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Abstract: In this manuscript, a novel, decarboxylative Michael reaction betweenα-substituted azlactones
and chromone-3-carboxylic acids is described. The reaction proceeds in a sequence Michael addition
followed by decarboxylative deprotonation, and it results in the formation of chromanones bearing
an azlactone structural unit. The possibility of transforming an azlactone moiety into a protected
α,α-disubstituted α-amino acid derivative is also demonstrated.
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1. Introduction

The Michael reaction constitutes one of the most fundamental C–C and C–X bond-forming reactions,
allowing access to various useful building blocks for organic synthesis [1–10]. Its decarboxylative [11]
variant has also been described in literature [12–38]. The most common strategy utilized to realize
the decarboxylative Michael reaction relies on the activation of Michael donors via decarboxylation
(Scheme 1, top) [12–30] with malonic acid half-thioesters (MAHT) and related systems [16–23].
The decarboxylation of these molecules leads to the generation of stabilized carbanions readily
participating in the subsequent Michael addition. An alternative strategy relies on the activation
of the Michael acceptor via the addition of the carboxylic acid group in its α-position (Scheme 1,
middle) [31–38]. In such a manner, the electrophilic property of the Michael acceptor is enhanced with
the carboxylic acid moiety being readily removed via the decarboxylation of the originally formed
Michael adduct. Surprisingly, such decarboxylative Michael reactions [31–38] are very unique in
literature, with their enantioselective variant reported, to the best of our knowledge, only in the case of
doubly decarboxylative reactions involving MAHT as a Michael donor [23,38].
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Scheme 1. Decarboxylative Michael reactions. 

2. Results 

Chromanones and their related heterocyclic ring system (Scheme 2, top to the left) are widely 
distributed in natural products and biologically active molecules [39–58]. Similarly, compounds with 
an incorporated α,α-disubstituted amino acid moiety exhibit diverse biological activity [59–64]. 
Therefore, given the importance of chromanones and α,α-disubstituted amino acids, the 
incorporation of both structural motifs into one hybrid molecule seemed like a very attractive 
synthetic task (Scheme 2, top). It was envisioned that 3 bearing an azlactone moiety will serve as a 
direct precursor of 4 due to the well-established ability of the oxazol-5-(4H)-one ring to be 
transformed into the corresponding α,α-disubstituted amino acid moiety [65–72]. It was anticipated 
that the products 3 should be accessible from α-substituted azlactone 1 and chromone-3-carboxylic 
acid 2 via a decarboxylative Michael reaction. The mechanism of this transformation is shown in the 
bottom of Scheme 2. It is initiated through the deprotonation of 1 to give an aromatic anion that is 
stabilized through a mesomeric effect. The subsequent addition of 5 to 2, acting as a Michael acceptor 
yields 6, which undergoes protonation to afford 7. The decarboxylation of 7 is the key step of the 
reaction, allowing for the removal of the activating group. The protonation of the enolate 8 thus 
obtained yields of the desired chromanone 3 bearing an α,α-disubstituted azlactone moiety. It was 
anticipated that the use of a chiral Brønsted base 9 as a catalyst of such decarboxylative Michael 
reaction should afford access to enantio- and diastereomerically enriched products [73–77].  

Herein, we present our studies on the application of the decarboxylative Michael reaction for 
the enantioselective synthesis of biologically relevant chromanones bearing an α,α-disubstituted 
azlactone moiety. The possibility to transform the azlactone ring into a protected α,α-disubstituted 
amino acid has also been demonstrated. 

Scheme 1. Decarboxylative Michael reactions.

2. Results

Chromanones and their related heterocyclic ring system (Scheme 2, top to the left) are widely
distributed in natural products and biologically active molecules [39–58]. Similarly, compounds with
an incorporatedα,α-disubstituted amino acid moiety exhibit diverse biological activity [59–64]. Therefore,
given the importance of chromanones and α,α-disubstituted amino acids, the incorporation of both
structural motifs into one hybrid molecule seemed like a very attractive synthetic task (Scheme 2,
top). It was envisioned that 3 bearing an azlactone moiety will serve as a direct precursor of 4 due to
the well-established ability of the oxazol-5-(4H)-one ring to be transformed into the corresponding
α,α-disubstituted amino acid moiety [65–72]. It was anticipated that the products 3 should be accessible
from α-substituted azlactone 1 and chromone-3-carboxylic acid 2 via a decarboxylative Michael reaction.
The mechanism of this transformation is shown in the bottom of Scheme 2. It is initiated through the
deprotonation of 1 to give an aromatic anion that is stabilized through a mesomeric effect. The subsequent
addition of 5 to 2, acting as a Michael acceptor yields 6, which undergoes protonation to afford 7.
The decarboxylation of 7 is the key step of the reaction, allowing for the removal of the activating
group. The protonation of the enolate 8 thus obtained yields of the desired chromanone 3 bearing
an α,α-disubstituted azlactone moiety. It was anticipated that the use of a chiral Brønsted base 9 as
a catalyst of such decarboxylative Michael reaction should afford access to enantio- and diastereomerically
enriched products [73–77].
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Initially the Michael reaction between azlactone 1a and 4-chromone 2a was performed (Table 1, 
entry 1). However, no reaction was observed. To our delight, the incorporation of a carboxylic acid 
moiety into the structure of the Michael acceptor 2b resulted in the formation of the desired product 
3a when quinine 9a was employed as a catalyst (Table 1, Entry 2). The reaction proceeded in a cascade 
manner, and the initial Michael addition was accompanied by the decarboxylative protonation. 
Disappointingly, while the diastereoselectivity of the process was good, its enantioselectivity was 
low. Therefore, a catalyst screening was performed using chromone-3-carboxylic acid 2b as a model 
Michael acceptor (Table 1, Entries 2–7). Interestingly, the introduction of double H-bonding units into 
the structure of the cinchona alkaloid (catalysts 9b–f) led to the improvement of reaction 
stereoselectivity. The best results were obtained when catalyst 9e was used (Table 1, Entry 6) [78]. 
With the best catalyst identified, the solvent screening was initiated (Table 1, Entries 8–13). However, 
inferior results were obtained. Subsequently, the effect of concentration (Table 1, Entries 14,15), the 
relative ratio of reactants (Table 1, Entries 16,17) and temperature (Table 1, Entry 18) on the reaction 
outcome was evaluated. Disappointingly, no further improvement of the results was observed. 
Notably, the reaction proved readily scalable with comperable results obtained when 1 g of 2b was 
used (Table 1, Entry 19). 
  

Scheme 2. The relevance of a chromanone, α,α-disubstituted amino acid structural motifs, and new
hybrid molecules being the objectives of this work.

Herein, we present our studies on the application of the decarboxylative Michael reaction for the
enantioselective synthesis of biologically relevant chromanones bearing an α,α-disubstituted azlactone
moiety. The possibility to transform the azlactone ring into a protected α,α-disubstituted amino acid
has also been demonstrated.

Initially the Michael reaction between azlactone 1a and 4-chromone 2a was performed (Table 1,
entry 1). However, no reaction was observed. To our delight, the incorporation of a carboxylic acid moiety
into the structure of the Michael acceptor 2b resulted in the formation of the desired product 3a when
quinine 9a was employed as a catalyst (Table 1, Entry 2). The reaction proceeded in a cascade manner,
and the initial Michael addition was accompanied by the decarboxylative protonation. Disappointingly,
while the diastereoselectivity of the process was good, its enantioselectivity was low. Therefore, a catalyst
screening was performed using chromone-3-carboxylic acid 2b as a model Michael acceptor (Table 1,
Entries 2–7). Interestingly, the introduction of double H-bonding units into the structure of the cinchona
alkaloid (catalysts 9b–f) led to the improvement of reaction stereoselectivity. The best results were
obtained when catalyst 9e was used (Table 1, Entry 6) [78]. With the best catalyst identified, the solvent
screening was initiated (Table 1, Entries 8–13). However, inferior results were obtained. Subsequently,
the effect of concentration (Table 1, Entries 14,15), the relative ratio of reactants (Table 1, Entries 16,17)
and temperature (Table 1, Entry 18) on the reaction outcome was evaluated. Disappointingly, no further
improvement of the results was observed. Notably, the reaction proved readily scalable with comperable
results obtained when 1 g of 2b was used (Table 1, Entry 19).
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Table 1. Decarboxylative enantioselective synthesis of chromanone 3 bearing an azlactone unit—
optimization studies a.
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performed using 1.5 equivalent of 2b. i Reaction performed at 0 °C. j Reaction performed using 1 gram of 2b. 

With the optimal reaction conditions established, the scope of the methodology was tested. 
Initially, various α-substituted azlactones 1 were employed in the developed decarboxylative 

Solvent 2/9 Conv. (Yield)
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[%]

1 THF 2a/9a <5 n.d. n.d. n.d.
2 THF 2b/9a >95 3:1 55:45 10
3 THF 2b/9b >95 5:1 75:25 50
4 THF 2b/9c >95 3:1 84:16 68
5 THF 2b/9d >95 10:1 84:16 68
6 THF 2b/9e >95 (81) >20:1 91:9 82
7 THF 2b/9f >95 >20:1 79:21 58
8 CH2Cl2 2b/9e >95 5:1 81:19 62
9 Toluene 2b/9e >95 5:1 91:9 82
10 1,4-Dioxane 2b/9e >95 10:1 87:13 74
11 CPME 2b/9e >95 4:1 84:16 68
12 Et2O 2b/9e >95 6:1 70:30 40
13 2-MeTHF 2b/9e >95 15:1 89:11 78
14 e THF 2b/9e >95 20:1 90:10 80
15 f THF 2b/9e >95 20:1 90:10 80
16 g THF 2b/9e >95 10:1 70:30 40
17 h THF 2b/9e >95 20:1 84:16 68
18 i THF 2b/9e >95 20:1 84:16 68
19 j THF 2b/9e >95 (76) >20:1 91:9 82

a Reactions performed on a 0.1 mmol scale using 1a (1 equivalent) and 2 (1 equivalent) in 0.2 mL of the solvent.
b Determined by 1H NMR of a crude reaction mixture. In parenthesis isolated yields are given. c Determined by
1H NMR of a crude reaction mixture. d Determined by a chiral stationary phase UPC2. e Reaction performed in
0.1 mL of THF. f Reaction performed in 1.0 mL of THF. g Reaction performed using 1a (1.5 equivalent). h Reaction
performed using 1.5 equivalent of 2b. i Reaction performed at 0 ◦C. j Reaction performed using 1 gram of 2b.

With the optimal reaction conditions established, the scope of the methodology was tested. Initially,
various α-substituted azlactones 1 were employed in the developed decarboxylative Michael reaction
(Scheme 3). In all of cases, the reaction proceeded with moderate-to-high yields. Disappointingly,
regardless the size of the substituent in the α-position of the azlactone ring, lower diastereoselectivities
were observed. Similarly, products 3b–f were obtained with a deteriorated enantiomeric enrichment
when compared with the model product 3a. Interestingly, the reaction was successfully realized for
azlactones 1g–i bearing various R2 groups.

In the second part of the scope studies, the usefulness of various chromone-3-carboxylic acids
2 in the developed reaction was evaluated (Scheme 4). It was found that the diastereoselectivity of
the decarboxylative Michael reaction was unbiased towards the electron properties and the position
of the substituents on the aromatic ring in the corresponding chromone-3-carboxylic acid 2. Both
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electron-poor and electron-rich substituents were possibly present in 2, providing products 3 in
good-to-high yields and excellent diastereoselectivity. Furthermore, the disubstitution pattern in 2h
was also well-tolerated, as shown in the decarboxylative Michael reaction leading to 3p. In all of cases,
the enantioselectivity of the process was lower than for the model reaction.

To demonstrate the usefulness of the Michael adduct 3a obtained for the synthesis of
α,α-disubstituted amino acids, the azlactone-ring-opening was attempted (Scheme 5, top). It was
found that under acidic conditions, product 4a bearing an α,α-disubstituted amino acid moiety was
obtained in a 51% yield. Notably, the reaction proceeded with the full preservation of the stereochemical
information introduced at the decarboxylative Michael addition step, as 4a was obtained as single
diastereoisomer. In the course of further studies, the absolute configuration of the Michael adduct 3h
was unambiguously established through single crystal X-ray analysis (Scheme 5, middle) [79]. Notably,
the absolute configuration of the remaining products was established by analogy. Given the assignment
performed, a transition state model rationalizing the observed stereochemistry was proposed (Scheme 5,
bottom). It is postulated that the corresponding chromone-3-carboxylic acid 2 was recognized by the
catalyst 9e through the H-bonding interaction with its squaramide moiety. At the same time, azlactone
1 was deprotonated by the tertiary amine moiety present in the quinuclidine ring of 9e. As the result of
the ion pair formation between the protonated catalyst and the enolate obtained, the Michael addition
occurred in a stereoselective fashion.
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3. Conclusion

In conclusion, we have developed a novel, decarboxylative reaction between α-substituted
azlactones and chromone-3-carboxylic acids leading to biologically relevant chromanones bearing
an azlactone moiety. Its ring-opening realized under acidic conditions constitutes a facile route to
protected α,α-disubstituted α-amino acid derivatives. The activation of the Michael acceptor through
the introduction of a carboxylic acid moiety proved both necessary and a very convenient means to
achieve the desired reactivity pathway.

4. Materials and Methods

4.1. General Methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument (Bruker Corporation, Billerica,
MA, USA), running at 700 MHz for 1H and 176 MHz for 13C, respectively. Chemical shifts (δ) were
reported in ppm relative to residual solvent signals (CDCl3: 7.26 ppm for 1H NMR, 77.16 ppm for 13C
NMR). Mass spectra were recorded on a Bruker Maxis Impact spectrometer using electrospray (ES+)
ionization (referenced to the mass of the charged species). Analytical thin layer chromatography (TLC)
was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by
the ultraviolet irradiation or I2 stain. Unless otherwise noted, analytical grade solvents and commercially
available reagents were used without further purification. For flash chromatography (FC), silica gel
(Silica gel 60, 230–400 mesh, Merck, Darmstadt, Germany) was used. The enantiomeric ratio (er) of
the products were determined either by ultra performance convergence chromatography (UPC2) using
Daicel Chiralpak IA and IG columns as chiral stationary phases or by chiral stationary phase HPLC
(Daicel Chiralpak IF column). Azlactones 1 were synthetized according to the literature procedure [80].
Chromone-3-carboxylic acids 2 were prepared from the corresponding 2-hydroxyacetophenones following
the literature procedure [81].

4.2. General Procedure

An ordinary screw-cap vial was charged with a magnetic stirring bar, the corresponding
chromone-3-carboxylic acid 2 (0.1 mmol, 1 equivalent), THF (0.2 mL), catalyst 9e (0.02 mmol, 0.2 equivalent),
and the corresponding azlactone 1 (0.1 mmol, 1 equivalent). The reaction mixture was stirred at room
temperature and monitored by 1H NMR spectroscopy. After the complete consumption of the carboxylic
acid 2, the mixture was directly subjected to FC on silica gel (hexane:ethyl acetate 15:1 or 10:1) to afford
pure product 3.

(S)-4-Isobutyl-((R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3a) pure product was
isolated by flash chromatography on silica gel (hexane:ethyl acetate 10:1) as yellow crystals (m.p.
124–126 ◦C) in an 81% yield (29.8 mg), dr > 20:1. Major diastereoisomer: IR (film): 3072, 1813, 1691,
1652, 1603, 1463, 1307, 1223, 995, 884, 760 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.03 (d, J = 7.8 Hz, 2H),
7.84 (t, J = 10.2 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.7 Hz, 1H), 6.97
(t, J = 7.5 Hz, 1H), 6.87 (t, J = 8.4 Hz, 1H), 4.74 (dd, J = 13.0, 2.9 Hz, 1H), 3.22 (dd, J = 16.9, 13.0 Hz, 1H),
2.92 (dd, J = 16.9, 2.9 Hz, 1H), 1.93 (dd, J = 13.8, 6.3 Hz, 1H), 1.84 (dd, J = 13.8, 6.5 Hz, 1H), 1.66–1.60
(m, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 191.1, 178.6,
161.7, 160.6, 136.3, 133.2, 129.0 (2C), 128.4 (2C), 126.9, 125.7, 122.0, 121.0, 118.0, 80.7, 75.9, 41.1, 38.1, 24.8,
24.0, 23.5. HRMS: Calculated for [C22H21NO4+H+]: 364.1543, found: 364.154. The er was determined
by HPLC using a Chiralpak IF column [hexane/i-PrOH (80:20)]; flow rate 1.0 mL/min; τmajor = 6.3 min;
τminor = 10.0 min, (91:9 er).

((R)-4-Oxochroman-2-yl)-2-phenyl-(S)-4-isopropan-2-yl-1,3-oxazol-5(4H)-one (3b) pure product was
isolated by flash chromatography on silica gel (hexane:ethyl acetate 10:1) as yellow crystals (m.p.
121–122 ◦C) in a 42% yield (14.7 mg), dr = 3:1. IR (film): 2922, 1813, 1691, 1653, 1605, 1463, 1229, 1180,
993, 881, 763, 700 cm−1. 1H NMR (700 MHz, CDCl3) Major diastereoisomer: δ 8.09 (d, J = 7.3 Hz, 2H),
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7.86 (t, J = 7.9 Hz, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.53 (t, J = 7.8 Hz, 2H), 7.41 (t, J = 8.7 Hz, 1H), 7.02
(t, J = 7.5 Hz, 1H), 6.84 (d, J = 8.4 Hz, 1H), 4.90 (dd, J = 14.0, 2.6 Hz, 1H), 3.31 (dd, J = 16.8, 14.0 Hz, 1H),
2.77 (dd, J = 16.8, 2.6 Hz, 1H), 2.44 (hept, J = 6.9 Hz, 1H), 1.13 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 6.6 Hz, 3H).
Minor diastereoisomer: δ 8.03 (d, J = 7.3 Hz, 2H), 7.86 (t, J = 7.9 Hz, 1H), 7.59 (t, J = 7.5 Hz, 1H), 7.49
(t, J = 7.8 Hz, 2H), 7.40 (t, J = 7.6 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 8.4 Hz, 1H), 5.03 (dd,
J = 13.2, 2.8 Hz, 1H), 3.21 (dd, J = 16.9, 13.3 Hz, 1H), 2.86 (dd, J = 16.9, 2.9 Hz, 1H), 2.38 (hept, J = 6.9 Hz,
1H), 1.18 (d, J = 7.0 Hz, 3H), 0.95 (d, J = 6.5 Hz, 3H). 13C NMR (176 MHz, CDCl3) Major diastereoisomer:
δ 191.1, 177.6, 162.2, 160.7, 136.2, 133.2, 129.0 (2C), 128.4 (2C), 127.0, 125.7, 122.2, 121.1, 118.2, 78.6, 78.1,
37.0, 31.6, 17.2, 16.7. Minor diastereoisomer: δ 191.1, 177.0, 161.9, 160.9, 136.3, 133.1, 128.9 (2C), 128.3 (2C),
127.0, 125.6, 122.0, 121.1, 118.1, 78.6, 78.4, 37.9, 31.3, 17.3, 15.7. HRMS: Calculated for [C21H19NO4+H+]:
350.1387, found: 350.1380. The er was determined by UPC2 using a chiral Chiralpack IA column gradient
from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 2.52 min, τminor

= 2.60 min, (83:17 er).

(S)-4-Ethyl-(R)-4-oxochroman-2-yl-2-phenyl-1,3-oxazol-5(4H)-one (3c) pure product was isolated by
flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow crystals (m.p. 122–124 ◦C)
in an 80% yield (26.8 mg), dr = 2.5:1. IR (film): 2960, 1816, 1691, 1654, 1604, 1463, 1227, 1152, 994,
882, 761 cm−1. 1H NMR (700 MHz, CDCl3) Major diastereoisomer: δ 8.04 (d, J = 7.7 Hz, 2H), 7.85
(d, J = 8.1 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.2 Hz, 1H), 6.99
(t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.83 (dd, J = 13.2, 2.8 Hz, 1H), 3.25 (dd, J = 16.8, 13.2 Hz, 1H),
2.90 (dd, J = 16.9, 2.8 Hz, 1H), 1.97 (q, J = 7.3 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). Minor diastereoisomer:
1H NMR (700 MHz, CDCl3) δ 8.07 (d, J = 7.7 Hz, 2H), 7.87 (d, J = 8.0 Hz, 1H), 7.63 (t, J = 7.5 Hz,
1H), 7.54 (t, J = 7.7 Hz, 2H), 7.44 (t, J = 7.2 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H),
4.78 (dd, J = 13.8, 2.6 Hz, 1H), 3.21 (dd, J = 16.7, 13.8 Hz, 1H), 2.75 (dd, J = 16.7, 2.6 Hz, 1H), 2.13
(dq, J = 14.6, 7.4 Hz, 1H), 2.05 (dq, J = 14.4, 7.3 Hz, 1H), 0.94 (t, J = 7.4 Hz, 3H). 13C NMR (176 MHz,
CDCl3) Major diastereoisomer: δ 191.0, 177.9, 162.0, 160.6, 136.2, 133.2, 128.9 (2C), 128.4 (2C), 126.9,
125.6, 122.0, 121.0, 118.0, 80.0, 76.8, 38.0, 26.0, 7.7. Minor diastereoisomer: δ 190.8, 177.3, 162.0, 160.6,
136.2, 133.2, 129.0 (2C), 128.4 (2C), 127.0, 125.5, 122.2, 121.0, 118.2, 79.1, 76.0, 37.5, 26.4, 8.0. HRMS:
Calculated for [C20H17NO4+H+]: 336.1230, found: 336.1239. The er was determined by UPC2 using
a chiral Chiralpack IG column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection
wavelength = 245 nm; τmajor = 2.66 min, τminor = 3.40 min, (78:22 er).

(S)-4-Methyl-2-((R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3d) pure product was
isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow crystals (m.p.
112–113 ◦C) in a 79% yield (25.4 mg) dr = 3:1. IR (film): 3058, 1817, 1692, 1650, 1607, 1464, 1307, 1225,
1154, 993, 880, 762 cm−1. 1H NMR (700 MHz, CDCl3) Major diastereoisomer: δ 8.03 (d, J = 7.8 Hz, 2H),
7.86 (d, J = 7.9 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.3 Hz, 1H), 6.99
(t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.4 Hz, 1H), 4.80 (dd, J = 13.1, 2.8 Hz, 1H), 3.25 (dd, J = 16.8, 13.2 Hz,
1H), 2.93 (dd, J = 16.8, 2.9 Hz, 1H), 1.56 (s, 3H). Minor diastereoisomer: δ 8.05 (d, J = 7.7 Hz, 2H),
7.86 (d, J = 8.8 Hz, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.43 (t, J = 7.8 Hz, 1H), 7.02
(t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 4.73 (dd, J = 13.9, 2.3 Hz, 1H), 3.21 (dd, J = 16.5, 14.1 Hz,
1H), 2.75 (dd, J = 16.7, 2.4 Hz, 1H), 1.64 (s, 3H). 13C NMR (176 MHz, CDCl3) Major diastereoisomer:
δ 190.9, 178.5, 161.7, 160.6, 136.3, 133.2, 128.9 (2C), 128.3 (2C), 126.9, 125.7, 122.1, 121.0, 118.0, 80.2,
72.0, 37.6, 19.5. Minor diastereoisomer: δ 190.8, 177.6, 161.9, 160.5, 136.3, 133.3, 129.0 (2C), 128.3 (2C),
127.0, 125.6, 122.2, 120.9, 118.2, 79.5, 71.3, 37.4, 19.9. HRMS: Calculated for [C19H15NO4+H+]: 322.1074,
found: 322.1077. The er was determined by UPC2 using a chiral Chiralpack IA column gradient
from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor =2.58 min,
τminor = 2.79 min, (72:28 er).

(S)-4-Benzyl-(R)-4-oxochroman-2-yl-2-phenyl-1,3-oxazol-5(4H)-one (3e) pure product was isolated
by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow crystals (m.p. 124–126 ◦C)
in a 74% yield (29.4 mg), dr = 4:1. Major diastereoisomer: IR (film): 3033, 1817, 1688, 1652, 1603,
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1459, 1299, 1225, 1106, 993, 764, 696 cm−1. 1H NMR (700 MHz, CDCl3) δ 7.88–7.86 (m, 3H), 7.54
(t, J = 7.5 Hz, 1H), 7.44–7.40 (m, 3H), 7.20–7.15 (m, 5H), 7.01 (t, J = 7.3 Hz, 1H), 6.90 (d, J = 8.3 Hz,
1H), 4.96 (dd, J = 13.2, 2.9 Hz, 1H), 3.33 (dd, J = 16.7, 13.2 Hz, 1H), 3.26 (d, J = 13.2 Hz, 1H), 3.16 (d,
J = 13.2 Hz, 1H), 3.00 (dd, J = 16.8, 2.9 Hz, 1H). 13C NMR (176 MHz, CDCl3) δ 190.8, 177.0, 161.8, 160.6,
136.3, 133.0, 132.8, 130.4 (2C), 128.8 (2C), 128.5 (2C), 128.2 (2C), 127.8, 127.0, 125.5, 122.1, 121.1, 118.1,
79.9, 77.4, 39.0, 38.2. HRMS: calculated for [C25H19NO4+H+]: 398.1387, found: 398.1381. The er was
determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH,
2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.29 min, τminor = 4.04 min, (74:26 er).

(S)-4-(2-(Methylthio)ethyl)-2-((R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3f) pure
product was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as colorless
solid (m.p. 146–148 ◦C) in an 81% yield (30.8 mg), dr = 5:1. Major diastereoisomer: IR (film): 2957,
1818, 32 4 1651, 1603, 1459, 1297, 1225, 993, 893, 762, 696 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.03 (d,
J = 7.8 Hz, 2H), 7.86 (d, J = 7.7 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.8 Hz,
1H), 6.99 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.4 Hz, 1H), 4.81 (dd, J = 13.0, 2.9 Hz, 1H), 3.22 (dd, J = 16.8,
13.0 Hz, 1H), 2.91 (dd, J = 16.8, 3.0 Hz, 1H), 2.48 (ddd, J = 13.1, 9.6, 4.8 Hz, 1H), 2.39 (ddd, J = 13.1,
10.0, 6.7 Hz, 1H), 2.30–2.21 (m, 2H), 2.08 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 190.7, 177.8, 162.6,
160.5, 136.3, 133.3, 128.9 (2C), 128.4 (2C), 127.0, 125.5, 122.2, 121.0, 118.0, 80.0, 75.3, 38.1, 32.0, 28.2,
15.4. HRMS: calculated for [C21H19NO4S+H+]: 382.1108, found: 382.1109. The er was determined by
UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 2.95 min, τminor = 3.22 min, (73:27 er).

(S)-4-Isobutyl-(2-chlorophenyl)-((R)-4-oxochroman-2-yl)-2-1,3-oxazol-5(4H)-one (3g) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 20:1) as yellow oil in an 87%
yield (34.5 mg), dr = >20:1. Major diastereoisomer: IR (film): 3074, 1815, 1690, 1652, 1605, 1579, 1467,
1256, 1228, 995, 884, 762, 735 cm−1. 1H NMR (700 MHz, CDCl3) δ 7.85 (dt, J = 7.8, 1.6 Hz, 1H), 7.79 (dd,
J = 7.8, 1.8 Hz, 1H), 7.55–7.49 (m, 1H), 7.47 (tt, J = 8.0, 1.4 Hz, 1H), 7.42 (ddd, J = 8.7, 5.2, 1.8 Hz, 1H),
7.37 (t, J = 7.6 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.91 (dd, J = 8.5, 2.9 Hz, 1H), 4.75 (dd, J = 13.2, 2.9 Hz, 1H),
3.29–3.15 (m, 1H), 2.93 (dd, J = 16.9, 2.9 Hz, 1H), 1.97 (dd, J = 13.8, 5.9 Hz, 1H), 1.85 (dd, J = 13.8, 6.9 Hz,
1H), 1.72 (dt, J = 13.1, 6.6 Hz, 1H), 0.95 (ddd, J = 19.0, 6.7, 1.7 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ
190.6, 178.0, 160.4, 160.4, 136.2, 134.0, 133.0, 131.4, 131.2, 126.8, 126.8, 125.3, 122.0, 120.8, 117.8, 80.4, 75.8,
40.7, 38.0, 24.6, 23.9, 23.1. HRMS: Calculated for [C22H20ClNO4+H+]: 398, 1154, found: 398.1135. The
er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%;
i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 2.70 min, τminor = 3.20 min, (86:14 er).

(S)-4-Isobutyl-(4-chlorophenyl)-((R)-4-oxochroman-2-yl)-2-1,3-oxazol-5(4H)-one (3h) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 20:1) as colorless crystals
(m.p. 188–190 ◦C) in an 82% yield (32.6 mg), dr = >20:1. Major diastereoisomer: IR (film): 3076, 1816,
1691, 1652, 1605, 1579, 1463, 1278, 1227, 994, 897, 761, 734 cm−1. 1H NMR (700 MHz, CDCl3) δ 7.95
(d, J = 8.7 Hz, 2H), 7.83 (dd, J = 7.8, 1.8 Hz, 1H), 7.46 (d, J = 8.7 Hz, 2H), 7.38 (ddd, J = 8.7, 7.2, 1.8 Hz,
1H), 6.97 (ddd, J = 8.0, 7.2, 1.0 Hz, 1H), 6.86 (dd, J = 8.4, 0.9 Hz, 1H), 4.75 (dd, J = 12.7, 3.0 Hz, 1H),
3.19 (dd, J = 16.8, 12.7 Hz, 1H), 2.92 (dd, J = 16.9, 3.0 Hz, 1H), 1.87 (ddd, J = 57.0, 13.9, 6.4 Hz, 2H),
1.61 (dt, J = 13.1, 6.6 Hz, 1H), 0.90 (t, J = 6.5 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 190.6, 178.1, 160.8,
160.3, 139.5, 136.1, 129.5 (2C), 129.2 (2C), 126.8, 124.0, 121.9, 120.9, 117.8, 80.5, 76.0, 40.9, 37.9, 24.7, 23.8,
23.3. HRMS: Calculated for [C22H20ClNO4+H+]: 398.1154, found: 398.1165. The er was determined by
UPC2 using a chiral Chiralpack IG column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 2.57 min, τminor = 3.40 min, (88:12 er).

(S)-4-Isobutyl-2-(4-nitrophenyl)((R)-4-oxochroman-2-yl)-1,3-oxazol-5(4H)-one (3i) pure product was
isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow oil in a 30% yield
(12.2 mg), dr = >20:1. Major diastereoisomer: IR (film): 3074, 1815, 1690, 1652, 1605, 1552, 1467, 1256,
1228, 995, 762, 736 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.34 (d, J = 8.9 Hz, 2H), 8.31–8.13 (m, 2H),
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7.85 (dd, J = 7.9, 1.7 Hz, 1H), 7.39 (ddd, J = 8.8, 7.2, 1.8 Hz, 1H), 6.99 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H),
6.86 (dd, J = 8.4, 1.0 Hz, 1H), 4.79 (dd, J = 12.5, 3.1 Hz, 1H), 3.21 (dd, J = 16.9, 12.5 Hz, 1H), 2.96
(dd, J = 16.9, 3.1 Hz, 1H), 1.96 (dd, J = 13.9, 6.3 Hz, 1H), 1.87 (dd, J = 14.0, 6.4 Hz, 1H), 1.62 (dt, J = 13.1,
6.5 Hz, 1H), 0.91 (dd, J = 6.6, 0.9 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 190.32, 177.43, 160.16, 160.07,
150.48, 136.17, 130.96, 129.25, 126.82, 123.96, 122.11, 120.91, 117.71, 80.50, 76.42, 40.90, 37.88, 24.72, 23.78,
23.34. HRMS: Calculated for [C22H20N2O6+H+]: 409.1394, found: 409.1402. The er was determined by
UPC2 using a chiral Chiralpack IG column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 3.01 min, τminor = 4.00 min, (85:15 er).

(S)-4-Isobutyl-(6-fluoro-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3j) pure product was
isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow oil in a 65% yield
(24.8 mg), dr = 19:1. Major diastereoisomer: IR (film): 3073, 1818, 1702, 1648, 1478, 1218, 878, 773,
699 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.03 (d, J = 7.7 Hz, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.52–7.46 (m, 3H),
7.10 (ddd, J = 9.1, 7.7, 3.2 Hz, 1H), 6.86 (dd, J = 9.1, 4.1 Hz, 1H), 4.72 (dt, J = 8.6, 4.3 Hz, 1H), 3.20 (dd,
J = 17.0, 12.9 Hz, 1H), 2.93 (dd, J = 17.0, 2.9 Hz, 1H), 1.91 (dd, J = 13.8, 6.2 Hz, 1H), 1.83 (dd, J = 13.8,
6.5 Hz, 1H), 1.66–1.59 (m, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H). 13C NMR (176 MHz,
CDCl3) δ 190.3 (d, J = 1.5 Hz), 178.5, 161.8, 157.6 (d, J = 242.9 Hz), 156.8 (d, J = 1.6 Hz), 133.3, 129.0 (2C),
128.3 (2C), 125.6, 123.7 (d, J = 24.6 Hz), 121.5 (d, J = 6.6 Hz), 119.7 (d, J = 7.4 Hz), 112.0 (d, J = 23.5 Hz),
80.9, 75.9, 41.1, 37.9, 24.8, 24.0, 23.5. HRMS: Calculated for [C22H20FNO4+H+]: 382.1449, found: 382.1449.
The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to
40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 2.15 min, τminor = 2.51 min, (71:29 er).

(6-Bromo-(R)-4-oxochroman-2-yl)-(S)-4-isobutyl-2-phenyl-1,3-oxazol-5(4H)-one (3k) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow solid (m.p.
142–144 ◦C) in a 70% yield (30.9 mg), dr = 19:1. Major diastereoisomer: IR (film): 2958, 1817, 1696,
1651, 1598, 1464, 1415, 1270, 1221, 884, 753, 702 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.01 (d, J = 7.7 Hz,
2H), 7.94 (d, J = 2.4 Hz, 1H), 7.60 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.44 (dd, J = 8.8, 2.4 Hz,
1H), 6.77 (d, J = 8.8 Hz, 1H), 4.74 (dd, J = 12.5, 3.0 Hz, 1H), 3.20 (dd, J = 17.0, 12.6 Hz, 1H), 2.94 (dd,
J = 17.0, 3.0 Hz, 1H), 1.91 (dd, J = 13.8, 6.2 Hz, 1H), 1.83 (dd, J = 13.8, 6.5 Hz, 1H), 1.63 (hept, J = 6.5 Hz,
1H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.7 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 189.7, 178.4, 161.9,
159.4, 138.8, 133.3, 129.4, 129.0 (2C), 128.4 (2C), 125.5, 122.3, 120.0, 114.8, 80.9, 75.9, 41.1, 37.8, 24.8, 24.0,
23.5. HRMS: Calculated for [C22H20BrNO4+H+]: 442.0648, found: 442.0644. The er was determined by
UPC2 using a chiral Chiralpack IG column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 2.76 min, τminor = 3.25 min, (77:23 er).

6-Chloro-((S)-4-isobutyl-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3l) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow solid (m.p.
118–120 ◦C) in a 73% yield (29.0 mg), dr = 10:1. Major diastereoisomer: IR (film): 3070, 1816, 1702,
1648, 1478, 1212, 878, 773, 699 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.01 (dd, J = 8.4, 1.3 Hz, 2H),
7.94 (d, J = 2.5 Hz, 1H), 7.63–7.56 (m, 1H), 7.54–7.47 (m, 2H), 7.44 (dd, J = 8.8, 2.5 Hz, 1H), 6.78 (d,
J = 8.8 Hz, 1H), 4.74 (dd, J = 12.6, 3.1 Hz, 1H), 3.20 (dd, J = 17.0, 12.5 Hz, 1H), 2.94 (dd, J = 17.0, 3.1 Hz,
1H), 1.91 (dd, J = 13.8, 6.3 Hz, 1H), 1.83 (dd, J = 13.8, 6.5 Hz, 1H), 1.63 (dt, J = 13.1, 6.6 Hz, 1H), 0.90
(dd, J = 9.5, 6.7 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ 189.5, 178.2, 161.7, 159.3, 138.7, 133.2, 129.2,
128.8 (2C), 128.2 (2C), 125.4, 122.2, 119.9, 114.7, 80.8, 75.8, 41.0, 37.6, 24.7, 23.8, 23.4. HRMS: Calculated
for [C22H20ClNO4+H+]: 398.1154, found: 398.1163. The er was determined by UPC2 using a chiral
Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength
= 245 nm; τmajor = 2.81 min, τminor = 3.26 min, (79.5:20.5 er).

(S)-4-Isobutyl-(6-nitro-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3m) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow solid (m.p.
188–190 ◦C) in a 48% yield (19.6 mg), dr = 19:1. Major diastereoisomer: IR (film): 2922, 1819, 1710, 1605,
1585, 1469, 1275, 1233, 1183,1043, 906, 778, 665 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.72 (d, J = 2.8 Hz,
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1H), 8.20 (dd, J = 9.2, 2.8 Hz, 1H), 8.09–7.94 (m, 2H), 7.59 (d, J = 7.5 Hz, 1H), 7.51–7.42 (m, 2H), 7.00 (d,
J = 9.1 Hz, 1H), 4.89 (dd, J = 11.5, 3.5 Hz, 1H), 3.28 (dd, J = 17.1, 11.5 Hz, 1H), 3.07 (dd, J = 17.1, 3.5 Hz,
1H), 1.97–1.78 (m, 2H), 1.67–1.57 (m, 1H), 0.91 (dd, J = 7.8, 6.6 Hz, 6H). 13C NMR (176 MHz, CDCl3) δ
188.4, 177.9, 164.0, 162.0, 133.4, 130.3, 128.9, 128.7, 128.4, 128.2, 125.1, 123.1, 120.6, 119.1, 81.4, 75.8, 41.0,
37.4, 24.7, 23.8, 23.33, 22.4. HRMS: Calculated for [C22H20N2O6+H+]: 409.1394, found: 409.1382. The er
was determined by UPC2 using a chiral Chiralpack IG column gradient from 100% CO2 up to 40%;
i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 3.07 min, τminor = 3.34 min, (69:31 er).

(S)-4-Isobutyl-(6-methyl-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3n) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow solid (m.p.
102–106 ◦C) in a 34% yield (12.8 mg), dr = 19:1. Major diastereoisomer: IR (film): 3067, 1819, 1725, 1688,
1651,1558, 1450, 1076, 955, 778, 753 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.03 (d, J = 7.6 Hz, 2H), 7.63 (d,
J = 6.0 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.7 Hz, 2H), 7.20 (dd, J = 8.5, 1.9 Hz, 1H), 6.77 (t,
J = 8.4 Hz, 1H), 4.70 (dd, J = 13.0, 2.8 Hz, 1H), 3.19 (dd, J = 16.8, 13.0 Hz, 1H), 2.89 (dd, J = 16.9, 2.8 Hz,
1H), 2.25 (s, 3H), 1.92 (dd, J = 13.9, 6.2 Hz, 1H), 1.83 (dd, J = 13.9, 6.5 Hz, 1H), 1.63 (hept, J = 6.5 Hz,
1H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H). 13C NMR (176 MHz, CDCl3) δ 191.4, 178.7, 161.6,
158.7, 137.3, 133.2, 131.6, 128.9 (2C), 128.4 (2C), 126.5, 125.7, 120.6, 117.8, 80.7, 76.0, 41.1, 38.2, 24.8, 24.0,
23.5, 20.5. HRMS: Calculated for [C23H23NO4+H+]: 378.1700, found: 378.1698. The er was determined
by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 2.43 min, τminor = 3.11 min, (80:20 er).

(S)-4-Isobutyl-(7-methoxy-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3o) pure product
was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow solid (m.p.
160–161 ◦C) in a 65% yield (25.5 mg), dr = 19:1. Major diastereoisomer: IR (film): 3071, 1819, 1684,
1651,1582, 1486, 1281, 1214, 1099, 883, 700, 561 cm−1. 1H NMR (700 MHz, CDCl3) δ 8.04 (d, J = 7.3 Hz,
2H), 7.59 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 7.26 (d, J = 3.3 Hz, 1H), 6.99 (dd, J = 9.1, 3.2 Hz, 1H),
6.81 (d, J = 9.1 Hz, 1H), 4.69 (dd, J = 13.1, 2.8 Hz, 1H), 3.75 (s, 3H), 3.19 (dd, J = 16.9, 13.1 Hz, 1H), 2.90
(dd, J = 16.9, 2.9 Hz, 1H), 1.92 (dd, J = 13.9, 6.2 Hz, 1H), 1.83 (dd, J = 13.9, 6.5 Hz, 1H), 1.66–1.60 (m,
1H), 0.91 (d, J = 6.7 Hz, 2H), 0.89 (d, J = 6.6 Hz, 2H). 13C NMR (176 MHz, CDCl3) δ 191.2, 178.6, 161.6,
155.3, 154.6, 133.1, 128.9 (2C), 128.4 (2C), 125.8, 125.3, 120.9, 119.3, 107.4, 80.8, 75.9, 55.9, 41.2, 38.1, 24.8,
24.0, 23.5. HRMS: Calculated for [C23H23NO5+H+]: 394.1649, found: 394.1645. The er was determined
by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min;
detection wavelength = 245 nm; τmajor = 2.58 min, τminor = 3.11 min, (90:10 er).

(S)-4-Isobutyl-(6-chloro-7-methyl-(R)-4-oxochroman-2-yl)-2-phenyl-1,3-oxazol-5(4H)-one (3p) pure
product was isolated by flash chromatography on silica gel (hexane:ethyl acetate 15:1) as yellow oil in
a 75% yield (30.8 mg), dr = 19:1. Major diastereoisomer: IR (film): 3065, 1819, 1691, 1652, 1611, 1408,
1319, 1154, 873, 703 cm–1. 1H NMR (700 MHz, CDCl3) δ 8.02 (d, J = 7.6 Hz, 2H), 7.78 (s, 1H), 7.59 (t,
J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 6.78 (s, 1H), 4.71 (dd, J = 12.7, 3.0 Hz, 1H), 3.17 (dd, J = 17.0,
12.7 Hz, 1H), 2.90 (dd, J = 17.0, 3.0 Hz, 1H), 2.27 (s, 2H), 1.90 (dd, J = 13.9, 6.2 Hz, 1H), 1.82 (dd, J = 13.9,
6.5 Hz, 1H), 1.63 (hept, J = 6.6 Hz, 1H), 0.91 (d, J = 6.7 Hz, 3H), 0.89 (d, J = 6.6 Hz, 3H). 13C NMR
(176 MHz, CDCl3) δ 189.7, 178.5, 161.8, 158.8, 145.4, 133.2, 129.0 (2C), 128.4 (2C), 128.3, 126.6, 125.6, 120.1,
120.0, 81.0, 75.9, 41.1, 37.8, 24.8, 24.0, 23.5, 20.8. HRMS: Calculated for [C23H22ClNO4+H+]: 412.1310,
found: 412.1319. The er was determined by UPC2 using a chiral Chiralpack IA column gradient
from 100% CO2 up to 40%; i-PrOH, 2.5 mL/min; detection wavelength = 245 nm; τmajor = 2.65 min,
τminor = 2.87 min, (76:24 er).

4.3. Synthesis of Methyl 2-Benzamido-4-Methyl-2-(4-Oxochroman-2-yl)Pentanoate (4a)

An ordinary screw-cap vial was charged with a magnetic stirring bar, the chromone 3a (0.05 mmol,
17 mg), MeOH (200 µL), and CHCl3 (100 µL). Then toluenesulphonic acid monohydrate (0.1 mmol,
19 mg) was added, and the reaction mixture was stirred for 1.5 h at 40 ◦C. The product was isolated using
flash chromatography in an eluent gradient (starting from hexane:ethyl acetate—10:1 to hexane:ethyl
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acetate—5:1), giving 4a as a yellow oil in a 51% yield (10.0 mg), dr = >20:1 dr. Major diastereoisomer:
IR (film): 3405, 3064, 1819, 1738, 1691, 1669, 1579, 1464, 1442, 1304, 1224, 1030, 765, 710 cm−1. 1H NMR
(700 MHz, CDCl3) δ 7.85 (d, J = 7.9 Hz, 1H), 7.82 (d, J = 7.9 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.49 (bs,
1H), 7.46 (t, J = 7.8 Hz, 3H), 7.01 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 5.03 (dd, J = 14.0, 2.4 Hz,
1H), 3.87 (s, 3H), 3.05 (dd, J = 14.1, 5.0 Hz, 1H), 3.02 (dd, J = 16.9, 2.5 Hz, 1H), 2.85 (dd, J = 16.9, 14.1 Hz,
1H), 1.95 (dd, J = 14.6, 7.3 Hz, 1H), 1.71–1.63 (m, 1H), 0.96 (d, J = 7.3 Hz, 3H), 0.86 (d, J = 7.2 Hz, 3H).
13C NMR (176 MHz, CDCl3) δ 191.5, 173.2, 166.8, 161.0, 135.9, 134.8, 131.8, 128.7 (2C), 127.0 (2C), 127.0,
121.8, 121.0, 117.7, 81.4, 67.2, 53.3, 39.3, 37.6, 24.7, 23.7, 22.3. HRMS: Calculated for [C23H25NO5+H+]:
396.1805, found: 396.1812.

Supplementary Materials: The following are available online. Copies of 1H and 13C spectra of all obtained
compounds. Copies of HPLC and UPC data. Crystal structure details.
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53. Rafiński, Z.; Kozakiewicz, A.; Rafińska, K. (−)-β-Pinene-Derived N-Heterocyclic Carbenes: Application to
Highly Enantioselective Intramolecular Stetter Reaction. ACS Catal. 2014, 4, 1404–1408. [CrossRef]
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