Supporting Information for Carbon Nanomaterial Doped Ionic Liquid Gels for the Removal of Pharmaceutically Active Compounds from Water

Carla Rizzo,¹ Salvatore Marullo,¹ Nadka Tz. Dintcheva,² Francesca D'Anna^{1,*}

¹Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Viale delle Scienze, Ed. 17, 90128, Palermo (Italia).

²Università degli Studi di Palermo, Dipartimento di Ingegneria, Viale delle Scienze Ed. 8, 90128 Palermo (Italia).

Email Corresponding Author: francesca.danna@unipa.it

Figure S1: images of pristine and hybrid ionic liquids gels.	pag. S2
Figure S2: POM images of hybrid gels.	pag. S2
Figure S3: strain and frequency sweep of HILGs.	pag. S3
Figure S4: images of graphene-G after 7 cycles of PhAc adsorption.	pag. S4
Figure S5: strain and frequency sweep of graphene-G after 7 cycles of PhAc	pag. S4
adsorption.	
Figure S6: images of graphene-G with different volumes of PhAC solution.	pag. S5
Figure S7: images of graphene-G inside a dialysis membrane in 4 mL of PhAC	pag. S5
solution.	
Table S1: T _{gel} values at 4 wt % of gelator and variable amount of nanomaterials.	pag. S6
Table S2: response to external stimuli, thixotropy and sonotropy tests.	pag. S6
Table S3: removal efficiency of gels after 3 h of contact with PhAC water solution.	pag. S7
Table S4: kinetic of removal efficiency of both PhACs from water solutions using	pag. S7
graphene-G.	
Table S5: removal efficiency of both PhACs from water solutions, at 3h, using	pag. S8
graphene-G for recycling tests.	
Table S6: removal efficiency of both PhACs from water solutions at 3h using	pag. S8
graphene-G for recycling tests after regeneration of the gel.	
Table S7: removal efficiency of ciprofloxacin from water solutions, at 3h, using	pag. S9
graphene-G as function of ciprofloxacin concentration.	
Table S8: removal efficiency of ciprofloxacin from water solutions, at 3h, using	pag. S9
graphene-G as function of water solution volume cast on 500 mg of gel.	

Figure S1: images of **pristine-G** (1) and hybrid ionic liquids gels: **CNT-G** (2), **graphite-G** (3), **graphene-G** (4).

Figure S2: POM images of hybrid gels, a) CNT-G, b) graphene-G, c-d) graphite-G.

Figure S3: strain and frequency sweep of HILGs.

Figure S4: images of graphene-G after 7 cycles of PhAc adsorption.

Figure S5: a) strain and **b)** frequency sweep of **graphene-G** after 7 cycles of PhAc adsorption; image of **graphene-G** keeping its geometry (inset).

Figure S6: images of **graphene-G** (500 mg) with different volumes (vial 1, 0.5 mL; vial 2, 1 mL; vial 3, 2 mL) of ciprofloxacin water solution (10^{-4} M).

Figure S7: images of **graphene-G** (1 g) inside a dialysis membrane in 10 mL of ciprofloxacin water solution (10^{-4} M).

Carbon Material	wt %	T _{gel} (°C)
Graphite	0.1	34
-	0.2	42
	0.3	37
	0.4	35
	0.45	37
	0.6	33
Graphene	0.1	39
1	0.2	42
	0.3	44
	0.4	34
	0.5	36
	0.6	34
CNT	0.1	38
	0.2	42
	0.3	39
	0.4	35
	0.5	36
	0.6	33

Table S1: T_{gel} values at 4 wt % of gelator and variable amount of nanomaterials.

Table S2: response to external stimuli, sonotropy and thixotropy tests. G' values measured during

 the rheological thixotropic test as function of time.

GEL	Sonotropy	Thixotropy	G' 1° cycle	G' 2° cycle*	G' 3° cycle*
pristine-G	YES	YES	-	-	-
graphene-G	Stable	YES	500±100	160±60 (32%)	600±200 (100%)
graphite-G	Stable	NO	-	-	-
CNT-G	Stable	YES	26800±3400	3400±200 (13%)	2400±100 (9%)

*The percentage of strain recovery was evaluated through the comparison of G' initial value with the one obtained in the LVR after disruption.

GEL	RE (%) nalidixic acid	RE (%) ciprofloxacin
pristine-G	61	49
CNT-G	49	50
graphene-G	64	50
graphite-G	59	50

Table S3: removal efficiency of gels after 3 h of contact with PhAC water solution. RE is based on triplicate runs with reproducibility of 2%.

Table S4: kinetic of removal efficiency of both PhACs from water solutions using **graphene-G**. RE is based on triplicate runs with reproducibility of 2%.

Time (h)	RE (%) nalidixic acid	Time (h)	RE (%) ciprofloxacin
 0.12	14	0.12	30
0.25	27	0.25	34
0.5	36	0.5	44
1	41	1	42
2	51	2	45
3	61	3	51
4	61	4	57
5	70	5	52
6	69	6	57
15	81	15	57
24	88	24	58

	RE (%) nalidixic acid	RE (%) ciprofloxacin
I cycle	64	51
II cycle	65	47
III cycle	70	45
IV cycle	67	50
V cycle	53	50
VI cycle	57	53
VII cycle	55	54
VIII cycle	31	29

Table S5: removal efficiency of both PhACs from water solutions at 3h using **graphene-G** for recycling tests. RE is based on triplicate runs with reproducibility of 2%.

Table S6: removal efficiency of both PhACs from water solutions at 3h using **graphene-G** for recycling tests after regeneration of the gel. RE is based on triplicate runs with reproducibility of 2%.

	RE (%) nalidixic acid	RE (%) ciprofloxacin
1° adsorption	64	51
1° desorption	77	80
2° adsorption	40	49

Concentration (M)	RE (%) ciprofloxacin
1.08.10-4	51
2.96.10-4	53
5.20.10-4	54
$7.28 \cdot 10^{-4}$	66
1.08.10-3	77

Table S7: removal efficiency of ciprofloxacin from water solutions at 3h using **graphene-G** as function of ciprofloxacin concentration. RE is based on triplicate runs with reproducibility of 2%.

Table S8: removal efficiency of ciprofloxacin (10^{-4} M) from water solutions, at 3h, using **graphene-G** as function of water solution volume cast on 500 mg of gel. RE is based on triplicate runs with reproducibility of 2%.

Volume	RE (%) ciprofloxacin
0.5 mL	54
1 mL	48
2 mL	30