Supplementary Information

Sequence-Specific DNA Binding by Noncovalent Peptide–Azocyclodextrin Dimer Complex as a Suitable Model for Conformational Fuzziness.

Zulma B. Quirolo 1,2,3,†, M. Alejandra Sequeira 1, José C. Martins 2 and Verónica I. Dodero 1,3,†,*

¹ Depto. Química- Universidad Nacional del Sur, Bahía Blanca 8000 Argentina

- ³ Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
- * Correspondence: veronica.dodero@uni-bielefeld.de; Tel.: +49-(0)521-106-2046; Fax: +49-(0)521-106-156963
- ⁺ Current affiliation: IFISUR Depto. Química Universidad Nacional del Sur, Bahía Blanca 8000, Argentina

Table of Contents.

1. ¹ H and ¹³ C-NMR spectra of the azoCyDdimer	S2
2. UV-Visible spectra and HPLC of the azoCyDdimer	S4
3. HPLC and MALDI-Tof of peptides derivatives Ad30 and Ad26	S5

² NMR and Structure Analysis, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium

1. ¹H and ¹³C-NMR spectra of the azoCyDimer

Figure S1. ¹H-NMR of the dimer 500MHz. DMSO-d₆ a 25 °C.

Through an HSQC experiment, the determination of the ${}^{1}H{}^{-13}C$ correlations through a bond was made and allowed CH₂ differentiation of CH. The CH₂ have reverse phase respect to the CH signals. In this type of experiments, quaternary carbons cannot be determined. The analysis was completed with HMBC, which allows establishing the correlations ${}^{1}H$ and ${}^{13}C$ at long distance (two or three bonds).

Figure S2. 2D NMR - HSQC -500MHz in DMSO-d6 a 25 °C.

Figure S3. 2D NMR- HMBC -500MHz in DMSO-d6 a 25 °C (Oligosaccharide region).

CyD ¹	H1	H1′	H6	H6′	H6″	H5	H3	H4	H2
¹ H nnm	4.96	4.83	3.65	3.96	3.33	3.31	3.65	3.37	3.29
11 ppm								3.20	
Area	14 H	, br.s	8	84 H, ov ² .	80 H ₂ O (H6, H6',	H"6, H5	, H4, H2)	
130	101.95	101.64	59.7	40.54	40.53	72.17	72.77	81.29	81.9
¹³ C ppm								84.05	

Table S1.	Table of	chemical	shifts of	AzoC	yDdimer ((\mathbf{E})).
-----------	----------	----------	-----------	------	-----------	----------------	----

|--|

Conector ¹	N-Ha	Hc	Hb	C-Ar2	C-Ar1	C-0
¹ H ppm	8.50	7.98	8.04			
Area	2 H, br. s	4 H, d (<i>Jo</i> = 8.6 Hz)	4 H, d (<i>Jo</i> = 8.6 Hz)			
¹³ C ppm		122.22	128.35	137.4	153.7	166.2

¹ NMR signals from the azobenzene region of the dimer

2. UV-Visible spectra and HPLC of the azoCyDdimer

Figure S4. AzoCyDdimer solution in $H_2O(0.037 \text{ mM})$ after irradiation at 360 nm at different times. b) Overlapped spectra of the photostationary mixture reversion in the dark after 11 days.

Figure S5. A) RP-LC-MS of azoCyDdimer solution in H₂O. (0.74 mM) B) Dimer solution after been irradiated at 360 nm for 20 min. (A: H₂O; B: ACN; Gradient: 5-95%B in 30 min. Detection at 280 nm).

Figure S6. MALDI-TOF of derivatives Ad26 and Ad30