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Abstract: Atractylodes macrocephala Koidz. has been used as an invigorating spleen drug for eliminating
dampness and phlegm in China. According to recent researches, different processing methods may
affect the drug efficacy, so we collected A. macrocephala from the Zhejiang Province, produced with
different processing methods, crude A. macrocephala (CA) and bran-processed A. macrocephala (BA), then
analyzed its essential oils (EOs) by GC/MS. The results showed 34 components representing 98.44%
of the total EOs of CA were identified, and 46 components representing 98.02% of the total EOs of BA
were identified. Atractylone is the main component in A. macrocephala. Compared with CA, BA has 46
detected compounds, 28 of which were identical, and 6 undetected compounds. Pharmacodynamic
results revealed that the EOs of CA and atractylone exhibited more effective anticancer activity in
HepG2, MCG803, and HCT-116 cells than the EOs of BA; while the EOs of BA exhibited simple
antiviral effect on viruses H3N2, both the EOs and atractylone show anti-inflammatory activity by
inhibiting the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in ANA-1 cells.

Keywords: Atractylodes macrocephala Koidz.; essential oils; atractylone; processing methods; GC/MS;
pharmacodynamic effect

1. Introduction

Atractylodes macrocephala Koidz. (Baizhu in Chinese), a perennial herb from the Compositae family,
is a drug commonly used in traditional Chinese medicine. It has been used as a food and medicinal
herb in China for thousand years [1]. In China, A. macrocephala is mainly distributed in Zhejiang
Province which is known as one of authentic medicinal herbs “Zhebawei” [2]. Many components, such
as essential oils (EOs), sesquiterpenoids, polysaccharides, amino acids, vitamins, resins, and other
ingredients have been found in A. macrocephala up till recently [3,4]. A. macrocephala has many effects,
such as strengthening the spleen, benefiting vital energy, eliminating dampness, hidroschesis, and
soothing fetuses [5].
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In China, the methods of Chinese medicine processing became more and more common after the
Song Dynasty. The crude A. macrocephala (CA) and bran-processed A. macrocephala (BA) are the two
drugs that are prepared in pieces which have been widely used as a tonic in China. Clinically, the CA
is mainly used for spleen dampness and diuresis while after bran-processed, it can significantly relieve
dryness and tonify Qi and spleen. It is because after processing, the content of EOs with sputum effect
decreased, and the content of lactones which inhibited uterine contraction increased; hence the famous
doctor Zhu Danxi in the Yuan Dynasty regarded BA as the miscarriage prevention medicine for the first
time in the “Danxi Heart Law” [6]. The main components of A. macrocephala are EOs that are made up
of atractylone, orange linoleum, elemene, and isoeugenol [7]. So after bran processing, what changes in
the chemical composition of A. macrocephala have caused such changes in its pharmacological effects?

In recent years, the research on the active ingredients of A. macrocephala has been focused on
its polysaccharides and lactones. The research on EOs of A. macrocephala focuses on component
analysis, and rarely involved medicinal ingredients. Pharmacological studies and clinical practice
have demonstrated that A. macrocephala possesses various bioactivities, including diarrhea, abdominal
pain, and insufficiency of the stomach, intestine, liver, kidney, or insufficiency of the spleen with
abundance of dampness [8,9]. A. macrocephala has a regulating effect on the gastrointestinal tract
and is commonly used in the treatment of digestive tract diseases [9,10]. Atractylodes lactones have
antitumor effects [11–13], but no study has been reported on whether the EOs of A. macrocephala has
inhibitory effect on the digestive tract tumors; the previous research of the research group found that
the EOs of Cinnamomi ramulus has antiviral and anti-inflammatory effects [14]. So, it suddenly occurred
to us that since A. macrocephala extract has many pharmacological activities, and the EOs are one of
the main active components of A. macrocephala, so the EOs of A. macrocephala might have antitumor,
antiviral, and anti-inflammatory effects.

Here, we collected A. macrocephala from the Pan’an District, Jinhua City, Zhejiang Province,
China and analyzed its EOs constituents by GC/MS. In addition, for further exploitation of this plant,
the possible bioactivities of the EOs of CA and BA were examined, including antitumor, antiviral, and
anti-inflammatory activities, to investigate the chemical compositions and biological activities of the
EOs in the effective part, and find the material basis for its function. Here, our schematic illustration of
the work is revealed in Figure 1.
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2. Results

2.1. Chemical Composition of Essential Oils

Hydrodistillation of CA yields 1.33% (v/w) and BA yields 1.07% (v/w) of the yellow EOs using
the Chinese Pharmacopoeia appendix method (Part IV General rule 2202). We used the National
Institute of Standards and Technology (NIST) database to match and select the material with the
highest matching degree and reference to determine the compounds which are described in Figure 2
and Table 1. A total of 34 components representing 98.44% of the total peak areas of CA were identified.
The highest content component of the EOs of CA was atractylone (41.92%). For BA, 46 components
representing 98.02% of the total peak areas were identified and the highest content component of
EOs of BA was atractylone (23.77%). Compared with the EOs of CA, BA had 28 same compounds
(84.98% for the EOs of CA and 67.40% for the EOs of BA), 18 additional detected compounds, and 6
undetected compounds.
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Table 1. Chemical compositions and content * of the EOs of CA and BA.

No. Retention
(min)

Compounds Molecular
Formula

EOs of CA EOs of BA
CAS No. Reference

Area (%) Similarity Area (%) Similarity

1 21.085 α-Guaiene C15H24 ND 0.13 87.5 3691-12-1 [15]
2 22.327 α-Amylcinnamyl alcohol C14H20O 0.35 87.8 0.29 87.9 101-85-9 [16]
3 22.561 Berkheyaradulene C15H24 0.54 87.8 0.42 87.7 65372-78-3 [17]
4 22.769 Eremophylene C15H24 ND 0.15 83.7 10219-75-7 [18]
5 22.987 α-Gurjunene C15H24 0.48 93.1 0.97 92.8 489-40-7 [19]
6 23.189 β-Isocomene C15H24 ND 0.26 71.1 74311-15-2 [17]
7 23.236 (−)-β-Caryophyllene C15H24 ND 0.28 70 87-44-5 [20]
8 23.674 Isoledene C15H24 1.85 96.3 1.75 96.3 95910-36-4 [7]
9 24.135 γ-Elemene C15H24 0.64 93.5 1.14 93.7 29873-99-2 [21]
10 24.753 α-Caryophyllene C15H24 1.21 92.5 1.07 92.5 6753-98-6 [22]

11 25.622 1,2,3,4,4a,7-Hexahydro-1,6-dimethyl-4-
(1-methylethyl)naphthalene C15H24 0.33 81.1 0.34 83.2 16728-99-7 [23]

12 25.850 Cedrol C15H26O ND 0.14 51.6 77-53-2 [24]
13 25.864 β-Selinene C15H24 4.88 95.4 4.36 95.3 17066-67-0 [25]
14 26.085 trans-Nuciferol C15H22O 0.69 76 0.67 78.6 39599-18-3 [26]
15 26.829 Calarene C15H24 0.84 91.5 0.74 91.7 17334-55-3 [27]
16 27.136 Zingiberene C15H24 0.33 76.1 0.25 65.8 495-60-3 [28]
17 27.441 (−)-Norbornenone C7H8O 1.06 57.5 ND 16620-79-4 [29]
18 27.459 1,2,3,6-Tetramethylbicyclo[2.2.2] octa-2,5-diene C12H18 1.68 58.5 ND 62338-43-6 [30]
19 27.486 2-Methoxy-4-methyl-1-(1-methylethyl)benzene C11H16O ND 0.55 60.9 1076-56-8 [30]
20 27.486 3,7-Guaiadiene C15H24 9.57 75.7 ND 6754-04-7 [31]
21 27.497 Eudesma-4(14),11-diene C15H24 5.34 72.6 5.38 70.2 17066-67-0 [30]
22 27.500 1-Heptanal C7H14O ND 1.74 57.9 111-71-7 [24]
23 27.507 1-Adamantylethanol C12H20O ND 3.66 61.4 6240-11-5 [32]
24 27.519 2-Phenylacetamide C8H9NO ND 6.32 64.3 103-81-1 [33]
25 27.674 Eudesma-3,7(11)-diene C15H24 5.57 80.6 4.36 79.6 6813-21-4 [34]
26 27.708 Caryophyllene C15H24 0.57 61.9 ND 87-44-5 [30]
27 27.721 β-Himachalene C15H24 ND 0.19 61.4 1461-03-6 [30]
28 27.723 Isolongifolene C15H24 4.33 81.3 3.04 75.9 1135-66-6 [35]
29 27.732 β-Eudesmol C15H26O ND 0.77 54.3 473-15-4 [36]
30 27.738 trans-2-Heptenal C7H12O ND 0.21 61.8 18829-55-5 [37]
31 27.756 (9E,12E)-9,12-Octadecadienoic acid methylester C19H34O2 ND 0.41 76.8 2566-97-4 [24]
32 28.089 γ-Gurjunene C15H24 1.31 95 4.37 94.6 22567-17-5 [38]
33 28.297 Aromadendrene C15H24 3.23 91.1 3.29 91.9 489-39-4 [7]
34 29.978 β-Vatirenene C15H22 0.37 78.5 0.35 77.4 27840-40-0 [7]
35 31.173 Atractylone C15H20O 41.92 95 23.77 95 6989-21-5 [39]
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Table 1. Cont.

No. Retention
(min)

Compounds Molecular
Formula

EOs of CA EOs of BA
CAS No. Reference

Area (%) Similarity Area (%) Similarity

36 31.239 (Z)-3-decen-1-ol C10H20O ND 8.99 78.2 10340-22-4 [30]
37 31.514 Agarospirol C15H26O ND 6.25 77.9 1460-73-7 [40]
38 31.559 β-Elemene C15H24 0.25 79 ND 515-13-9 [41]

39 31.616 4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]
undec-4-ene C15H24 ND 0.16 80.3 13877-93-5 [42]

40 32.066 10S,11S-Himachala-3(12),4-diene C15H24 1.54 94.3 1.38 94.4 60909-28-6 [43]
41 32.611 Dehydroaromadendrene C15H22 0.29 81.5 0.24 83.1 698388-95-3 [30]
42 33.039 4,5-Dehydroisolongifolene C15H22 ND 0.45 79.5 1246777-02-5 [36]
43 33.072 Aristolone C15H22O 2.69 87.1 3.58 82.7 6831-17-0 [44]
44 33.283 3,7,11-Trimethyl-dodeca-2,4,6,10-tetraenal C15H22O 0.34 78.2 0.28 81.2 13832-89-8 [45]
45 33.865 Spathulenol C15H24O 0.34 76.7 ND 6750-60-3 [7]

46 33.874 3,4,7,8-Tetrahydro-8,8,9,9-tetramethyl-2H-2,
4a-methanonaphthalene C15H22 ND 0.25 77.9 67517-14-0 [46]

47 36.250 Velleral C15H20O2 1.02 85.3 0.70 84.2 50656-61-6 [47]
48 37.741 α-Curcumene C15H22 3.65 89.2 3.95 88.8 644-30-4 [7]
49 39.958 Procerin C15H18O2 0.83 72.3 0.67 74.2 552-96-5 [48]
50 40.439 8,9-dehydro-9-formyl-Cycloisolongifolene C16H22O 0.31 69 0.25 68.8 1206188-76-2 [7]

51 41.022 3a,5,6,7,8,8a,9,9a-Octahydro-5,8a-dimethyl-3-
methylenenaphtho[2-b]furan-2(3H)-one C15H20O2 0.72 89.8 0.36 89.4 80367-94-8 [48]

52 41.861
1,2,3,3a,4,5-Hexahydro-1,1,4,4-tetramethyl-2,
3b-methano-3bH-cyclopenta[1,3]cyclopropa

[1,2]benzene-6-carboxaldehyde
C16H22O 0.23 68.7 0.13 67.9 59820-24-5 [48]

Total 98.44 98.02

* ND = Not Detected.
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2.2. Antitumor Activity of Essential Oil from A. macrocephala

According to the results of in vitro cytotoxicity experiments, SPSS statistical software was used to
treat the cell proliferation inhibition rate data, and IC50 values of HepG2, MCG803, and HCT-116 cells
were inhibited by atractylone, the EOs of CA, and the EOs of BA. As shown in Figure 3, the atractylone
inhibited the proliferation of HepG2 and HCT-116 cells with lower IC50 values than the EOs of CA and
the EOs of BA; the EOs of CA inhibited the proliferation of HepG2 cells with lower IC50 values than
the EOs of BA. It is speculated that atractylone has strong antitumor activity in HepG2 and HCT-116
cells, and EOs of BA show weaker antitumor effect than the EOs of CA.
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2.3. Antiviral Activity of Essential Oil from A. macrocephala

In order to confirm the possible activity of A. macrocephala for antiviral activity in traditional
Chinese medicine, the EOs were evaluated for its cytotoxicity and inhibition against the influenza virus
H3N2 in vitro by complete cytopathic effect (CPE) inhibition rate assay, with ribavirin as the positive
control. Ribavirin had good virucidal activity with TC50 value of 14.72 µg·mL−1 and no cytotoxicity at
25 µg·mL−1. The IC50 of atractylone, the EOs of CA and BA were all unmeasurable, but CPE inhibition
H3N2 rates of EOs of CA were 25% at the concentration of 6.25 µg·mL−1, suggesting that it can partially
inhibit the production of CPE of H3N2 influenza virus; the inhibition rate is <50%, suggesting that its
anti-H3N2 influenza virus has limited effect. The atractylone and the EOs of BA showed no effects on
the H3N2 influenza virus.

2.4. Anti-Inflammatory Activity of EOs from A. macrocephala

The inhibitors of NO production in macrophages via lipopolysaccharide (LPS) stimulation are
considered as anti-inflammatory agents. We first investigated different concentrations of EOs of CA,
EOs of BA and atractylone on the viability of ANA-1 cells by the thiazolyl blue tetrazolium bromide
(MTT) method. As shown in Figure 4A, the administration of EOs of CA, EOs of BA and atractylone at
50 µg·mL−1 does not affect the cell activity state.

Then we investigated the NO inhibitory effects of different concentrations of LPS, dexamethasone
(DEX), EOs of CA, EOs of BA and atractylone on lipopolysaccharide (LPS)-activated ANA-1 cells.
As shown in Figure 4B, DMSO at the concentrations of 1:2500 has an inhibitory effect on NO secreted by
cells. Compared with the normal group, the cells secreted a large amount of NO after LPS stimulation,
and the content of NO secreted by the positive drug DEX decreased significantly. The DEX, EOs of CA,
EOs of BA, and atractylone can significantly reduce the secretion of the NO content after stimulation.
Therefore, it is believed that the EOs of CA, EOs of BA, and atractylone have anti-inflammatory activity.
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LPS-activated ANA-1 cells (n = 3). cell: blank control; DMSO: DMSO at the concentrations of 1:2500;
LPS: LPS control; DEX: positive control of DEX at 10 µg·mL−1; EOs of CA, EOs of BA and atractylone:
EOs of CA, EOs of BA and atractylone at 50 µg·mL−1 respectively; ***: p < 0.001 vs. LPS.

3. Discussion

A. macrocephala Koidz. produced with two different processing methods, CA and BA, are
commonly used in Chinese herbal medicine pieces. Previous literature studies have shown that frying
with bran can reduce the dryness of the drug and improve its spleen tonifying activity [49]. EOs
are plant-derived aromatic compounds that have a wide range of biological activities, but they act
slowly, and they are usually unstable under light or heat, difficult to extract, and so on [50]. Based on
this, we used GC/MS to study the EOs components of CA and BA. We found that the dryness nature
may be related to the content of EOs, and also to the addition, no detection, or conversion of other
compounds. The postoperative abortion may be related to 2-Phenylacetamide (6.32%), which has
estrogenic activities [51] according to reports of A. macrocephala after bran-processed and does not exist
in the EOs of CA.

The results of antitumor activity studies showed that the EOs of CA showed better activity in
gastric cancer, intestinal cancer, and liver cancer cells. We studied the EOs components of CA and BA,
and found that β-elemene and 3,7-guaiadiene are unique ingredients of the EOs of CA. β-elemene
reduced cell viability and induced apoptosis in HCT116 and HT29 cells and caused cell cycle arrest at
the G2 phase and induced apoptosis of SGC-7901 cells through a mitochondrial-dependent apoptotic
pathway [52,53]. The EOs in Phoebe hui Cheng ex Yang exhibited significant antitumor properties,
with 3,7-guaiadiene as the main constituent in the EOs [54], the content of 3,7-guaiadiene in the EOs of
CA is 9.57%. So we can speculate that the antitumor activity of the EOs of CA is better than that of the
EOs of BA, and the experimental results showed the same conclusion.

Anti-inflammatory experiments showed that EOs of BA has better activity. Some scholars have
found that the chemical composition of EOs extracted from Brazilian propolis exhibited antibacterial
activity, with γ-elemene as the main component [55]. The EOs isolated by the microwave-ultrasonic
apparatus from Teucrium pruinosum leaves which contains agarospirol, the most abundant component
(45.53%), can be a suitable candidate for use as a novel anticancer, anti-inflammatory, and antioxidant
medication [56]; the content of agarospirol is 6.25% in the EOs of BA. Therefore, we believe that the
anti-inflammatory ability of the EOs of BA may be stronger than that of the EOs of CA, and the
experimental conclusion is reasonable.
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Atractylone, the main compound in both EOs of CA and BA, can reduce allergic rhinitis (AR)
clinical symptoms and biomarkers including rub scores, total IgE, histamine, prostaglandin D2,
thymic stromal lymphopoietin, interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-13, tumor necrosis factor-α,
cyclooxygenase-2, intercellular adhesion molecule-1, and macrophage inflammatory protein-2, which
suggested that atractylone is a potential therapeutic agent for AR, so atractylone has a good immune
and anti-inflammatory activity [57].

NO as a free radical in the body, is associated with the occurrence of various intestinal diseases such
as intestinal inflammation and increased intestinal mucosal permeability [58]. Literature research shows
that reduction of tight proteins such as claudins (Cldn), Zona occludin-1 (ZO1), and occludin (Ocln) can
cause inflammatory bowel disease (IBD) [58–60]. The experimental results of this study showed that
the EOs of A. macrocephala and atractylone can significantly reduce the NO content secreted by LPS after
ANA-1 cells stimulation, and have good anti-inflammatory activity, but little research has been done
on its anti-inflammatory mechanism. It is believed that A. macrocephala is a spleen-requiring herb in
Chinese medicine. These results revealed that the EOs of A. macrocephala has a good inhibitory effect on
the gastrointestinal tumor cells. Based on this, we intend to design a follow-up experiment to explore
the anti-inflammatory effect of the EOs on gastrointestinal inflammation and its anti-inflammatory
mechanism. The preliminary results showed that atractylone reduces the intestinal inflammatory
response, suggesting that its anti-inflammatory mechanism may be related to Cldn, ZO1, and Ocln in
cells, and the specific anti-inflammatory mechanism needs further experimental verification.

4. Materials and Methods

4.1. Plant Materialsand Chemicals

A. macrocephala Koidz. were purchased from Pan’an District, Jinhua City, Zhejiang Province
at the beginning of 2019, and were identified by Jun-Song Li, the senior experimenter of Teaching
and Experimental Center of Shanghai University of Traditional Chinese Medicine. Preparation of
crude A. macrocephala: After harvesting fresh medicinal herbs, wash, evenly slice, and dry at room
temperature. Preparation of bran-processed A. macrocephala: The crude A. macrocephala were prepared
according to the 2015 edition of the Pharmacopoeia of the People’s Republic of China. According to
the ratio of crude A. macrocephala: sprinkle the candied bran (10:1, g/g) into a hot pot, add the crude
A. macrocephala when it is smoked, fry until yellow brown, and escape the aroma, remove, sieve to
remove the bran.

MDCK, ANA-1, and influenza viruses H3N2 was kindly provided by Teaching Center of
Pharmaceutical Sciences, School of Pharmacy, Fudan University (Shanghai, China). HepG2, MCG803,
and HCT-116 cells were provided by Dalian Mei-lun Biotechnology Co., Ltd. (Liaoning, China).

Atractylone (HPLC ≥ 95%) was purchased from Shanghai Xi-Jian Biological Technology Co.,
Ltd. (Shanghai, China); Ethyl acetate (Analytical Reagent) was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China); Fetal bovine serum (FBS), dulbecco’s modified eagle medium
(DMEM), DMSO, LPS, DEX, Cell Counting Kit-8 (CCK-8) and MTT was purchased from Sigma-aldrich
Chemical Reagent Co., Ltd. (Shanghai, China).

4.2. Extraction Methods

The crude and bran-processed A. macrocephala were smashed through the No. 2 sieve, weighed
100 g, placed in a 1000 mL round bottom flask, and 500 mL of water and several glass beads were
added. After shaking and mixing well, they were connected with the essential oil tester and the reflux
condenser, filled the water at the upper end of the condensation tube till the graduated portion of the
essential oil tester and overflowed into the flask. The electric jacket was heated slowly to boiling and
was kept for about 5 h until the amount of oil in the measuring device no longer increased; then stop
heating, put it for a while, open the piston at the lower end of the measuring device, slowly release the
water to the upper end of the oil layer up to 5 mm above the 0 line. Leave it for more than 1 h, then
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turn on the piston to lower the oil layer until its upper end was flush with the scale 0 line, read the
volatile oil amount, and calculate the content (%, v/w) of the volatile oil in the test sample.

4.3. Chemical Components Analysis by GC/MS

GC/MS analysis of the test solution was performed on a gas chromatograph (HP-7890, Agilent
Technologies, Santa Clara, CA, USA) coupled with a mass selective detector (HP-5977, Agilent
Technologies) equipped with an HP-5MS fused silica column (30 m × 0.25 mm, 0.25 µm). The oven
temperature was kept at 60 ◦C for 5 min, then warmed to 250 ◦C at 4 ◦C/min and held at this temperature
for 5 min. A splitless injection was performed with helium gas at a flow rate of 0.9 mL/min as the
carrier gas. The spectrometer uses an electronic shock (EI) mode with a scan range of 40 to 400 m/z, an
ionization energy of 70 eV, and a scan rate of 0.2 s. The transmission line temperature and ion source
temperature were 280 ◦C and 230 ◦C, respectively [30]. For analysis purpose, EOs of CA, EOs of BA
and atractylone were dissolved in ethyl acetate.

4.4. Effects on Liver Cancer, Gastric Cancer, and Intestinal Cancer Cells

Logarithmic growth phase cells were seeded in 96-well culture plates at a cell number of
1 × 104 cells·mL−1. After the cell density reached 75%, different concentrations of EOs were added
and allowed to act for 24 h. Then add CCK-8 to each well, react at 37 ◦C for 24 h, discard the supernatant
and add 100 µL of DMSO per well, shake well, and measure the optical density OD of each well at 450 nm.

4.5. Anti-H3N2 Virucidal Activity

4.5.1. Sample Cytotoxicity Test

MDCK cells were seeded onto 96-well culture plates and cultured for 24 h. After forming cell
monolayers, different concentrations of sample dilutions were added. After 72 h of incubation, cell
morphology changes were observed under microscope and cell viability was determined by MTT assay.

4.5.2. In vitro Antiviral Virus Test

MDCK cells were seeded onto 96-well culture plates and cultured for 24 h to form a cell monolayer.
The cells were infected with influenza virus solution for 2 h, and then replaced with the maximum
non-toxic concentration (concentration of cell activity ≥ 90%). After the sample was diluted for
72 h, the CPE was observed under a microscope to determine the inhibitory effect of the sample on
influenza virus.

4.6. Anti-Inflammatory Activity

4.6.1. MTT Method to Investigate the Effect of Test Drugs on Cell Viability

A single cell suspension was prepared, 1000 rpm for 5 min, and the supernatant was discarded.
The cells were resuspended in 1 mL of 10% FBS medium, counted with the gentian violet [61], and
the cell concentration was adjusted to 2 × 106 cells·mL−1; evenly inoculate the cells in a 96-well cell
culture plate, add 100 µL of the cell suspension to each well, and incubate for 24 h at 37 ◦C in a 5% CO2

saturated humidity incubator. After incubation, the cells were infected with different concentrations
of EOs of CA, EOs of BA and atractylone (50 µg·mL−1). After co-culture for 24 h, add 50 µL of MTT
solution at 5 mg·mL−1 to each well, shake well, continue to culture for 4 h, carefully aspirate the
supernatant, add 200 µL of DMSO, shake well, and measure the absorbance of each well at 570 nm.
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4.6.2. Inhibition of ANA-1 Cell Inflammatory Model Induced by LPS Stimulation

NO production was assessed indirectly by the quantification of nitrite and nitrate according to the
Griess reaction [62,63]. DEX was selected as a positive control [64]. Each tested sample was dissolved
in DMSO, and diluted with fresh FBS-free DMEM media to final concentration with DMSO (1:2500).
The ANA-1 macrophages were seeded in 96-well plates (2 × 106 cells·mL−1) and co-incubated with
samples EOs of CA, EOs of BA and atractylone (50 µg·mL−1) and LPS (0.25 µg·mL−1). After incubation
at 37 ◦C for 24 h, the culture supernatant was mixed with 50 µL Griess Reagent to determine the NO
production. Absorbance was measured at 570 nm using a microtiter plate reader.

5. Conclusions

The EOs of BA can partially inhibit the production of CPE of H3N2 influenza virus; the order
of antitumor activity is atractylone, the EOs of CA, and the EOs of BA; the DEX, EOs of CA, EOs of
BA and atractylone can significantly reduce the secretion of the NO content after stimulation, so it is
believed that the EOs of CA, EOs of BA and atractylone have anti-inflammatory activity.
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