Supplementary Materials: Simplification of Carbon Bond Mechanism IV (CBM-IV) under Different Initial Conditions by Using Concentration Sensitivity Analysis

Le Cao *, Simeng Li, Ziwei Yi and Mengmeng Gao

1 Comparison of KINAL and KPP Simulations

Figure A1 shows the temporal changes of six components ($\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{CO}$ and PAN) ${ }_{3}$ calculated by KPP and KINAL, and Tab. A1 lists the maximum mixing-ratio of these components 4 and the deviation of these peak values between KPP and KINAL. It can be seen that the mixing-ratio 5 profiles obtained in these two different models are nearly identical, and the maximum deviation of - these peak values is less than 1%. Thus, the change of the chemical species in these two models is 7 consistent, which validates the correctness of the KINAL computations applying CBM-IV mechanism. s Therefore, we can use KINAL further to investigate the internal properties of the CBM-IV mechanism.

Table A1. Peak values of major components $\left(\mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{CO}, \mathrm{NO}\right.$ and PAN) obtained in KPP and KINAL, and the deviation of the peak values between these two models.

	Peak Value in KINAL (unit: ppb)	Peak Value in KPP (unit: ppb)	Deviation
NO_{2}	44.63	44.62	0.02%
$\mathrm{H}_{2} \mathrm{O}_{2}$	44.58	44.57	0.02%
O_{3}	178.80	178.29	0.29%
CO	366.20	366.07	0.04%
NO	50	50	0%
PAN	29.74	29.75	0.03%

Figure A1. Temporal change of (a) $\mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$, (b) $\mathrm{O}_{3}, \mathrm{CO}$, (c) NO and PAN obtained in KPP and KINAL. The figures on the left column show the results of KPP, and the right column denotes the results of KINAL.

