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Abstract: This study introduces a simple and environmentally friendly method to synthesize
silica-protein nanocomposite materials using microwave energy to solubilize hydrophobic protein
in an aqueous solution of pre-hydrolyzed organo- or fluoro-silane. Sol-gel functionality can be
enhanced through biomacromolecule incorporation to tune mechanical properties, surface energy,
and biocompatibility. Here, synthetic spider silk protein and organo- and fluoro-silane precursors
were dissolved and mixed in weakly acidic aqueous solution using microwave technology. Scanning
electron microscopy (SEM) and Atomic force microscopy (AFM) images revealed the formation
of spherical nanoparticles with sizes ranging from 100 to 500 nm depending, in part, on silane
fluoro- or organo-side chain chemistry. The silane-protein interaction in the nanocomposite was
assessed through infrared spectroscopy. Deconvoluted ATR-FTIR (Attenuated total reflectance
Fourier-transform infrared spectroscopy) spectra revealed silane chemistry-specific conformational
changes in the protein-silane nanocomposites. Relative to microwave-solubilized spider silk protein,
the 3 structure content increased by 14% in the spider silk-organo-silica nanocomposites, but decreased
by a net 20% in the spider silk-fluoro-silica nanocomposites. Methods of tuning the secondary
structures, and in particular 3-sheets that are the cross-linking moieties in spider silks and other
self-assembling fibrillar proteins, may provide a unique means to promote protein interactions, favor
subsequent epitaxial growth process, and enhance the properties of the protein-silane nanocomposites.
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1. Introduction

Silica particles are widely used in industry, medicine, and nanotechnology [1,2]. Bulk and
surface properties are modified through the incorporation of small molecules such as surfactants to
introduce porosity during synthesis, or coating with organofunctional silanes post-synthesis to impart
defined surface chemistries [3]. If the silane function group is an alkyl- or aryl-moiety the resulting
particle or gel is termed an organically modified silica (ORMOSIL). Organic modifications are often
incorporated as a functional bridge to promote adhesion with additional molecules. Biomacromolecules
bonding to silica particles, surfaces, and within porous gels can be improved through ORMOSIL
selection [4,5]. Preserving immobilized biomolecule function, through defined orientation and
retention of native confirmations on/in silicas is critical for biomedical and diagnostics applications [6].
In particular, protein-silica composite materials are explored for application in biomedical fields such
as immunology, cancer research, and drug delivery [7-10]. These hybrid materials are also investigated
in materials science technologies such as self-assembled materials, quantum dot bioconjugates, sensors,
and inorganic materials synthesis [11-17].

Silica-based biomaterials have potential applications in tissue engineering, where
biomineralization is necessary for bone and tooth repair, while simultaneously serving as a drug
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delivery system to stimulate surrounding tissues or prevent infection. Structural integrity can be
enhanced through incorporation of fibrillar protein assemblies such as those observed for spider
silk. Recombinant spider silk (SS) protein is a promising biomaterial with huge potential in the
textiles, biomedical, and manufacturing industry in the form of fibers, films, hydrogels, lyogels,
and adhesives [18-24]. SS based materials have shown potential in tissue engineering through surface
modifications that promote fibroblast cell attachment and proliferation [25-30]. The extraordinary
mechanical strength of SS comes from its 3-sheet dominated secondary structures that form the basis for
self-assembly through strong physical interactions [14]. However, SS proteins are insoluble in aqueous
solution, and conventionally dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to generate spin
dopes to create fibers, films, gels, and foams [31-34]. HFIP, however, is expensive and poses significant
health and environmental risks. Recently, a simple microwave method has been introduced to dissolve
SS in aqueous solution, providing a cost-effective and green approach to preparing SS-functionalized
materials and surfaces [35].

Here, we investigate addition of simple organo- and fluoro-silanes (ORMOSILs and F-ORMOSILs)
to S5 as a means to tune properties of the resulting sol-gel inorganic/organic composite. Alkoxysilanes
are often used as the precursor for silicone, a widely used adhesive to bridge inorganic materials with
organic molecules [36]. Hydrolyzed ORMOSILs and F-ORMOSILS exhibit a strong ability to induce
secondary structures of globular proteins [37]. We select hydrophobic n-propyltrimethoxy silane (nPM)
and 3,3,3-trifluoropropyl trimethoxy silane (3F) as both have been shown to influence the molten
globule transition and secondary structures of beta-lactoglobulin and albumin [37], which are low
MW, water soluble proteins in contrast to SS. We hypothesize that hydrolyzed nPM and 3F can induce
secondary structure in SS and upon condensation form bio-inorganic nanocomposites consisting of SS
and silica. Using microwave-assisted dissolution of SS in the presence of hydrolyzed silanes followed
by base-initiated condensation yields hybrid spider silk-silica nanocomposites under purely aqueous
conditions. Spherical sub-micron particles are observed for both 3F and nPM, however, the two silanes
distinctly influence the SS secondary structures as determined by FTIR analysis. The 3 structural
content increased by 10% in the SS-nPM nanocomposites, but decreased by a net 28% in the SS-3F
nanocomposites. The ability to tune protein secondary structures in the protein-ORMOSIL composite
may provide a means to control subsequent growth processes, such as biomineralization with which
biological function and mechanical properties of these composite organic/inorganic biomaterials can
be modified.

2. Results and Discussion

The integration of spider silk protein with organo- and fluoro-silanes, referred to as the SS-silica
nanocomposites is detailed in the Materials Section. The hybrid particles are prepared by addition of
the synthetic spider silk into the acid-hydrolyzed silane solutions followed by microwave-induced
solubilization of the SS protein then addition of base to induce condensation. The SS-silica
nanocomposites were assessed using SEM, AFM, and infrared spectroscopy. In Figure 1, SEM
images reveal nanoparticles (NPs) synthesized from the pure silanes (top row) and the SS-silica hybrid
particles (bottom row). The pure fluoro (3F) and organo (nPM) silane NPs formed through the acid/base
two-step method form highly regular spheres with sizes generally ranging between 350 and 550 nm.
These particles resemble typical NPs prepared via Stober sol-gel methodology; however, the 3F and
nPM particles are prepared without any alcohol as co-solvent. The SS-silica nanocomposite particles,
Figure 1, bottom row, are notably smaller than the pure silane controls in the top row. These images also
suggest that the SS-nPM particles (Figure 1b) are more monodisperse (<50 nm) than the SS-3F particles
in Figure 1d where particle sizes are multimodal, with sizes <50 nm and >300 nm clearly observed.
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Figure 1. SEM images of (a) nPM based silica NPs, (b) S5-nPM silica nanocomposites, (c) 3F based
silica NPs, and (d) SS-3F silica nanocomposites.

Both SS-nPM and SS-3F particles appear highly aggregated under SEM observation. The
morphological differences among the SS-silica nanocomposites may arise from templating effects of
the protein on the sol-gel process, apparently favoring formation of smaller NPs. From the SEM data it,
is uncertain if the larger particles in the SS-3F synthesis are also hybrid particles, or whether these
reflect a competing process of forming pure silane particles. However, we believe the protein and
silane to be integrated into composite particles for the SS-3F synthesis based on the following: (1) There
was no evidence of protein fibrils in the SEM and AFM images of the SS-3F systems; (2) the 3F to SS
molar stoichiometry was 200:1, which is selected to provide sufficient silane (~200 Da) to interact with
SS protein (~100 kDa); and (3) the decrease in particle size when the sol-gel process occurred in the
presence of SS protein indicated some type of templating or interaction between organic/inorganic
components. Differences between nPM and 3F interactions with SS protein in their hydrolyzed states
are also possible, with hydrolyzed 3F exhibiting a higher dipole moment than nPM due to the strong
electronegativity of the tri-fluoro moiety pendent to the Si atom in 3F. These effects could yield the
differences in the 3F-SS and nPM-SS particles observed in the SEM images.

AFM was employed as a complementary imaging modality, and in particular, is highly sensitive
to analyzing pure SS fibrils, as shown in Figure 2a. No fibrillated proteins were observed upon
addition of either silane, as shown in Figure 2b,c. During the microwave synthesis, the SS proteins
apparently integrated with the nPM and 3F hydrolyzed monomers and condensation products, thus
inhibiting silk protein self-assembly into the characteristics fibrils shown in Figure 2a. The SS-nPM
silica nanocomposites and SS-3F silica nanocomposites shown in panels b and c, respectively, reveal
the particles to be highly aggregated as observed in the SEM images.

ATR-FTIR spectra (Figure 3) showed some major conformational changes in the amide I zone
(1575 cm™ to 1725 cm™) of SS proteins within the SS-nPM silica nanocomposites, and SS-3F silica
nanocomposites compare to the SS proteins alone. Figure 3 also includes spectra for the pure nPM
and 3F silica NPs. With the amide I and amide II zones, other bending and stretching peaks are
also shown in the respected spectra. Spectra representing 3F based silica NPs and SS-3F based silica
nanocomposites show the C-F stretching and deformation at 840 cm~!, 1210 em™!, and 1260 cm™! [38].
Peaks at 1210 cm™! representing the deformation vibration of Si-CH,- exist in both 3F and nPM, causing
the increased adsorption intensity at 1210 cm™! in 3F based silica NPs and SS-3F silica nanocomposites
as it overlaps with C-F vibration [39]. Strong bands between 1210-1000 cm ™! are due to the stretching
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vibration of 5i-O-5i observed in all spectra except the SS spectrum confirm the presence of 3D polymeric
network of Si0O; [39,40]. Another adsorption band around 800 cm™! is also observed representing
Si-O-Si in all the spectra of silica-containing samples [41].

Figure 2. AFM images (a) SS proteins, (b) SS-nPM silica nanocomposites, and (c) SS-3F
silica nanocomposites.
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Figure 3. ATR-FTIR spectra of nPM based silica NPs, 3F based silica NPs, SS-nPM based silica
nanocomposites (SS-nPM), SS-3F based silica nanocomposites (SS-3F), and SS proteins.

Additionally, the peaks for CH3, CH, (1320-1450 cm™!), and ~CH (900 cm™!) were visible in all
the spectra except spectrum for SS protein [39]. The presence of Amide I and II in SS-nPM and SS-3F
silica nanocomposites along with the other peaks available for nPM and 3F based silica NPs confirm
the integration of the SS in the particles observed in SEM and AFM.

The spectra representing the nanocomposites and SS protein were deconvoluted in their amide I
zone to quantify the conformational changes occurred in the secondary structures due to the interaction
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of SS protein with nPM and 3F during the formation of nanocomposites. The deconvoluted FTIR spectra
of S5, SS-3F, and SS-nPM are shown in Figure 4a—c, respectively. Figure 4d provides a comparison
of the secondary structure content in the corresponding SS proteins. In SS-3F silica nanocomposites,
(3-sheet was reduced by 20%, and p-turn reduced by 41% compared to the spectra reporting these
secondary structures in SS proteins alone. In the SS-3F silica nanocomposites two new secondary
structures corresponding to a 31¢-helix appeared and was 25% of the total secondary structures present
in the SS-3F nanocomposites.

o7

58 0.08 b SS-3F
we] @A j ;
0.06
0.00
L] @
o 1%}
] C  0.04
g " £
8 [+]
]
| 0.03
g oo g
0.02 4 0.02 4
0.01 1 0.01 ]
0.00 —— : — -
1720 1700 4880 1680 1840 1820 1800 1840 1700 1880 1860 1840 1820 1800
Wavenumber (t:m"| ) Wavenumber (cm'1 )
0.07 ] ) $S-nPM 80 d) Il Beta sheet
c = Il Ecta turn
.06 E [ Random cail
& 001 I Alpha helix
E [ 310-helix
é 0.05 ey
5 2
¥ 004 ‘E
@ 30 4
4 E
< .03 ®
Ezn ]
0.02 &
810
0.0 - \ ]
,A—A —
4700 4680 1660 1848 1820 1800 ss $S-3F $S-nPM
Wavenumber (t:m'1 )

Figure 4. Deconvoluted ATR-FTIR spectra of (a) SS proteins, (b) SS-3F silica nanocomposites, (c)
SS-nPM silica nanocomposites, and (d) conformational change in secondary structures of BLG.

An opposite trend was observed in the secondary structures in the amide I zone of SS-nPM
silica nanocomposites, where both of the primary (3 structures (sheet and turn) increased. In these
nanocomposites, 3-sheet increased by 14%, 3-turn and «-helix decreased by 4% and 26%, respectively.
These patterns of conformational changes in the secondary structures of SS proteins are consistent with
conformational changes observed in BLG protein, as reported by Peng et al. [37]. BLG is a relatively
low MW (~18.4 kDa), water soluble, globular protein in contrast to the 65-120 kDa hydrophobic SS
proteins investigated here. [42] The solubilization of the SS proteins in the presence of the silanes
through microwave energy solubilization procedure provides a facile means to synthesis hybrid
silane-biomacromolecule nanoparticle-microparticle composites.

3. Materials and Methods

3,3,3-trifluoropropyl trimethoxy silane (3F > 95% purity, MW = 2183, d = 1.14 g/mL),
and n-propyltrimethoxy silane (nPM, > 95% purity, MW = 164.3, d = 0.94 g/mL) were purchased
from Gelest, Inc. (Morrisville, PA, USA). 50% (w/w) NH4OH was purchased from Fisher Scientific.
Muscovite mica was purchased from SPI supplies for AFM study (West Chester, PA, USA). AFM tips
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were obtained from TED Pella Inc., Redding, CA (TAP300AL-G-50). Recombinant spider silk protein
was obtained from R. Lewis, Utah State University Department of Biology. Two different types of
SS protein such as major ampullate silk protein rMaSp1 and major ampullate silk protein rMaSp2
were purified from the milk of transgenic goats through tangential flow filtration, precipitation, and
washing, yielding 65-120 kDa proteins. [42]

The hybrid silane/protein composites were prepared by first preparing the silane solutions. 3F
(0.4 M) and nPM (0.4 M) were hydrolyzed at pH 3.0 in aqueous media in separate vials. Two SS
proteins (rMaSpland rMaSp2) were mixed with a ratio of 50:50 [1% w/v or ~0.001 M) and added in 5
mL 3F and nPM media separately after diluting hydrolyzed 3F and nPM solution to 0.02 M which
make stoichiometry of 3F/nPM:SS as 200:1. The protein remained as a visible white aggregate in the
solution. These mixed solutions were then microwaved (Haier microwave (700 W) for 8 s, followed
by a 30 s pause, for 4 times in a tightly closed glass vials to dissolve the SS. Following 4 cycles, the
temperature in the vials reached 130 °C and the resulting solutions were clear.

Following microwave-facilitated dissolution of the SS protein, the solutions were cooled to 23 °C
using an ice water bath. A 5 mL aliquot of the solution was removed, stirred at 500 rpm, and 50 pL
of NH4OH was added dropwise to catalyze 3F/nPM condensation. A cloudy sol formed and after
2 h the solution was transferred to 15 mL centrifuge tubes, centrifuged at 4000 rpm to form a pellet.
The supernatant was discarded and pellet resuspended in DI water. The centrifugation and wash
procedures were repeated two times. The wet pellet was then frozen at —80 °C and lyophilized for
12 h. The dried powder of SS-nPM or SS-3F was collected and stored for analysis. The experimental
schematic is shown in Figure 5.
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Figure 5. Schematic of Experimental procedure of the spider silk and 3F/nPM nanocomposite materials.

Dried nanocomposite material morphologies were analyzed using AFM and SEM. SEM was
performed with a FEI Quanta FEG 650 equipped with an Oxford X-Max energy dispersive X-ray
spectroscopy (EDS), (ThermoFisher Scientific, Hillsboro, OR, USA) housed in the Microscopy Core
Facility at Utah State University. Samples were imaged with 20 kV accelerating potential without
conductive coatings. AFM images were taken using Nanoscope III Bioscope (Digital Instrument, Inc.,
Camarillo, CA, USA) in tapping mode with Al-coated BS-Tap 300 cantilevers from Budget Sensor,
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Sofia, Bulgaria. 100 pL samples were drop-cast on freshly cleaved mica surfaces then gently washed
with DI water and air-dried before taking AFM images.

Bonding between spider silk protein and both fluorinated and methylated silica were analyzed
by FTIR using a Varian 660-IR (Agilent, Santa Clara, CA, USA) with a horizontal single reflection
Pike Technologies MIRacle attenuated total reflectance (ATR) unit, fitted with a ZnSe crystal. 100 pL
samples were drop cast on the ZnSe crystal of the ATR platform and air-dried before taking the reading.
Readings were taken after averaging 20 scans over the range of 600 cm™! to 1800 cm™! with a resolution
of 1 em™!. Prior to each reading, a background scan was acquired. The ATR-FTIR spectra were later
deconvoluted using OriginPro, OriginLab Corporation (Northampton, MA, USA), to analyze the
transformation in the secondary structures of spider silk protein.

4. Conclusions

An aqueous sol-gel process combined with microwave-assisted dissolution of hydrophobic
synthetic spider silk is demonstrated here to yield silk-silica nanocomposite particles. Sub-micron
particles were observed for both silk ORMOSIL (SS-nPM) and silk-F-ORMOSIL (SS-3F) hybrids.
Incorporation of SS into the sol-gel process yielded relatively spherical 3F and nPM silk nanocomposites
with a greater range of sizes and morphologies, as contrasted with the pure nPM and 3F silica NPs.
In the absence of the two hydrophobic silanes, pure SS assembled into fibrillar strands exhibiting
strong amide I and II peaks in the ATR-FTIR spectra. Shifts in these peaks in the nanocomposites
further confirmed an intimate integration of the SS protein with the silanes in the nanocomposites.
However, the influence of the organo- and fluoro-silanes on the SS secondary structures were distinct.
Deconvoluted ATR-FTIR spectra showed the increased {3 structures in S5-nPM silica nanocomposites
and decreased 3 structures in the SS-3F silica nanocomposites. The ability to induce defined secondary
structures in the protein-silane hybrid particles may allow for bottom-up design of bioactive particles,
surfaces, and monoliths where subsequent epitaxial growth and biomineralization can be tuned for
user-defined applications.
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