Assessing geographical origin of *Gentiana rigescens* using untargeted chromatographic fingerprint, data fusion and chemometrics

Tao Shen ^{1, 2, 3}, Hong Yu ^{1, 2*}, Yuan-Zhong Wang ⁴

- ¹ Yunnan Herbal Laboratory, Institute of Herb Biotic Resources, School of Life and Sciences, Yunnan University, Kunming 650091, China; st_yxnu@126.com
- ² The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresouces in China and Southeast Asia, Yunnan University, Kunming 650091, China
- ³ College of Chemistry, Biological and Environment, Yuxi Normal University, Yu'xi 653100, Yunnan, China
- ⁴ College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
- * Correspondence: hongyu@ynu.edu.cn, herbfish@163.com (H.Y.); Tel:+86-0871-68182671

Figure captions

Figure S1. Variation of stems score plots along the latitude gradients

- Figure S2. Variation of stems score plots between the adjacent latitudes
- Figure S3. Variation of leaves score plots along the latitude gradients
- Figure S4. Variation of leaves score plots between the adjacent latitudes

Figure S5. Permutation plot of the OPLS-DA of rhizome samples

Figure S6. Permutation plot of the OPLS-DA of stem samples

Figure S7. Permutation plot of the OPLS-DA of leaf samples

- **Figure S8.** The *n*tree and *m*try screening of RF models based on low-level data fusion strategy
- **Figure S9.** Result of variables selection of rhizome fingerprint data based on "Boruta" algorithm (red triangle = relevant features variables)
- Figure S10. Result of variables selection of stem fingerprint data based on "Boruta" algorithm
- Figure S11. Result of variables selection of leaf fingerprint data based on "Boruta" algorithm
- **Figure S12.** The *n*_{tre} and *m*_{try} screening of RF models based on mid-level data fusion strategy
- **Figure S13.** The importance variables of OPLS-DA models of rhizomes, stems and leaves fingerprints data

Figure S14. Permutation testing (200 times) of the R_OPLS-DA model

Figure S15. Permutation testing (200 times) of the S_OPLS-DA model

Figure S16. Permutation testing (200 times) of the L_OPLS-DA model

- **Figure S17.** Permutation testing (200 times) of the RS_OPLS-DA model based on low-level data fusion
- **Figure S18.** Permutation testing (200 times) of the RL_OPLS-DA model based on low-level data fusion
- **Figure S19.** Permutation testing (200 times) of the SL_OPLS-DA model based on low-level data fusion

Figure S20. Permutation testing (200 times) of the RSL_OPLS-DA model based on low-level data fusion

- Figure S21. Permutation testing (200 times) of the RS_OPLS-DA model based on mid-level data fusion
- Figure S22. Permutation testing (200 times) of the RL_OPLS-DA model based on mid-level data fusion
- **Figure S23.** Permutation testing (200 times) of the SL_OPLS-DA model based on mid-level data fusion

Figure S24. Permutation testing (200 times) of the RSL_OPLS-DA model based on mid-level data fusion

Table captions

- **Table S1.** The evaluation indexes for predictive power of OPLS-DAmodel of rhizome, stem and leaf
- **Table S2.** The evaluation indexes for predictive power of OPLS-DAmodels based on low-level and mid-level data fusion strategies

Figure S1. Variation of stems score plots along the latitude gradients (green circles = low latitudes area, 23.92-23.66 °N, blue circles = mid latitude area, 24.95-25.06 °N, red circles = mid-high latitude area, 26.49-26.64 °N, yellow circles = high latitude area, 27.34-28.52 °N)

Figure S2. Variation of stems score plots between the adjacent latitudes (blue circles = mid latitude area, 24.95-25.06 °N, red circles = mid-high latitude area, 26.49-26.64 °N, yellow circles = high latitude area, 27.34-28.52 °N)

Figure S3. Variation of leaves score plots along the latitude gradients (green circles = low latitudes area, 23.92-23.66 °N, blue circles = mid latitude area, 24.95-25.06 °N, red circles = mid-high latitude area, 26.49-26.64 °N, yellow circles = high latitude area, 27.34-28.52 °N)

Figure S4. Variation of leaves score plots between the adjacent latitudes (blue circles = mid-latitude area, 24.95-25.06 °N, red circles = mid-high latitude area, 26.49-26.64 °N, yellow circles = high latitude area, 27.34-28.52 °N)

Figure S5. Permutation plot of the OPLS-DA of rhizome samples (Number of permutations = 200)

Figure S6. Permutation plot of the OPLS-DA of stem samples (Number of permutations = 200)

Figure S7. Permutation plot of the OPLS-DA of leaf samples (Number of permutations = 200)

Figure S8. The n_{tree} (a-d) and m_{try} (e-h) screening of RF models based on low-level data fusion strategy (a and b = fusion data set of rhizomes and stems , c and d = fusion data set of rhizome and leaves, e and f = fusion data set of stems and leaves, g and h = fusion data set of rhizome, stem and leaves)

Figure S9. Result of variables selection of rhizome fingerprint data based on "Boruta" algorithm (red triangle = relevant features variables)

Figure S10. Result of variables selection of stem fingerprint data based on "Boruta" algorithm (red triangle = relevant features variables)

Figure S11. Result of variables selection of leaf fingerprint data based on "Boruta" algorithm (red triangle = relevant features variables)

Figure S12. The n_{tree} (a-d) and m_{try} (e-h) screening of RF models based on mid-level data fusion strategy (a and b = fusion data set of rhizomes and stems, c and d = fusion data set of rhizome and leaves, e and f = fusion data set of stems and leaves, g and h = fusion data set of rhizome, stem and leaves)

Figure S13. The importance variables (green circles = VIP value > 1) of OPLS-DA models of rhizomes, stems and leaves fingerprints data

Figure S14. Permutation testing (200 times) of the R_OPLS-DA model

Figure S15. Permutation testing (200 times) of the S_OPLS-DA model

Figure S16. Permutation testing (200 times) of the L_OPLS-DA model

Figure S17. Permutation testing (200 times) of the RS_OPLS-DA model based on low-level data fusion

Figure S18. Permutation testing (200 times) of the RL_OPLS-DA model based on low-level data fusion

Figure S19. Permutation testing (200 times) of the SL_OPLS-DA model based on low-level data fusion

Figure S20. Permutation testing (200 times) of the RSL_OPLS-DA model based on low-level data fusion

Figure S21. Permutation testing (200 times) of the RS_OPLS-DA model based on mid-level data fusion

Figure S22. Permutation testing (200 times) of the RL_OPLS-DA model based on mid-level data fusion

Figure S23. Permutation testing (200 times) of the SL_OPLS-DA model based on mid-level data fusion

Figure S24. Permutation testing (200 times) of the RSL_OPLS-DA model based on mid-level data fusion

Model	<i>R</i> ²	Q ²	RMSEE	RMSECV	RMSEP
R_OPLS-DA	0.77	0.65	0.21	0.26	0.26
S_OPLS-DA	0.81	0.68	0.19	0.24	0.27
L_OPLS-DA	0.82	0.69	0.19	0.24	0.26

Table S1. The evaluation indexes for predictive power of OPLS-DA model of rhizome, stem and leaf

Model	Data fusion strategy	<i>R</i> ²	Q ²	RMSEE	RMSECV	RMSEP
RS_OPLS-DA	low-level	0.86	0.75	0.17	0.21	0.24
RL_OPLS-DA	low-level	0.89	0.78	0.16	0.20	0.22
SL_OPLS-DA	low-level	0.89	0.74	0.15	0.22	0.23
RSL_OPLS-DA	low-level	0.90	0.80	0.14	0.19	0.22
RS_OPLS-DA	mid-level	0.84	0.74	0.18	0.22	0.24
RL_OPLS-DA	mid-level	0.86	0.75	0.17	0.21	0.24
SL_OPLS-DA	mid-level	0.86	0.71	0.17	0.23	0.24
RSL_OPLS-DA	mid-level	0.87	0.77	0.16	0.20	0.23

 Table S2. The evaluation indexes for predictive power of OPLS-DA models based on low-level and mid-level data fusion strategies