintov, N. E.; Shafirovich, V., Mechanistic Aspects of Hydration of Guanine Radical Cations in DNA. J. Am. Chem. Soc. 2014, 136, (16), 5956-5962.
- Candeias, L. P.; Steenken, S., Stucture and acid-base properties of one-electron-oxidized deoxyguanosine, guanosine, and 1-methylguanosine. J. Am. Chem. Soc. 1989, 111, 1094-1099.
- Heidt, L. J.; Mann, J. B.; Schneider, H. R., The photolysis of persulfate. 2. The quantum yield in water and the effect of sodium chloride in dilute alkaline solution. J. Am. Chem. Soc. 1948, 70, (9), 3011-3015.