Supporting Information

RNA Secondary Structure-Based Design of Antisense Peptide Nucleic Acids for Modulating Disease-Associated Aberrant Tau pre-mRNA Alternative Splicing

Alan Ann Lerk Ong ^{1,2,+}, Jiazi Tan ^{2,+}, Malini Bhadra ³, Clément Dezanet ⁴, Kiran M. Patil ², Mei Sian Chong ⁵, Ryszard Kierzek ⁶, Jean-Luc Decout ⁴, Xavier Roca ³ and Gang Chen ^{2,*}

- ¹ NTU Institute for Health Technologies (HeathTech NTU), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- ² Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- ³ School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
- ⁴ University Grenoble Alpes/CNRS, Département de Pharmacochimie Moléculaire, ICMG FR 2607, UMR 5063, 470 Rue de la Chimie, F-38041 Grenoble, France
- ⁵ Geriatic Education & Research Institute, 2 Yishun Central 2, Singapore 768024, Singapore
- ⁶ Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- * Correspondence: RNACHEN@ntu.edu.sg; Tel: +65 6592 2549; Fax: +65 6791 1961
- ⁺ These authors contributed equally to this work.

Table of Contents

1.	Table S1 and Figure S1: MALDI-TOF data	S3-S8
2.	Figures S2 and S3: Nondenaturing PAGE results	S9-S10
3.	Figure S4: Real-time PCR data	S11-S12

2. MALDI-TOF of PNA oligomers

PNA	Sequence	Molecular Formula	Calculat ed MW	Observed MW
asPNA(+8/+18)	NH2-Lys-ACGTGTGAAGG-CONH2	C126H172N72O33	3211.3	3212.5
asPNA(-8/+2)	NH2-Lys-ACACTGCCGC-CONH2	C111H146N60O30	2799.2	2801.3
asPNA(-8/+7)	NH2-Lys-TACTCACACTGCCGC-CONH2	C164H213N85O46	4108.7	4109.7
asPNA(-9/+3)	NH2-Lys-CACACTGCCGCC-CONH2	C131H172N70O36	3301.4	3302.4
asPNA(-9/+4)	NH2-Lys-TCACACTGCCGCC-CONH2	C142H186N74O40	3567.5	3568.6
asPNA(+8/+18)- Nea	NH2-Nea-Lys-ACGTGTGAAGG-CONH2	C148H203N77O41	3714.6	3717.2
asPNA(-8/+2)-Nea	NH2-Nea-Lys-ACACTGCCGC-CONH2	C133H187N65O38	3302.5	3303.5
asPNA(-8/+7)-Nea	NH2-Nea-Lys-TACTCACACTGCCGC- CONH2	C186H254N90O54	4612.0	4616.9
asPNA(-9/+3)-Nea	NH2-Nea-Lys-CACACTGCCGCC-CONH2	C153H213N75O44	3804.7	3805.7
asPNA(-9/+4)-Nea	NH2-Nea-Lys-TCACACTGCCGCC-CONH2	C164H227N79O48	4070.8	4071.9

Table S1. Sequences and MALDI-TOF data for synthesized PNAs and PNA-neamine conjugates.

Figure S1. MALDI-TOF data of PNAs and PNA-neamine conjugates studied in this paper.

Figure S2. *K*_d determination by nondenaturing PAGE for various PNAs binding to tau pre-mRNA hairpins. The fraction of RNA-PNA complex formation was calculated based on the band intensities. The data were fit to the equation: $Y = Y_0 + (B/2/R_0)(R_0 + X + K_d - ((R_0 + X + K_d)^2 - 4R_0X)^{1/2})$ where R₀ is the RNA hairpin concentration (5 nM). Y₀ and B are the minimum and maximum fraction of triplex formation respectively. X is the total PNA concentration and *K*_d is the dissociation constant. For panels a, c-e, the points at the highest concentrations (50, 100 and 200 nM) are removed to avoid over fitting of the high-concentration base lines.

Figure S3. Nondenaturing PAGE assay for asPNA binding to DNA duplex. **(a-c)** Structures of asPNA(-8/+7), the model tau wild-type DNA duplex (tau-wt-dsDNA) encoding tau pre-mRNA exon 10 5'ss site hairpin, and potential invasion complex formed between PNA and DNA duplex. **(d)** Nondenaturing PAGE for asPNA(-8/+7) binding to tau-wt-dsDNA. The incubation buffer contains 200 mM NaCl, 0.5 mM EDTA, 20 mM HEPES, pH 7.5. The loaded samples contain 1 μ M of DNA hairpin in 20 μ L. The PNA concentrations in lanes from left to right are: 0, 0.2, 0.4, 1, 1.6, 2, 4, 10, 16, 20, 28, and 50 μ M. The gel result suggests that asPNA(-8/+7) does not bind to DNA duplex at this condition.

Figure S4: Real-time PCR data showing the transcript levels of endogenous tau and minigenes. (a) Co-transfection of +19G minigene with asPNAs (method A). (b) Co-transfection of minigene +14U and asPNAs (method A). (c) Transfection of minigene +19G, followed by the application of asPNA-neamine conjugates (method B). (d)

Transfection of minigene +14U, followed by the application of asPNA-neamine conjugates (method B). The experiments were performed in triplicates and the data are shown as mean \pm standard deviation. Student's t-test was performed with adjusted P-values using Bonferroni correction [P = 0.0125 for (a), (b), (d); P = 0.025 for (c)].