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Abstract: Carboxymethyl lignin nanospheres (CLNPs) were synthesized by a two-step method using
microwave irradiation and antisolvent. The morphology and structure of CLNPs were characterized
by 31P-NMR, FTIR, and SEM, and the results showed that they had an average diameter of 73.9 nm,
a surface area of 8.63 m2 or 3.2 times larger than the original lignin, and abundant carboxyl functional
groups of 1.8 mmol/g. The influence of dosage, pH, contact time, and concentration on the adsorption
of metal ions onto CLNPs were analyzed, and the maximum adsorption capacity of CLNPs for Pb(II)
was found to be 333.26 mg/g, which is significantly higher than other lignin-based adsorbents and
conventional adsorbents. Adsorption kinetics and isotherms indicated that the adsorption of lead ions
in water onto CLNPs followed the pseudo-second-order model based on monolayer chemisorption
mechanism. The main chemical interaction between CLNPs and lead ions was chelation. CLNPs
also showed an excellent recycling performance, with only 27.0% adsorption capacity loss after 10
consecutive adsorption–desorption cycles.
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1. Introduction

Heavy metal ions in water can be transmitted and enriched in the food chain in the ecosystem,
posing a threat to the surrounding environment and to human health [1]. Toxic heavy metals,
such as lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr), and zinc (Zn), have been
classified as major pollutants, which cause numerous diseases and disorders at even very low levels.
Therefore, toxic heavy metal ions must be removed from wastewater effluent before being discharged
into the environment. The removal of heavy metals by electrochemical treatment, adsorption,
membrane technology, and other effective methods has been extensively studied [2–4]. In recent years,
various highly efficient materials, such as carbon nanotubes, activated carbon, graphene, molecular
sieves, and polymer materials, have been used as adsorbents for wastewater purification and been
widely commercialized [5–7]. However, due to its high cost, poor adsorption capacity, and poor
regeneration performance, its industrial application is limited [6,8]. These limitations have prompted a
search for low-cost and efficient adsorbents as replacements.

Lignin is the second most abundant natural polymer in lignocellulosic biomass (15–30 wt %)
next to cellulose [9]. At least 50 million tons of industrial lignin is produced annually from the pulp
and paper industry, but less than 2% of the lignin is separated from black liquor and transformed
into other high-value products [10,11]. In fact, the combination of abundance, biodegradability,
low cost, and abundant active groups of lignin makes it a promising raw material for the preparation of
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adsorbents [12,13]. However, the adsorption capacity of lignin adsorbents for metal ions is low, such as
9.0 mg/g for Pb(II), 7.5 mg/g for Cd(II), 26 mg/g for Cu(II), and 17.97 mg/g for Cr(III) [6,14], which limits
their practical application in the treatment of water that is contaminated with heavy metals.

At present, the method for increasing the adsorption of lignin is mainly lignin modification
or increasing the specific surface area of lignin. Dizhbite et al. [15] studied the introduction of
oxygen-containing groups by oxidative modification of organic solvent lignin from wheat straw.
After modification, the COOH content of lignin increased significantly. At pH 5.0 and 20 ◦C,
the saturated adsorption capacity of the modified lignin Pb(II) reached 155.4 mg/g. Peternele et al. [16]
reported a carboxymethyl-formate-modified lignin with a saturated adsorption capacity of 107.5 mg/g
for Pb(II). Li et al. [17] prepared a lignosulfonate-based porous lignin microsphere, but its adsorption
capacity for heavy metal lead was only 27.1 mg/g. The lignin microspheres prepared by Ge et al. [8] had
a diameter of 348 µm, a specific surface area of 9.6 m 2/g or 5.3 times that of the original lignin, and an
adsorption capacity of 33.9 mg/g for Pb(II). There is an urgent need to develop a new method for the
synthesis of lignin that can increase the specific surface area of lignin based on the completion of lignin
modification. In our previous work, ionic liquids (ILs) were used as “green solvents” for the formation
of alkali lignin nanospheres (ALNPs). The method involved the preparation of lignin nanospheres at
high concentration, which could effectively improve the yield of lignin nanospheres [18]. Compared
with traditional adsorbents, nanospheres have larger surface area and better diffusion, dispersion,
and mass transfer behavior. Meanwhile, many studies have shown that, in addition to phenolic
hydroxyl groups, alcoholic hydroxyl groups can also be reacted with sodium monochloroacetate under
microwave irradiation for alkali lignin (AL) [19,20]. However, to date, there have been no reports on
carboxyl-modified lignin nanospheres.

In this study, we report on a novel lignin nanosphere with abundant carboxyl functional groups,
which has the advantages of a simple preparation method, strong adsorption capacity for lead ions,
and recyclability. The lignin nanospheres, which were prepared using ionic liquid and antisolvent,
greatly reduced the water solubility of carboxyl-modified lignin and improved the chelating ability of
carboxyl with heavy metal ions (Figure 1). We also studied the carboxyl content and chemical structure
of the modified lignin. The adsorption of lead(II) on carboxymethyl lignin nanospheres (CLNPs) was
studied by controlling the pH, reaction time, adsorbent dosage, and initial concentration. The adsorption
mechanism was studied by analyzing adsorption thermodynamic, isotherms, and kinetic parameters.
Moreover, the performance of the adsorbent was compared with that of some existing adsorbents.

Molecules 2019, 24, x FOR PEER REVIEW 2 of 14 

 

adsorbents [12,13]. However, the adsorption capacity of lignin adsorbents for metal ions is low, such 

as 9.0 mg/g for Pb(II), 7.5 mg/g for Cd(II), 26 mg/g for Cu(II), and 17.97 mg/g for Cr(III) [6,14], which 

limits their practical application in the treatment of water that is contaminated with heavy metals. 

At present, the method for increasing the adsorption of lignin is mainly lignin modification or 

increasing the specific surface area of lignin. Dizhbite et al. [15] studied the introduction of 

oxygen-containing groups by oxidative modification of organic solvent lignin from wheat straw. 

After modification, the COOH content of lignin increased significantly. At pH 5.0 and 20 °C, the 

saturated adsorption capacity of the modified lignin Pb(II) reached 155.4 mg/g. Peternele et al. [16] 

reported a carboxymethyl-formate-modified lignin with a saturated adsorption capacity of 107.5 

mg/g for Pb(II). Li et al. [17] prepared a lignosulfonate-based porous lignin microsphere, but its 

adsorption capacity for heavy metal lead was only 27.1 mg/g. The lignin microspheres prepared by 

Ge et al. [8] had a diameter of 348 μm, a specific surface area of 9.6 m 2/g or 5.3 times that of the 

original lignin, and an adsorption capacity of 33.9 mg/g for Pb(II). There is an urgent need to develop 

a new method for the synthesis of lignin that can increase the specific surface area of lignin based on 

the completion of lignin modification. In our previous work, ionic liquids (ILs) were used as “green 

solvents” for the formation of alkali lignin nanospheres (ALNPs). The method involved the 

preparation of lignin nanospheres at high concentration, which could effectively improve the yield 

of lignin nanospheres [18]. Compared with traditional adsorbents, nanospheres have larger surface 

area and better diffusion, dispersion, and mass transfer behavior. Meanwhile, many studies have 

shown that, in addition to phenolic hydroxyl groups, alcoholic hydroxyl groups can also be reacted 

with sodium monochloroacetate under microwave irradiation for alkali lignin (AL) [19,20]. 

However, to date, there have been no reports on carboxyl-modified lignin nanospheres. 

In this study, we report on a novel lignin nanosphere with abundant carboxyl functional 

groups, which has the advantages of a simple preparation method, strong adsorption capacity for 

lead ions, and recyclability. The lignin nanospheres, which were prepared using ionic liquid and 

antisolvent, greatly reduced the water solubility of carboxyl-modified lignin and improved the 

chelating ability of carboxyl with heavy metal ions (Figure 1). We also studied the carboxyl content 

and chemical structure of the modified lignin. The adsorption of lead(II) on carboxymethyl lignin 

nanospheres (CLNPs) was studied by controlling the pH, reaction time, adsorbent dosage, and 

initial concentration. The adsorption mechanism was studied by analyzing adsorption 

thermodynamic, isotherms, and kinetic parameters. Moreover, the performance of the adsorbent 

was compared with that of some existing adsorbents. 

 

Figure 1. Schematic diagram showing the two-step synthesis of carboxymethyl lignin nanospheres 

(CLNPs). 

2. Experimental 

2.1. Materials 

1-methylimidazole (>99 wt %, Acros, Guangzhou, China), bromoethane (>99 wt %, Aladdin, 

Guangzhou, China) and ethyl acetate (>99.9 wt%, Aladdin, Guangzhou, China) were used to prepare 

ionic liquids [EMIM][Ac] in-house according to a procedure available in the literature [21]. Lignin 

Figure 1. Schematic diagram showing the two-step synthesis of carboxymethyl lignin
nanospheres (CLNPs).

2. Experimental

2.1. Materials

1-methylimidazole (>99 wt %, Acros, Guangzhou, China), bromoethane (>99 wt %, Aladdin,
Guangzhou, China) and ethyl acetate (>99.9 wt%, Aladdin, Guangzhou, China) were used to prepare
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ionic liquids [EMIM][Ac] in-house according to a procedure available in the literature [21]. Lignin (alkali
lignin, ≥99% purity) and sodium monochloroacetate were purchased from Sigma-Aldrich (Beijing,
China). All chemicals used were of analytical reagent grade.

2.2. Preparation of CLNPs

CLNPs were prepared by a two-step method that involved synthesizing carboxyl-modified AL
and preparing carboxymethyl lignin nanospheres. For the first step, 1.5 g alkali lignin, 1.17 g sodium
monochloroacetate, and 0.4 g sodium hydroxide were dissolved in 30 mL distilled water under stirring.
After that, the mixtures were reacted in a microwave device (XH-100B, XINGHU Microwave Beijing,
China) and then microwave-treated for 30 min at 95 ◦C. The pH of the solution was adjusted to neutral
with dilute sulfuric acid. It was then filtered and washed by deionized water and dried under vacuum
at 50 ◦C for 24 h. For the second step, 1 g carboxymethyl lignin was dissolved in 10 mL [Emim][Ac]
using a microwave catalytic synthesis extractor. The dissolving conditions were as follows: microwave
power, 500 W; temperature, 80 ◦C; reaction time, 30 min. Then, the solution was stirred at room
temperature (25 ◦C) with magnetic stirring speed of about 600 rpm. After these steps, acid water
(pH = 2–3) was gradually added into the solution at the speed of 3 mL/min to 80 vol %, and stirring
was continued for 60 min to form CLNPs. After particle formation and solvent removal, the particles
were centrifuged at 9000 rpm for 10 min and washed twice with deionized water. Finally, CLNP was
freeze-dried and stored in a sealed vial.

2.3. Characterizations

To measure the carboxyl group content of the lignin samples, 31P-NMR was carried out
using Bruker AVANCE 600 NMR spectrometer (Bruker, Karlsruhe, Germany) according to
existing research methods [22]. FTIR, SEM, and the size of CLNPs were tested in our previous
study [18]. The Brunauer–Emmett–Teller (BET) method was utilized to calculate the surface area [23].
X-ray photoelectron spectroscopy (XPS) was applied on a polycrystalline X-ray diffraction instrument
(D8 ADVANCE, Karlsruhe, Germany). Binding energy values were calibrated using characteristic
carbon (C1s = 284.8 eV) during data processing of XPS spectra.

2.4. Adsorption

Pb(II) adsorption onto CLNPs was measured by mixing CLNPs with aqueous solutions.
All experiments were conducted in a 150 mL conical flask containing 50 mL of a Pb(II) solution
that was placed in a constant temperature oscillator at 30 ± 2 ◦C. Then, the supernatant was removed by
filtration. The filtrate was analyzed by a Z-2000 atomic absorption spectrophotometer. All adsorption
experiments were performed three times, and the average was calculated to avoid any experimental
error. The removal efficiency (E) and adsorption amount (Qe) were calculated by the following equations:

E(%) =
C0 −Ce

C0
×100 (1)

Qe (mg/g) =
C0 −Ce

m
×V (2)

where C0 and Ce are the initial and final concentration of Pb(II) (mg/L), respectively; V is the volume of
Pb(II) solution (ml); and m is the mass of CLNPs (g). After adsorption of the metal ions, the lead-loaded
CLNPs were desorbed in HNO3 (0.1 M) solution for 4 h at 25 ◦C. Then, it was neutralized by NaOH (0.1
M), filtered and washed with deionized water until the pH remained constant, and then lyophilized.
The regenerated CLNP sample was used for a further adsorption–desorption test of 10 cycles to
investigate its recyclability.
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3. Results and Discussion

3.1. Characterizations

NMR analysis was performed to detect the carboxyl group content of the functional group.
The corresponding NMR signal of AL and CLNPs is shown in Figure 2. The corresponding quantitative
results of the functional group are shown in Table 1. The carboxyl contents of AL and CLNPs were 0.95
and 1.80 mmol/g, respectively. This effectively increased the carboxyl content of the product, which was
0.90 times higher than that of AL. It can also be seen from Table 1 that sodium monochloroacetate
mainly reacted with the phenolic hydroxyl group in the alkali lignin during microwave irradiation,
which is consistent with reports in the related literature [20]. From the FTIR spectra (Figure 3),
the strength of 1710 cm−1 was attributed to the carboxyl group. Compared with AL and ALNPs,
CLNPs had more obvious chemical information of carboxyl functional groups. The bands at 1510 cm−1

represented the aromatic skeletal vibrations, which indicated that the aromatic structure of lignin was
not damaged during the synthesis of carboxyl-modified lignin nanospheres. The FTIR analysis agreed
well with the results of the NMR analysis. This also proves that the microwave-assisted synthesis of
carboxyl-modified lignin nanospheres can not only improve the reaction efficiency in a short time but
also retain the original benzene ring structure of the alkali lignin.
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Table 1. The contents of functional groups in AL and CLNPs.

Lignin Aliphatic OH
(150–145.7 ppm)

Condensed Phenolic
OH (145–140.7 ppm)

Guaiacyl and Catechol
OH (140–137.6 ppm)

Total Phenolic
OH

Carboxyl
(136–133.8 ppm)

(mmol/g) (mmol/g) (mmol/g) (mmol/g) (mmol/g)
AL 2.32 1.76 1.42 3.18 0.95

CLNPs 3.02 1.60 0.43 2.03 1.80
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Figure 3. IR spectra of AL, lignin nanospheres (LNPs), and CLNPs.

The morphology of CLNPs was observed by SEM. As shown in Figure 4, the CLNPs were found to
be uniformly spherical. The average particle size of nanospheres, as determined by dynamic laser light
scatterometer, was approximately 73.9 nm (Figure 5A). The surface area of CLNPs was determined by
the BET method from the N2 adsorption isotherm, as shown in Figure 5B. The SBET of CLNPs was
8.63 m2/g, which was 3.2 times that of lignin (2.72 m2/g). The large surface area is beneficial for the
adsorption of lead in wastewater.
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Previous studies have suggested that lignin has a strong self-assembly capability [24]. According
to our group’s previous research, they coexist in the form of single molecules and aggregate in solution.
After the antisolvent is added to the solution, the hydrophobic chains of the complexes continue to
aggregate to form a stable nanoparticle core [18]. This process should result in a bimodal distribution of
particle size unless it reaches the equilibrium, which requires a very long time. Interestingly, the ionic
liquid molecules with a weaker hydrophobicity are still dispersed in solution [18]. With improved
antisolvent, nanospheres composed of a hydrophilic shell and a hydrophobic core are formed.
The self-assembly method largely reduces the water solubility of the nanospheres, so more carboxyl
group-containing functional groups are exposed on the surface of the nanospheres.
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3.2. Adsorption Studies

The pH of the solution affects the presence and solubility of heavy metal ions in water. The pH
affects the surface charge and the extent of functional stratification of the adsorbent material, and the pH
of the solution plays an important role in the adsorption of metal ions. The removal efficiency of heavy
metal ions by CLNPs and LNPs was examined within the pH efficiency of 2.04–7.06, and the results are
depicted in Figure 6. As can be seen, the adsorption amount of CLNPs was significantly higher than
that of LNPs, and the adsorption capacity increased until the pH increased to 6.03. When the pH was
low, too many hydrogen ions in the solution protonated the carboxyl group of CLNPs to form –COOH,
which weakened the electrostatic attraction and complexing ability between the carboxyl group and
the heavy metal ion, thereby reducing the adsorption amount. The carboxyl group on the CLNPs
deprotonated further with the increase in pH value, and COO− was combined with heavy metal ions
to increase the adsorption amount. At pH = 6.03, the adsorption capacity of CLNPs (217.21 mg/g) was
4.2 times higher than LNPs (51.67 mg/g). Furthermore, it is worth noting that when the pH exceeds the
pH threshold (>6) of Pb(OH)2 precipitation, the removal process is a combination of precipitation of
Pb(OH)2 and adsorption [25]. Therefore, to avoid the formation of metal hydroxide precipitation, pH
= 6.03 was chosen for further adsorption test.
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Figure 6. Effect of pH on the adsorption amount of Pb(II) by CLNPs and LNPs (dosage = 10 mg/50 mL,
C0 = 100 mg/L, t = 180 min, temperature = 30 ◦C).

The effect of CLNPs dosage on adsorption metal ions at pH = 6.03 was also studied. The test was
carried out under conditions of an initial lead ion concentration of 100 mg/L for 180 min. As shown
in Figure 7, the adsorption capacity of CLNPs initially increased with CLNPs loading and reached
333.26 mg/g at 0.3 g/L. As the adsorption dosage was further increased, the adsorption capacity began
to decrease. Initially, as the amount of CLNPs increased, the increase in adsorption capacity was due
to an increase in the effective adsorption sites on the surface of the adsorbent. In contrast, as the initial
amount of lead ions was kept constant, the adsorption amount of Pb(II) decreased with an increase in
the adsorbent dosage. This might have been due to an increase in the CLNPs dose, which resulted in a
more unsaturated adsorption site on the surface of the adsorbent, thereby resulting in a decrease in
adsorption capacity.
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Figure 7. Effect of dosage on the adsorption of Pb(II) on CLNPs (C0 = 100 mg/L, t = 180 min,
temperature = 30 ◦C, pH = 6.03).

Adsorption kinetics were studied (C0 = 100 mg/L, 30 ◦C, CLNP dosage of 15 mg/50 mL, pH = 6.03)
to determine the equilibrium time and adsorption rate. As illustrated in Figure 8, the results showed
that the adsorption of metal ions increased sharply at the beginning and reached saturation within 180
min. The initial rapid adsorption was due to the availability of the initial large number of vacancies
and the chelating force for mass transfer. Subsequently, the filling of the vacancies became difficult
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owing to the repulsive force between the Pb(II) adsorbed on the surface of the nanosphere and the
Pb(II) in the bulk solution [8]. As shown in Table 2, the saturated adsorption capacity of CLNPs was
333.26 mg/g, which is much higher than other lignin-based adsorbents and conventional adsorbents,
such as those shown in Table 2. The high adsorption capacity might have been due to its large surface
area and large amount of accessible carboxyl groups.

Molecules 2019, 24, x FOR PEER REVIEW 9 of 14 

 

 

Figure 8. Kinetic adsorption results of Pb(II) on CLNPs. The inset shows the fitting results of the 

pseudo-second-order model for Pb(II) adsorption (CLNP dosage = 15 mg/50 mL, C0 = 100 mg/L, 

temperature = 30 °C, pH = 6.03). 

Langmuir [32] and Freundlich [33] isotherm models were applied to fitting Pb(II) adsorption 

data. The model can be represented by Equations (5) and (6): 

Langmuir: 
𝐶𝑒

𝑄𝑒
 = 

𝐶𝑒

𝑄𝑚𝑎𝑥
 + 

1

𝑄𝑚𝑎𝑥𝑏
 (5) 

Freundlich: log 𝑄𝑒= log 𝐾𝐹  + 
1

𝑛
log 𝐶𝑒 (6) 

where Ce (mg/L) is the equilibrium concentration, Qe (mg/g) is the equilibrium adsorption capacity, b 

(L/mg) is the Langmuir constant, Q max (mg/g) is the maximum adsorption capacity, and K F (mg/g) 

and n are the Freundlich constants. The adsorption isotherms at different initial concentration in the 

range of 20–160 mg/L were collected. It can be seen from Figure 9 and Table 4 that the adsorption 

amounts of Pb(II) by CLNPs increased significantly with the increase in Pb(II) concentrations until a 

stable level was reached. The sharp increase in adsorption capacity was observed at low 

concentrations due to excessive active sites and strong electrostatic attraction, chelating forces for 

mass transfer. Compared to the Freundlich model (R2 = 0.448), the Langmuir model provided better 

fitting results (R2 = 0.973). The experimental data agreed well with the Langmuir adsorption 

experiment, indicating that lead ions were adsorbed on the surface of CLNPs by a monolayer 

pattern. 

Table 4. Freundlich and Langmuir isotherm model parameters for the adsorption of Pb(II) onto 

CLNPs. 

Sample Langmuir Model Freundlich Model 

 B (L/mg) Qmax (mg/g) R2 n KF (mg/g) R2 

CLNPs 0.1734 312.5 0.973 2.86 63.09 0.448 

Figure 8. Kinetic adsorption results of Pb(II) on CLNPs. The inset shows the fitting results of the
pseudo-second-order model for Pb(II) adsorption (CLNP dosage = 15 mg/50 mL, C0 = 100 mg/L,
temperature = 30 ◦C, pH = 6.03).

The kinetic data were also analyzed by the pseudo-first-order (Equation (3)) [26] and
pseudo-second-order kinetic models (Equation (4)) [27]:

log(Qe −Qt)= log Qe −
K1

2.303
t (3)

t
Qt

=
1

K2Q2
e
+

t
Qe

(4)

where Qt and Qe are the amounts of metal ions adsorbed (mg/g) at contact time t (min) and at
equilibrium, respectively; k1 (1 min−1) and k2 (g/mg min) are the rate constants. The kinetic process of
Pb(II) in water by CLNPs is shown in Figure 8 and Table 3. It can be observed that the Qe calculated by
the pseudo-first-order model did not match the experimental adsorption amount, and the R2 value
was very low (0.6013). This indicates that the first-order model cannot describe the adsorption kinetics.
For the pseudo-second-order model, the calculated Qe (350.9 mg/g) was close to the experimental
value, and a higher correlation coefficient (R2 = 0.9991) was obtained. This suggests that the adsorption
followed pseudo-second-order kinetics. The pseudo-second-order is based on the chemical adsorption
between the metal ion and the active sites of the adsorbent [25]. The results show that the adsorption
of Pb(II) onto CLNPs was controlled by chemical adsorption involving chelating, electrostatic forces
ion exchange, and valence forces between the adsorbent and adsorbate.
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Table 2. Comparison of the lead adsorption capacity by CLNPs and other adsorbents.

Adsorbent T (◦C) Time (min) pH K2 Qe (mg/g) Reference

Zeolite A 25 30 7.5 - 213.0 [28]
Commercial active carbon 25 360 6.0 0.005 29.2 [29]

Pb–ITMCB 40 480 6.0 2.9 × 10−4 259.7 [30]
Lignosulfonate sphere 30 150 5.0 0.02 27.1 [17]

Lignin-grafted carbon nanotubes 25 60 5.8 0.03 235.0 [31]
Carboxymethylation formic lignin 30 - 6.0 - 107.5 [16]

CLNPs 30 180 6.03 0.0544 333.26 This study

Table 3. Kinetic parameters for Pb(II) adsorption onto CLNPs.

Sample
Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

Qe (mg/g) K1 (1 min−1) R2 Qe (mg/g) K2 (g/mg min) R2

CLNPs 304.0 1.08 0.6013 350.9 0.0544 0.9991

Langmuir [32] and Freundlich [33] isotherm models were applied to fitting Pb(II) adsorption data.
The model can be represented by Equations (5) and (6):

Langmuir :
Ce

Qe
=

Ce

Qmax
+

1
Qmaxb

(5)

Freundlich : log Qe= log KF+
1
n

log Ce (6)

where Ce (mg/L) is the equilibrium concentration, Qe (mg/g) is the equilibrium adsorption capacity,
b (L/mg) is the Langmuir constant, Q max (mg/g) is the maximum adsorption capacity, and K F (mg/g)
and n are the Freundlich constants. The adsorption isotherms at different initial concentration in the
range of 20–160 mg/L were collected. It can be seen from Figure 9 and Table 4 that the adsorption
amounts of Pb(II) by CLNPs increased significantly with the increase in Pb(II) concentrations until a
stable level was reached. The sharp increase in adsorption capacity was observed at low concentrations
due to excessive active sites and strong electrostatic attraction, chelating forces for mass transfer.
Compared to the Freundlich model (R2 = 0.448), the Langmuir model provided better fitting results
(R2 = 0.973). The experimental data agreed well with the Langmuir adsorption experiment, indicating
that lead ions were adsorbed on the surface of CLNPs by a monolayer pattern.
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Table 4. Freundlich and Langmuir isotherm model parameters for the adsorption of Pb(II) onto CLNPs.

Sample
Langmuir Model Freundlich Model

B (L/mg) Qmax (mg/g) R2 n KF (mg/g) R2

CLNPs 0.1734 312.5 0.973 2.86 63.09 0.448

In order to clarify the adsorption mechanism of Pb(II) onto CLNPs, XPS analysis of metal-loaded
CLNP was performed. Figure 10 shows the XPS spectra of CLNPs before and after adsorption of
heavy metals. In addition to the characteristic peaks of C1s (283.82 eV) and O1s (530.95 eV) in
CLNPs, the characteristic peak of Pb4f was also detected in the XPS full-spectrum trace of CLNPs
after adsorption of heavy metals, which was 139.40 eV. This indicated that heavy metal ions had
been successfully adsorbed onto the surface of CLNPs. The O1s peaks of CLNPs that had adsorbed
heavy metal were fitted (Figure 10). In the spectrum of O1s, characteristic peaks of oxygen-containing
groups (COO−, C=O, and C–OH) appeared at 531.34 and 530.15 eV. A comparison of the spectra of Ols
before and after adsorption of heavy metals by CLNPs showed that the binding energies of the two
characteristic peaks of O1s were increased (532.2 and 530.57 eV, respectively), which indicated that the
oxygen atoms on the surface of CLNPs formed a coordination structure with Pb(II). It was formed by
the chelation of COO−, C=O, and C–OH groups with Pb(II), as shown in Figure 11. This indicated that
CLNPs adsorbed heavy metal ions in water by chemical adsorption, which is in agreement with the
analysis of kinetic fitting.
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To investigate regeneration and the reusability of CLNPs, five adsorption–desorption cycles were
performed on Pb(II). Regeneration of the lead-loaded CLNPs can be realized by desorbing with HNO3

solution (0.1 M), neutralizing with NaOH (0.1 M), and then washing. As displayed in Figure 12,
CLNPs had a good stability for adsorption of Pb(II). After five consecutive adsorption–desorption
cycles, there was only a 15.0% loss in adsorption capacity. After 10 consecutive adsorption–desorption
cycles, the adsorption capacity loss was 27.0%. This has great practical guiding value for the recycling
performance of materials. The test results show that CLNPs can be used as an environmentally friendly
and low-cost water purification adsorbent and that Pb(II) has good recyclability on CLNP, which is
beneficial for practical applications.

Molecules 2019, 24, x FOR PEER REVIEW 12 of 14 

 

 

Figure 12. Pb(II) adsorption capacity of CLNPs at different regeneration cycles (CLNP dosage = 15 

mg/50 mL, C0 = 100 mg/L, temperature = 30 °C, pH = 6.03). 

4. Conclusions 

In this work, eco-friendly and recyclable lignin nanospheres for lead removal were synthesized 

by the regulation of carboxyl-functionalized alkali lignin and ionic liquid interface. The CLNP 

adsorbent with higher carboxyl content (1.8 mmol/g) and surface area (8.63 m2) had an average 

diameter of 73.9 nm, which is significantly superior to the traditional raw lignin. 

The CLNPs showed a high lead adsorption capacity (333.26 mg/g) and removal efficiency 

(98.5%). The adsorption kinetics of lead followed the pseudo-second-order model, and the 

adsorption process was close to the chemisorption process through monolayer adsorption. Their 

main adsorption mechanism was chelation between CLNPs and lead ions. Moreover, the adsorbed 

Pb(II) metal ion could be easily desorbed from CLNP adsorbent using 0.1 M HNO3 solution. The 

CLNPs had good reusability for adsorption of metal ions, which means it has great potential for 

industrial applications in wastewater treatments. However, wastewater has complex components of 

inorganic salts, organic matters, and heavy metals ions, which is far different from the ideal or real 

wastewater. CLNPs therefore still have significant room for improvement in terms of practical 

applications. 

Author Contributions: conceptualization, C.L. and Y.H; methodology, C.L.; software, C.L.; formal analysis, 

C.L.; investigation, C.L.; writing—original draft preparation, C.L.; writing—review and editing, C.L. and Y.H.; 

supervision, Y.L.; project administration, Y.L.; funding acquisition, Y.L. 

Funding: This research was funded by the National Key R&D project of China, grant number 2017YFB0307901 

and the National Natural Science Foundation of China, grant number 21476091. 

Acknowledgments: The authors wish to thank Analytical and Test center of South China University of 

Technology for the XPS, SEM and NMR Testing.  

Conflicts of interest: There are no conflicts to declare. 

References 

1. Klapiszewski, Ł.; Siwińskastefańska, K.; Kołodyńska, D. Preparation and characterization of novel 

TiO2/lignin and TiO2-SiO2/lignin hybrids and their use as functional biosorbents for Pb(II). Chemical 

Engineering Journal 2017, 314, 169–181. doi:10.1016/j.cej.2016.12.114. 

2. Dang, V.Q.; Kim, J.K.; Sarawade, P.B.; Dang, H.T.; Kim, H.T. Preparation of amino-functionalized silica for 

copper removal from an aqueous solution. Journal of Industrial & Engineering Chemistry 2012, 18, 83–87. 

doi:10.1016/j.jiec.2011.11.089. 

3. Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. Journal of 

Colloid & Interface Science 2004, 280, 309–314. https://doi.org/10.1016/j.jcis.2004.08.028. 

4. Da ̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective removal of the heavy metal ions from 

Figure 12. Pb(II) adsorption capacity of CLNPs at different regeneration cycles (CLNP dosage = 15
mg/50 mL, C0 = 100 mg/L, temperature = 30 ◦C, pH = 6.03).

4. Conclusions

In this work, eco-friendly and recyclable lignin nanospheres for lead removal were synthesized by
the regulation of carboxyl-functionalized alkali lignin and ionic liquid interface. The CLNP adsorbent
with higher carboxyl content (1.8 mmol/g) and surface area (8.63 m2) had an average diameter of 73.9
nm, which is significantly superior to the traditional raw lignin.

The CLNPs showed a high lead adsorption capacity (333.26 mg/g) and removal efficiency (98.5%).
The adsorption kinetics of lead followed the pseudo-second-order model, and the adsorption process
was close to the chemisorption process through monolayer adsorption. Their main adsorption
mechanism was chelation between CLNPs and lead ions. Moreover, the adsorbed Pb(II) metal
ion could be easily desorbed from CLNP adsorbent using 0.1 M HNO3 solution. The CLNPs had
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good reusability for adsorption of metal ions, which means it has great potential for industrial
applications in wastewater treatments. However, wastewater has complex components of inorganic
salts, organic matters, and heavy metals ions, which is far different from the ideal or real wastewater.
CLNPs therefore still have significant room for improvement in terms of practical applications.
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