
molecules

Article

Cubic Liquid Crystalline Nanostructures Involving
Catalase and Curcumin: BioSAXS Study and Catalase
Peroxidatic Function after Cubosomal Nanoparticle
Treatment of Differentiated SH-SY5Y Cells

Miora Rakotoarisoa 1, Borislav Angelov 2, Shirly Espinoza 2, Krishna Khakurel 2,
Thomas Bizien 3 and Angelina Angelova 1,*

1 Institut Galien Paris-Sud, CNRS UMR 8612, Univ. Paris-Sud, Université Paris-Saclay, LabEx LERMIT,
F-92290 Châtenay-Malabry CEDEX, France

2 Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Na Slovance 2,
CZ-18221 Prague, Czech Republic

3 Synchrotron SOLEIL, l’Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette CEDEX, France
* Correspondence: angelina.angelova@u-psud.fr; Tel.: +33-1-46-83-53-12

Academic Editor: Ashok Kakkar
Received: 31 July 2019; Accepted: 20 August 2019; Published: 22 August 2019

����������
�������

Abstract: The development of nanomedicines for the treatment of neurodegenerative disorders
demands innovative nanoarchitectures for combined loading of multiple neuroprotective compounds.
We report dual-drug loaded monoolein-based liquid crystalline architectures designed for the
encapsulation of a therapeutic protein and a small molecule antioxidant. Catalase (CAT) is chosen
as a metalloprotein, which provides enzymatic defense against oxidative stress caused by reactive
oxygen species (ROS) such as hydrogen peroxide (H2O2). Curcumin (CU), solubilized in fish
oil, is co-encapsulated as a chosen drug with multiple therapeutic activities, which may favor
neuro-regeneration. The prepared self-assembled biomolecular nanoarchitectures are characterized
by biological synchrotron small-angle X-ray scattering (BioSAXS) at multiple compositions of the
lipid/co-lipid/water phase diagram. Constant fractions of curcumin (an antioxidant) and a PEGylated
agent (TPEG1000) are included with regard to the lipid fraction. Stable cubosome architectures are
obtained for several ratios of the lipid ingredients monoolein (MO) and fish oil (FO). The impact of
catalase on the structural organization of the cubosome nanocarriers is revealed by the variations
of the cubic lattice parameters deduced by BioSAXS. The outcome of the cellular uptake of the
dual drug-loaded nanocarriers is assessed by performing a bioassay of catalase peroxidatic activity
in lysates of nanoparticle-treated differentiated SH-SY5Y human cells. The obtained results reveal
the neuroprotective potential of the in vitro studied cubosomes in terms of enhanced peroxidatic
activity of the catalase enzyme, which enables the inhibition of H2O2 accumulation in degenerating
neuronal cells.

Keywords: liquid crystalline nanoparticles; cubosome; catalase; curcumin; fish oil; BioSAXS;
peroxidatic activity of catalase

1. Introduction

Self-assembled lipid cubic phase (LCP) architectures comprise bilayer lipid membranes with
a three-dimensional (3D) crystalline packing order and periodic networks of aqueous channels (Figure 1) [1–6].
The amphiphilic nature of the lyotropic liquid crystalline phases and nanoparticles (LCNPs) makes them
suitable for the embedding of either lipophilic or hydrophilic guest compounds [7–19]. It has been
estimated that LCPs have a large surface area of lipid/water interfaces, which is of the order of 400 m2/g [7].
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Compared to liposome carriers, lipid-based cubosomes, hexosomes and spongosomes involve multiple
internal compartments, which represent a structural advantage enabling an enhanced encapsulation
efficacy [9–11,14–19]. The entrapment of biomolecules of various dimensions and hydrophilicities is
achievable in such nanocarriers as well as their sustained release [10,12]. For example, LCPs have been
used to encapsulate proteins of different concentrations and sizes from Cyt C (12 kDa) to fibrinogen
(340 kDa) [8,11,20–27]. High encapsulation efficacy has been reported for hydrophilic guest macromolecules
such as brain-derived neurotrophic factor (BDNF), ovalbulmin and protein vaccines [11,20–24]. Soluble,
peripheral, and integral membrane proteins have been studied in LCPs in relation to in meso protein
crystallization, biosensor development involving encapsulated enzymes, and drug-delivery systems [21–28].
LCP-derived nanocarriers are increasingly used in a range of applications employing lipophilic drugs
and theranostic agents [14–19]. The bioavailability of anti-inflammatory (flurbiprofen) [14], antiretroviral
(efavirenz) [15], and anticancer (paclitaxel) [16] agents, as well as of antioxidants such as curcumin [17,19],
has been considerably improved thanks to their protection and transport by the host cubic liquid
crystalline phases [18].
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Regarding the lipid polymorphism, liquid crystalline phases have been formed by the self-assembly
of hydrated mixtures of lyotropic lipids, co-lipids (oils or surfactants), and an aqueous phase, which may
contain dissolved biomolecules (e.g., proteins, peptides or nucleic acids) [1–7,18–27,29–36]. Hydrated
non-lamellar lipids (such as monoolein (MO)) can self-assemble into inverted bicontinuous cubic
phases, bicontinuous sponge or inverted hexagonal phases depending on the experimental conditions
and the applied stimuli [4,5,18,25,29–32]. Different types of bicontinuous cubic phases have been
observed in lipid membranous systems [3–7,25,29]. Primitive (also referred to as Im3m/QIIP), double
diamond (Pn3m/QIID), and gyroid (Ia3d/QIIG) cubic phases (Figure 1) are the most common ones
for lyotropic monoglycerides. Cubosome nanoparticles are fabricated upon dispersion of the bulk
cubic liquid crystalline phases in excess aqueous medium [8,9,13,16–20,24]. The cubosome structure
is sensitive to the incorporation of additives such as therapeutic molecules and diagnostic probes
required for monitoring of the biomedical response to active targeting [9,16,18,21,35].

It is believed that cubosomal nanostructures co-loaded with a therapeutic protein and a natural
antioxidant are safe and provide neuroprotection against oxidative stress and neuronal damage [37].
Currently, nanoscale materials are attracting increasing interest for therapeutic applications in the field
of neurological disorders [37–41]. In our recent study, we showed that cubosome lipid nanoparticles
loaded with curcumin (CU) and fish oil (FO) have neuroprotective potential against the accumulation
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of reactive oxygen species (ROS) and H2O2-induced cell death [19]. Here, we combine curcumin and
a therapeutic antioxidant enzyme in such advanced nanostructured lipid carriers.

Catalase (a tetrameric protein formed by 60-kDa monomer units) is a metalloenzyme that catalyzes
the dismutation of H2O2 (a harmful oxidizing agent) to oxygen and water [42–46]. Catalase (CAT)
is expressed in all major bodily organs (especially in the liver and kidneys) and in erythrocytes,
where it plays an essential role in cell defense against oxidative stress [47–50]. Polymorphism of the
catalase gene is associated with a number of diseases such as diabetes, Alzheimer’s disease, cancer,
hypertension, vitiligo, and acatalasemia [51–54]. It should be emphasized that catalase undergoes rapid
elimination from the bloodstream and is characterized by poor intracellular delivery. Thus, catalase
exhibits a short half-life and poor operational stability and reusability as an enzyme, which limits its
potential therapeutic applications [55–60]. The unstable biomacromolecule can be immobilized in order
to increase its stability and improve its enzymatic performance, solubility and specificity [61–67].
Catalase has been immobilized on solid supports from natural polymers (chitosan, gelatin, etc.),
synthetic polymers (styrene, methyl methacrylate, acrylamide, etc.), and inorganic particles (calcium
carbonate, silica, gold, etc.) [61–67]. This helped to overcome the enzyme’s degradation or deactivation.
Liposomes have been used for intravenous catalase delivery [63].

The present work focuses on the design and characterization of advanced self-assembled liquid
crystalline nanostructures of catalase and curcumin in view of a prospective combination therapy
for neurodegenerative disorders. Self-assembly properties are investigated by biological synchrotron
small-angle X-ray scattering (BioSAXS), which is a high-throughput technique providing valuable
structural data from weakly scattering biological solutions in real time [6,35,68,69]. BioSAXS can detect
and determine the internal nanostructure, the shape and the structural evolution of various kinds of
protein, peptide and lipid-protein assemblies [11,22,32,68–70]. We study mixed lipid (MO)/protein
(catalase) self-assembly into nanostructures in the presence of a small molecule antioxidant (curcumin).
Our first aim is to determine via BioSAXS the structural effect of the catalase enzyme’s inclusion into
cubic liquid crystalline assemblies, i.e., catalase-associated cubosomal nanostructures. The second aim
of the work is to evaluate the catalase activity after the treatment of neuronally derived SH-SY5Y cells
with catalase-associated cubosome nanoparticles.

2. Results

2.1. Structural Investigation of Liquid Crystalline Assemblies by Synchrotron BioSAXS

2.1.1. Design and Production of Self-Assembled Nanocarriers for the Loading of Catalase and Curcumin

The compositions of the investigated self-assembled MO/TPEG1000/FO/CU/CAT systems are
chosen from the phase diagram presented in Figure 2. Five dilution lines (DL), denoted as DL 10:90, DL
20:80, DL 30:70, DL 40:60, and DL 60:40 (wt%/wt%), are defined in order to characterize the lyotropic
behavior of the multicomponent amphiphilic mixtures of therapeutic significance. The water-rich
region corresponds to dispersions of nanocarriers in excess aqueous medium. The lipid-rich region
corresponds to bulk liquid crystalline assemblies (Figure 2).
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Figure 2. Phase diagram showing the dilution lines for the preparation of nanocarriers composed of
monoolein (MO), TPEG1000 amphiphile, fish oil (FO), curcumin (CU), and water. The MO/TPEG1000 and
FO/MO weight ratios are constant (80:20 and 88:12, respectively). The water-rich region is represented
by a yellow triangle. The aqueous phase contains catalase (CAT) in the CAT-loaded formulations.
The black points indicate the compositions for which experimental biological synchrotron small-angle
X-ray scattering (BioSAXS) data are shown in Section 2.1.3 in the sequence from more concentrated to
more diluted assemblies: samples C195, C196, C197 and C199 on the dilution line DL 10:90; samples
C285, C286, C287 and C288 on the dilution line DL 20:80; samples C376, C377, C378 and C379 on the
dilution line DL 30:70; and samples C466, C467, C468 and C469 on the dilution line DL 40:60.

2.1.2. Liquid Crystalline Nanostructure Identification in MO/TPEG1000/FO/CU/CAT Systems by BioSAXS

BioSAXS patterns were recorded at room temperature (22 ◦C) for all amphiphilic compositions
indicated in the diagram in Figure 2. Representative BioSAXS plots revealing the presence or
absence of long-range periodicities in the MO/TPEG1000/FO/CU three-dimensional (3D) assemblies are
shown in Figure 3. The performed structural investigation established that the blank MO/TPEG1000

nanocarriers display a long-range 3D periodicity (Figure 3a). The latter was identified by a set of Bragg
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14. These Bragg
peaks are assigned to the (110), (111), (200), (211), (220), (221), (310), (222), and (321) reflections of
a double diamond cubic lattice QIID (Pn3m space group). Similarly to pure monoolein, which forms
a diamond-type (Pn3m) cubic phase in the excess water phase [25,30,39], the lyotropic MO/TPEG1000

liquid crystalline assemblies yielded cubic structures under the investigated hydration conditions.
The self-assembled MO-TPEG1000-FO-CU-CAT mixtures (see Sections 4.2 and 4.3 of Methods)

displayed two kinds of mesophase structures with long-range 3D periodicities depending on the
amount of the included oil (FO) and water. Bicontinuous double diamond cubic Pn3m (Figure 3b)
and primitive cubic Im3m phases (Figure 3c) were identified as well as a cubic intermediate from the
structural transition to a sponge phase at 22 ◦C (Figure 3d). Figure 3c shows the set of Bragg peaks
with q-vector positions spaced in the ratio
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18. These peaks are
assigned to (110), (200), (211), (220), (310), (222), (321), (400) and (330) reflections of a primitive cubic
lattice QIIP (Im3m space group). The increase in the incorporated oil amount in the lipid membrane led
to a more weakly ordered cubic structure, which coexisted with sponge-type membranes. The resulting
pattern is attributed to an intermediate mesophase state owing to the composition-trigerred structural
transition (Figure 3d) [2,39].
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diamond cubic lattice (Pn3m space group); (b) MO/TPEG1000/FO/CU/CAT mixture: the dashed lines 
consecutively denote the (110), (111), (200), (211), (220), (221), (310), (222) and (321) reflections of a 
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protein molecules; (c) Pattern of a MO/TPEG1000/FO/CU/CAT mixture with indexed (110), (200), 
(211), (220), (310), (222), (321), (400) and (330) reflections of a primitive cubic lattice (Im3m space 
group); and (d) Pattern lacking well-defined Bragg reflections and corresponding to a cubic 
intermediate formed by the MO/TPEG1000/FO/CU/CAT mixture. The sample list is given in section 
4.2. 

2.1.3. Characterization of Liquid Crystalline Bulk Structures by BioSAXS 

Liquid crystalline MO/TPEG1000/FO/CU assemblies were prepared using four different ratios, 
10:90, 20:80, 30:70 and 40:60 (wt%/wt%), for the fish oil/monoolein mixtures hydrated by a catalase 

Figure 3. Representative BioSAXS patterns of MO/TPEG1000 and MO/TPEG1000/FO/CU self-assembled
mixtures hydrated in a phosphate buffer or in catalase (CAT) solutions at 22 ◦C. The recorded Bragg
peaks are indicative of the formation of periodic liquid crystalline phases (a–c): (a) MO/TPEG1000 lipid
mixture hydrated in 0.01 M of phosphate buffer (pH 7.0): the sequence of dashed lines indexes from
left to right the (110), (111), (200), (211), (220), (221), (310), (222) and (321) reflections of a diamond cubic
lattice (Pn3m space group); (b) MO/TPEG1000/FO/CU/CAT mixture: the dashed lines consecutively
denote the (110), (111), (200), (211), (220), (221), (310), (222) and (321) reflections of a Pn3m cubic structure,
which is preserved in the presence of encapsulated curcumin and catalase protein molecules; (c) Pattern
of a MO/TPEG1000/FO/CU/CAT mixture with indexed (110), (200), (211), (220), (310), (222), (321), (400)
and (330) reflections of a primitive cubic lattice (Im3m space group); and (d) Pattern lacking well-defined
Bragg reflections and corresponding to a cubic intermediate formed by the MO/TPEG1000/FO/CU/CAT
mixture. The sample list is given in Section 4.2.

2.1.3. Characterization of Liquid Crystalline Bulk Structures by BioSAXS

Liquid crystalline MO/TPEG1000/FO/CU assemblies were prepared using four different ratios,
10:90, 20:80, 30:70 and 40:60 (wt%/wt%), for the fish oil/monoolein mixtures hydrated by a catalase
solution (5 mg/mL) (see the compositions indicated in Figure 2 and Section 4.2. The performed BioSAXS
experiments were aimed at determining the lipid ratio corresponding to the highest fish oil content,
which conserves the cubic mesophase formation at room temperature (22 ◦C). Figure 4 presents the
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BioSAXS patterns characterizing the phase behavior at varying water contents along the dilution lines
defined in Figure 2. Three major cases were distinguished: (i) well-ordered lipid/protein assemblies of
inner cubic lattice symmetries, (ii) cubic mesophases displaying a coexistence of distinct nanodomains,
and (iii) cubic intermediates as precursors of a sponge-membrane phase, which is favored by the
increase in the fish oil (FO) content.
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Figure 4. BioSAXS patterns of MO/TPEG1000/FO/CU/CAT assemblies acquired at 22 ◦C along the
dilution lines (DL): (a) DL = 10:90; (b) DL = 20:80; (c) DL = 30:70; and (d) DL = 40:60 from Figure 2
(for the precise compositions see the points drawn in Figure 2). The structural phase behavior is
examined with samples prepared using a 5-mg/mL catalase solution.

Figure 4 shows that large domains of ordered cubic phase organization are formed by the
self-assembled mixtures C196, C197, and C199 along the dilution line DL = 10:90 (Figure 4a); C286
and C288 along the dilution line DL = 20:80 (Figure 4b); C376, C378, and C379 along the dilution
line DL = 30:70 (Figure 4c), and C469 at DL = 60:40 (Figure 4d). At variance, samples C287 at
DL = 20:80 (Figure 4b), C377 at DL = 30:70 (Figure 4c), and C466 at DL = 40:60 (Figure 4d) displayed
BioSAXS patterns of weakly ordered cubic phases and the onset of the formation of a sponge membrane
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phase. The mixtures C467 and C468 (obtained along the dilution line DL = 40:60) formed cubic
intermediates of the structural transition to a dominant sponge phase (Figure 4d, pattern C468).

The effect of the variation of the hydration level in the MO/TPEG1000/FO/CU/CAT systems
(Figure 4) pointed out that the structural phase behavior is dominated by a bicontinuous cubic phase
formation at fish oil/monoolein ratios of 10:90, 20:80, and 30:70 (wt%/wt%) for water contents between
60 wt% and 80 wt% (see the compositions in Section 4.2). At 90 wt% water content, stable bicontinuous
cubic phases were formed at fish oil/monoolein weight ratios from 10:90 to 30:70, and up to 40:60
(wt%/wt%). The MO/TPEG1000/FO/CU/CAT system formed a primitive cubic Im3m phase at 90 wt%
water content, whereas the bicontinuous cubic Pn3m phase was most stable at 60 wt% to 80 wt%
water contents.

In addition, the hydration of the lipid mixtures by the CAT protein solution at 50 wt% water
content (C195, C285) resulted in the formation of lamellar and sponge phases depending on the FO/MO
weight ratio (Figure 4a,b, respectively). An intermediate cubic phase domain preceded the induction
of a dominant sponge phase at a fish oil/monoolein ratio of 40:60 wt%/wt%. The determined internal
structures and lattice constants of the studied MO/TPEG1000/FO/CU/CAT self-assembled architectures
are shown in Table 1.

The unit lattice parameters of the cubic structures, a(Q), were calculated from the reciprocal slope
of the linear plots q versus (h2 + k2 + l2)1/2, where (hkl) are the Miller indices of the recorded Bragg
peaks (equation (1)).

q = (2π/a(Q)) (h2 + k2 + l2)1/2 (1)

The results for the structural parameters of the bulk cubic liquid crystalline structures are presented
in Table 1.

Table 1. Internal liquid crystalline structure types and lattice parameters of MO/TPEG1000/FO/CU/CAT
self-assembled architectures determined from BioSAXS analysis of the data shown in Figure 4.

Samples Liquid Crystalline Structures Lattice a(Q) (nm)

C196 Pn3m cubic 18.5
C197 Pn3m cubic 18.9
C199 Im3m cubic 21.7
C286 Pn3m cubic 20.0
C287 Cubic intermediate -
C288 Coexisting Pn3m cubic domains 20.0/22.7 a

C376 Cubic intermediate -
C377 Cubic intermediate -
C378 Pn3m cubic 20.7
C379 Im3m cubic 22.2
C466 Cubic intermediate -
C467 Cubic intermediate -
C468 Cubic intermediate—sponge -
C469 Pn3m cubic 17.5

a Coexistence of two cubic structures.

2.1.4. BioSAXS Characterization of Nanocarrier Dispersions

Aqueous dispersions of liquid crystalline nanocarriers were prepared at fish oil/monoolein
weight ratios of 0:100, 20:80, 40:60 and 60:40 (wt%/wt%) and a constant water content (95 wt%).
Catalase-free (i.e., blank) and catalase (CAT)-loaded nanocarriers were investigated by BioSAXS at the
same compositional proportions of the lipid ingredients (see Section 4.3 of Methods for the amphiphilic
compositions). This permitted the evaluation of the structural effect of the catalase association to the
lipid nanocarriers by small-angle X-ray scattering.

A synchrotron BioSAXS plot of a catalase solution is shown in Figure 5a for a protein concentration
of 5 mg/mL, which was employed for CAT entrapment in nanocarriers. The experimental curve shifts
with regard to that determined for non-interacting catalase tetramers (green plot). The estimated radius
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of gyration (Rg = 36.6 nm) appears to be nearly ten times larger than that of an isolated catalase tetramer
(Rg = 3.86 nm). This result suggests that the protein CAT forms oligomeric structures above a certain
solution concentration. Several proteins have a tendency to aggregate in aqueous medium. This is
an important problem in biotechnology and the pharmaceutical industry. Proteins in an aggregated
state generally do not have the same biological activity as proteins in a native state. The immobilization
of catalase is of significant interest for the enhancement of its stability and improving its enzymatic
performance. We interpreted the BioSAXS data about CAT aggregation as oligomers because the
formed aggregates do not have microscopic sizes. The results also suggest that CAT may show
a preference for interaction with the nanostructured lipid phase as the latter can provide interfaces of
different polarities and less hydrophilic compartments for embedding the protein.
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Figure 5. BioSAXS patterns of (a) catalase solution (5 mg/mL) in 0.01 M of phosphate buffer, and (b–d)
liquid crystalline nanoparticle dispersions obtained in the presence or absence of catalase (CAT) at
varying fish oil (FO)/monoolein (MO) ratios (wt%/wt%): (b) 20:80 (MO-FO-CU)1 vs. (MO-FO-CU-CAT)1;
(c) 40:60 (MO-FO-CU)2 vs. (MO-FO-CU-CAT)2; and (d) 60:40 (MO-FO-CU)3 vs. (MO-FO-CU-CAT)3.
The percentages of curcumin (CU) and TPEG1000 are constant with regards to MO and FO (see the
compositions in Section 4.3 of Methods Temperature is 22 ◦C.

Figure 5b–d shows the BioSAXS patterns of catalase-free and catalase-loaded nanoparticles
samples at three selected (MO-FO-CU) ratios (Section 4.3). Well-defined Bragg peaks of cubic liquid
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crystalline structures are detected at 22 ◦C both in the absence and in the presence of catalase
protein. Figure 5b demonstrates that the initial bicontinuous Pn3m cubic organization of the blank
nanocarriers (MO-FO-CU)1 is transformed into a primitive cubic Im3m structure upon addition
of CAT at a FO/MO ratio of 20:80 wt%/wt% in the formulation. In the absence of CAT loading,
the (MO-FO-CU)1 cubosome nanoparticles involved coexisting domains of the Pn3m space group
with two distinct cubic unit cells dimensions. The Pn3m unit lattice parameters estimated for these
cubosome particles are a1(Q) = 16.4 nm and a2(Q) = 20.0 nm, respectively (Table 2). The CAT-loaded
cubosome particles (MO-FO-CU-CAT)1 (Figure 5b) were characterized by the Im3m space group and
displayed a bigger cubic lattice parameter, a(Q) = 23.2 nm. At 95 wt% water content, the increase in the
FO/MO weight ratio to 40:60 and 60:40 (wt%/wt%) yielded predominantly primitive cubic Im3m inner
structures (Figure 5c,d).

The cubic unit cell dimensions of the liquid crystalline nanoparticles were estimated from the
BioSAXS results using equation (1). Table 2 shows that the cubic lattice parameters in the catalase-free
nanocarriers increase with the increase in the fish oil and curcumin amounts. The values range from
a(Q) = 16.4 nm (Pn3m inner cubic structure) to a(Q) = 21.3 nm (Im3m inner cubic structure). These unit
cell magnitudes result from the fragmentation of the drug-loaded lyotropic lipid cubic phase by the
PEGylated dispersion agent in excess aqueous medium. They differ from that typical for the pure MO
bulk lipid cubic phase (a(Q) = 10.5 nm) [39]. The increased cubic lattice parameter of the catalase-loaded
nanoparticles (a(Q) = 26.3 nm) as compared to nanoparticles without catalase (a(Q) = 21.3 nm) can
be explained by the entrapment of the protein macromolecules, which may cause swelling of the
monoolein liquid crystalline structures [2,8].

Table 2. Unit cell lattice parameters and size distributions of catalase-free and catalase-loaded MO/FO/CU
cubosome nanoparticles (NPs) stabilized by TPEG1000. The cubic space group type is indicated in Figure 5
for every sample.

Nanoparticles Lattice a(Q) (nm) a NPs’ Size (nm) b

Curcumin-Loaded NPs

MO-TPEG1000 1 106
(MO-FO-CU)1 16.4/20.0 c 106/220 d

(MO-FO-CU)2 20.0 220
(MO-FO-CU)3 21.3 255

Curcumin and Catalase-Loaded NPs

MO-CAT - 484
(MO-FO-CU-CAT)1 23.2 164/550 b

(MO-FO-CU-CAT)2 25.0/26.3 a 150/459 b

(MO-FO-CU-CAT) 3 26.3 164/531 b

a Determined by BioSAXS; b determined by QELS; c coexistence of two structures; d coexistence of two populations
of NPs.

The investigated nanodispersions were also characterized by quasi-elastic light scattering (QELS)
measurements. The sizes of the particles determined from their volume distributions in the samples
are shown in Table 2. The mean hydrodynamic size of the catalase-free nanoparticles increases with the
increase in the fish oil and curcumin proportions (see Section 4.3 of Methods). The values vary between
106 nm and 255 nm. The association of catalase to the lipid nanoparticles increases their sizes as
compared to the initial nanoparticle dimensions measured in the absence of catalase. The largest particle
sizes (between 484 nm and 530 nm) were reached upon augmentation of the fish oil and curcumin
contents. Moreover, a presence of two populations of nanocarriers is established in the dispersed
systems (Table 2). The two populations represent a coexistence of large-size (∼500 nm) particles
and smaller-size (∼160 nm) particles. For cubosomal formulations of lipids, it has been suggested
that they correspond to coexisting cubosomes and small vesicles or precursors of intermediate-type
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liquid crystalline structures [34,39]. The inclusion of CAT protein appears to favor the cubosome
nanoparticle population.

2.2. In Vitro Evaluation of Catalase- and Curcumin-Loaded Liquid Crystalline Nanocarriers

2.2.1. Viability of Cubosome Nanoparticle-Treated Differentiated SH-SY5Y Cells

The human neuroblastoma SH-SY5Y cells were differentiated by 10 µM of retinoic acid (RA) for
5 days in order to obtain extensive proliferation of neurites and reduced cell body sizes, which are typical
for a neuronal cell phenotype [19,71,72]. Then, the cells were exposed to 0.5 µM of catalase-loaded
cubosome nanocarriers during 24 h. Freshly prepared nanoparticles (one day after NP preparation) and
90 days-stored NPs were investigated for their impact on the cellular viability. Unexposed cells were
used as viability controls. The obtained 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT) data (Figure 6) demonstrate that the cellular viability decreases from 100 ± 2.2% to 84.5 ± 6.7%
for catalase-loaded cubosome particles, which contain increasing amounts of incorporated fish oil and
curcumin (see Section 4.3 of Methods). This decrease in cellular viability was not significant (p < 0.05)
compared to the control. The MTT test indicated the safety of the dual drug-loaded nanoparticles.
In addition, the data obtained with the 90-days-stored nanoparticles did not show a significant viability
difference as compared to the newly prepared nanoparticles. This result evidenced the stability of the
studied cubosome nanoparticles with 90 days of storage.
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Figure 6. Cellular viability of retinoic acid-differentiated SH-SY5Y cells after 24 h exposure to 0.5 µM
of catalase-loaded liquid crystalline nanoparticles. The histograms at Day 1 and Day 90 correspond
to the time elapsed (one day or 90 days) after the nanoparticles’ preparation before cell exposure.
The MO-FO-CU-CAT compositions are presented in Section 4.3 of Methods.

2.2.2. Catalase Peroxidatic Activity in Cell Lysates of Differentiated SH-SY5Y Cells Obtained after
Treatment with Cubosome Nanoparticles

The successful delivery and uptake of blank and catalase-loaded cubosome nanoparticles
in RA-differentiated SH-SY5Y cells was evaluated by determining catalase peroxidatic activity [48,49]
in supernatants of cell lysates generated after cubosomal treatment. Catalase is a ubiquitous
antioxidant enzyme involved in the detoxification of H2O2 (a toxic product of the normal aerobic
metabolism or of pathogenic ROS production). One unit of enzymatic reaction activity is defined
as the amount of enzyme that will cause the formation of 1 nmol of formaldehyde per minute at
25 ◦C. It serves for the quantification of the cytosolic catalase. The determined catalase peroxidatic
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activity in lysates of non-treated RA-SH-SY5Y cells, used as a control, was 15.37 ± 0.14 nmol/min/mL.
Figure 7 shows that there was no significant difference in the catalase activity between the control
and the cells exposed to blank nanoparticles (MO). The measured value of 14.47 ± 0.06 nmol/min/ml
was close. A tendency for the catalase activity to increase was observed for RA-SH-SY5Y cells
exposed to FO- and CU-loaded nanoparticles (MO-FO-CU)1. The peroxidatic activity value raised to
16.51 ± 0.13 nmol/min/mL. The results with cells exposed to catalase-loaded nanoparticles (MO-CAT)
demonstrated a significant increase in the catalase peroxidatic activity (activity value equal to
27.09 ± 0.02 nmol/min/mL, p < 0.05). An increase in the peroxidatic activity was observed also with
catalase- and curcumin-loaded nanoparticles (MO-FO-CU-CAT)1 (Figure 7). This implies that catalase
is delivered by the liquid crystalline nanocarriers inside the neuronally derived cells. Noticeably,
the cellular uptake of CAT-loaded nanoparticles results in an overall increase in the measured enzymatic
activity (peroxidatic function).
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Figure 7. Fold increase in catalase enzymatic activity (peroxidatic function) determined in supernatants
of cell lysates of differentiated SH-SY5Y cells (RA-SH-SY5Y) after exposure to blank nanoparticles (MO),
catalase-loaded (MO-CAT) cubosome nanoparticles, dual drug-loaded (MO-FO-CU) or enzyme-loaded
(MO-FO-CU-CAT) cubosome nanoparticles.

3. Discussion

3.1. Structural Effect of Catalase Entrapped in Curcumin-Loaded Self-Assembled Liquid Crystalline Nanocarriers

We determined by BioSAXS the different kinds of mesophase structures obtained in MO/TPEG1000/

FO/CU/CAT self-assembled systems of therapeutic interest (Figures 3–5). Whereas diamond Pn3m
cubic structures were present in the MO/TPEG1000 assemblies, the cubic liquid crystalline architectures
identified in the MO/TPEG1000/FO/CU/CAT systems were of either Pn3m or Im3m space group
symmetries. Thus, the inclusion of catalase did not disrupt the overall cubic liquid crystalline
organization of the curcumin-loaded nanocarriers. However, intermediates of the cubic-to-sponge
mesophase transition were observed with increasing fish oil content at a temperature of 22 ◦C.

At a low co-lipid content (fish oil/monoolein ratio 10:90 wt%/wt%), the bulk MO/TPEG1000/

FO/CU/CAT systems displayed Pn3m and Im3m cubic phases (Figure 4a). Intermediates of the
cubic-to-sponge mesophase transition appeared at FO/MO ratios of 20:80 and 30:70 (wt%/wt%)
(Figure 4b,c). A predominant sponge phase was obtained at a high content of fish oil (FO/MO ratio
40:60 wt%/wt%) (Figure 4d). However, the cubic structure was retained at 90%wt water content despite
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the elevated percentage of fish oil at DL 40:60 (Figure 4d). Therefore, the hydration level was crucial
for the resulting mesoscale organization of the mixed assemblies.

The observed coexistence of two cubic domains in the nanocarriers with intermediate fish oil
content (e.g., FO/MO ratio 20:80, Table 1) may be due to the insufficient amount of co-lipid necessary
to trigger a phase transition to a new mesophase type. Thus, the overall Pn3m cubic structure will
contain coexisting domains, which are more rich or less rich in a co-lipid ingredient or in a PEGylated
amphiphile. In a previous study, we showed that the inhomogeneous distribution of the PEGylated
surfactant along the monoolein membrane can result in the coexistence of cubic phase nanodomains
with different lattice parameters, but the same space group (Pn3m) symmetry [39]. The domains with
the smaller cubic unit cell dimension corresponded to the hydrated pure monoolein lipid, and the larger
cubic unit cell corresponded to the mixed lipid assembly. Similar effects of inhomogeneous distribution
of lipid components or nanodomain formation are observed in some of the samples studied in the
present work. This yields two different magnitudes of the cubic lattice parameters, which characterize
the coexisting Pn3m cubic phase domains (e.g., a1(Q) = 16.4 nm and a2(Q) = 20.0 nm).

Nano-dispersions of liquid crystalline particles were obtained with the MO/TPEG1000/FO/CU/CAT
mixtures in the excess water (95 wt%) phase. Their internal organization involved Pn3m and Im3m
cubic structures in the absence of catalase (Figure 5) and the induction of primitive Im3m cubic
structures in the catalase-loaded nanoparticles. The cubic unit cell dimensions increased in the
presence of an associated catalase enzyme, while retaining the overall cubic phase organization.
The structural influence of protein incorporation into liquid crystalline lipid assemblies has been
discussed in several publications [8,9,11,20–28]. For instance, neurotrophin BDNF confinement resulted
in the formation of multiphase and multicompartment liquid crystalline lipid nanoparticles [11].
The transmembrane β-barrel BamA protein caused an increase in the lattice parameter of the host
lipid cubic phase upon encapsulation [26]. By contrast, the lipo-protein BamB–E caused the cubic
lattice parameter to decrease [26]. The effect of amphiphilic and soluble proteins on the nanochannel
diameters in bicontinuous cubic Pn3m phases of monoolein has received considerable attention as
well [8,11,23,25]. Long-living swollen states, corresponding to a diamond cubic phase with large
water channels, have been stabilized in some cases [2,30]. Cryo-TEM and freeze-fracture electronic
microscopy imaging has indicated the inclusion of proteins into nanopockets of the supramolecular
cubosomic assemblies and the induction of nanodomains [8,11,25]. In the present study, catalase was
incorporated in the cubosome carriers under excess water conditions. The lattice parameters of the
curcumin-loaded cubosomes were between 16.4 nm (Pn3m space group) and 21.3 nm (Im3m space
group), depending on the amount of fish oil and curcumin in the mixtures. The a(Q) values increased to
23.2–26.3 nm (Im3m space group) upon the addition of catalase. This implies that the hydrated enzyme
catalase causes swelling of the cubosomal network architectures, rather than their dehydration.

3.2. Catalase Peroxidatic Function Following Cellular Treatment with Dual Drug-Loaded Cubosomes

Catalase plays a crucial role in the adaptive response to hydrogen peroxide as ROS [44,55]. Human
catalase belongs to the family of catalases, which catalyze the dismutation of H2O2 into water and
molecular oxygen (Figure 8). In addition to its dominant catalytic function (decomposition of H2O2),
catalase can also decompose peroxynitrite and oxidize nitric oxide to nitrogen dioxide. It exhibits
marginal peroxidase activity (i.e., oxidation of organic substrates with concomitant reduction of
peroxide) and low oxidase activity (O2-dependent oxidation of organic substrates) [44,47]. At a high
concentration of H2O2, the catalytic pathway starts. At a low concentration of H2O2, the peroxidatic
pathway is initiated [48,49], in which various hydrogen donors such as alcohols, phenols, hormones,
heavy metals and nitrite (serving as the second molecule that assures the role of H2O2) are oxidized [44].

Low levels of catalase expression correlate with a high production of H2O2 [53,54]. As a consequence,
this effect causes the activation of signaling pathways associated with different diseases including Alzheimer‘s
disease [51–54]. Our work provides experimental evidence that catalase-loaded cubosome nanoparticles are
promising candidates for the intracellular delivery of the unstable protein towards treatment or prevention
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of neurodegenerative disorders. Catalase, like many enzymes, is unstable in aqueous phase and shows
a propensity to aggregate. This may lead to a loss of activity [61]. In our strategy, the catalase-loaded
cubosome nanoparticles protect the enzyme and ensure its intracellular uptake.
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Figure 8. Scheme of reactive oxygen species (ROS) generation and organism self-defense by natural
enzymes. The generated ROS levels are principally linked to mitochondria. The superoxide radicals
O2
− are converted to less toxic H2O2 by the enzyme superoxide dismutase (SOD). In the presence of

Fe2+, some of the H2O2 molecules can be reduced to highly reactive OH− ROS, which attacks various
biomolecules (proteins, DNA, and lipids) and causes cell death. Catalase blocks that pathway and
saves the organisms by decomposing H2O2 into harmless water and oxygen [44].

We analyzed the peroxidatic function of catalase for the quantification of its activity in lysates from
RA-differentiated SH-SY5Y cells exposed to blank nanoparticles (NPs), curcumin (CU)-loaded NPs,
catalase (CAT)-loaded NPs, and dual (CAT-CU)-loaded NPs. The enzymatic activity was determined
by colorimetrical measurements of formaldehyde (Figure 9) formed thanks to the peroxidatic function
of catalase [48,49]. The results shown in Figure 7 indicate an increased catalase activity in supernatants
of cells exposed to catalase-loaded nanoparticles (i) without curcumin (MO-CAT) or (ii) with dual
loading of CAT and curcumin (MO-FO-CU-CAT). The enhanced enzymatic activity can be explained
by an increase in the amount of cytosolic catalase in the cells treated with CAT-loaded nanoparticles.
This confirms that the cubosome nanoparticles provide an efficient delivery and uptake of the catalase
enzyme into the cells.

We established that the curcumin-containing dual-drug loaded nanoparticles (MO-FO-CU-CAT)
maintain or increase the CAT activity (Figure 7), unlike other antioxidants, which can inhibit the
catalase enzymatic function [56,57]. Molecular dynamic simulations have demonstrated that curcumin
can significantly increase the activity of bovine liver catalase (BLC) as it favors the access of the
substrate to the active site of the enzyme [59]. The enzymatic activity has been suggested to increase
through a curcumin-triggered re-arrangement of the amino acid residues in the structural pocket of
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catalase. The increased distances between the residues of the formed channel enable a larger amount of
substrate to reach the active site. The entrance space increased from 250 Å to 440 Å, which essentially
facilitated the substrate’s access to the enzyme active pocket. Curcumin may also increase the amount
of α-helical content in BLC, leading to the stabilization of the protein’s secondary structure [59,60].

In conclusion, dual drug-loaded nanocarriers of the cubosome type were obtained and were
characterized by stable mesophase organization during three months of storage. The catalase- and
curcumin loaded (MO-FO-CU-CAT) cubosome nanoparticles efficiently delivered the therapeutic
molecules inside the neuronally derived SH-SY5Y cells as evidenced by the increased activity of
the antioxidant enzyme. The cubosomal nanoarchitectures preserved the encapsulated enzyme
(CAT) in a functional state, ensuring the cell’s defense against reactive oxygen species (catalytic and
peroxidatic functions). Moreover, the dual-loaded cubosomes provided an enhanced activity of catalase
in differentiated SH-SY5Y cells. Further studies are needed in order to determine an eventual synergistic
antioxidant effect of catalase and curcumin upon dual delivery by liquid crystalline nanocarriers.

4. Materials and Methods

4.1. Materials

Curcumin (CU), fish oil (FO), monoolein (MO), and d-α-tocopherol polyethylene glycol-1000
succinate (a pegylated amphiphile denoted as TPEG1000) were purchased from Sigma-Aldrich
(Lyon, France). For cell culture experiments, Dulbecco’s modified Eagle’s Medium (DMEM),
streptomycin-penicillin, phosphate buffered saline (PBS), trypsin, ethylenediaminetetraacetic acid
EDTA, retinoic acid (RA) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)
were supplied by Sigma-Aldrich. Foetal bovine serum (FBS) was provided by Thermo Fischer Scientific
(Illkirch, France). The water used was of MilliQ quality (Millipore Corp., Molsheim, France).

4.2. Preparation of Bulk Liquid Crystalline MO/TPEG1000/Fish Oil/Curcumin Systems

The lipid monoolein (MO), the surfactant TPEG1000, fish oil (FO), and curcumin (CU) were weighed
and dissolved in chloroform. The samples were prepared at room temperature at four different fish
oil/monoolein weight ratios of 10:90, 20:80, 30:70 and 40:60 (wt%/wt%) (Table 3). The solvent was
evaporated under a stream of a nitrogen gas for 1 h at room temperature to create a thin film lipid
sample. The samples were lyophilized overnight under cooling to remove the excess solvent. This step
was followed by the hydration of the thin film samples by a solution of catalase (0.5 wt%) protein
(a buffer solution with pH 7 prepared using Milli-Q water). The concentrations were varied from
50 wt% to 90 wt% in aqueous phase with regard to the lipid phase. Finally, the samples were vortexed
vigorously at room temperature in cycles during 15 min.
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Table 3. Compositions of bulk liquid crystalline phases presented as mass proportions of MO, TPEG1000,
FO, CU and catalase.

Sample Code Catalase (0.5 wt%) in Aqueous Buffer (pH 7) (g) MO
(g)

TPEG1000
(g)

FO
(g)

CU
(g)

Dilution Line (FO:MO) = DL (10:90)

C195 0.013 0.0090 0.0020 0.0010 0.00013
C196 0.015 0.0072 0.0018 0.0009 0.00010
C197 0.018 0.0054 0.0013 0.0007 0.00008
C199 0.023 0.0018 0.0004 0.0002 0.00003

Dilution Line (FO:MO) = DL (20:80)

C285 0.013 0.0080 0.0020 0.0022 0.00025
C286 0.015 0.0066 0.0016 0.0016 0.00018
C287 0.018 0.0050 0.0012 0.0011 0.00013
C288 0.020 0.0032 0.0008 0.0009 0.00010

Dilution Line (FO:MO) = DL (30:70)

C376 0.015 0.0056 0.0014 0.0027 0.00030
C377 0.018 0.0042 0.0010 0.0020 0.00023
C378 0.020 0.0028 0.0007 0.0013 0.00015
C379 0.023 0.0014 0.0003 0.0007 0.00008

Dilution Line (FO:MO) = DL (40:60)

C466 0.015 0.0048 0.0012 0.0036 0.00040
C467 0.018 0.0036 0.0009 0.0027 0.00030
C468 0.020 0.0025 0.0006 0.0017 0.00019
C469 0.023 0.0012 0.0003 0.0009 0.00010

4.3. Preparation of Aqueous Dispersions of Nanoparticles

The lipid nanoparticles were prepared by the method of hydration of a lyophilized thin lipid film
followed by physical agitation in excess aqueous phase [19,22,34,39]. The lipids and the hydrophobic
constituents were dissolved in chloroform and mixed at desired proportions (Table 4). The solvent
in the vials was evaporated under a stream of nitrogen gas for 1 h at room temperature to create
a thin film lipid sample. The excess organic solvent was removed overnight using a lyophilizer.
The thin film samples were hydrated for 24 h at room temperature in a buffer solution for blank
(catalase-free) lipid nanoparticles and in a solution of catalase (0.5 wt%) for CAT-loaded lipid
nanoparticles. The self-assembled mixtures were dispersed using a vortex until milky solutions
were obtained.

Table 4. Lipid nanoparticle constituents and their mass proportions.

95 wt% Aqueous Phases MO
(g)

TPEG1000
(g)

FO
(g)

CU
(g)CU-Loaded NPs CAT-Loaded NPs

MO MO-CAT 0.02 0.005
MO1-FO1 0.016 0.004 0.0045

(MO-FO-CU)1 (MO-FO-CU-CAT)1 0.016 0.004 0.0045 0.0005
(MO-FO-CU)2 (MO-FO-CU-CAT)2 0.012 0.003 0.0090 0.0010
(MO-FO-CU)3 (MO-FO-CU-CAT)3 0.008 0.002 0.0135 0.0015

4.4. Synchrotron Small Angle X-Ray Scattering (BioSAXS)

For nanostructure determination with lipid/protein assemblies, BioSAXS experiments were performed
at the SWING beamline [70] of synchrotron SOLEIL (Saint Aubin, France). The sample-to-detector
distance was 3 m. The patterns were recorded with a two-dimensional EigerX 4-M detector (Dectris,
Baden, xtsuperscript−1. The q-vector was defined as q = (4π/λ) sin θ, where 2θ is the scattering angle.
The synchrotron radiation wavelength was λ = 1.033 Å. The q-range calibration was done using a standard
sample of silver behenate (d = 58.38 Å). The temperature was 22 ◦C.
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The investigated samples were filled in capillaries with a diameter of 1.5 mm and were sealed by
paraffin wax. They were oriented in front of the X-ray beam (25 × 375 µm2) using a designed holder
for multiple capillaries positioning (X, Y, Z). Exposure times of 500 ms (for bulk lipid samples) or 1 s
(for diluted nanoparticles) were used. No radiation damage was observed at these exposure times.
Scattering patterns of an empty capillary and a capillary filled with MilliQ water were recorded for
intensity background subtraction. Data processing of the recorded 2D images was performed by the
FOXTROT software [73]. An average of three spectra per capillary was acquired.

The lattice parameters of the liquid crystalline phases were derived from the Bragg peaks detected
in the X-ray diffraction patterns. The assigned reflections were fitted through the Miller indexes
according to the following relationships:

a/d = 1,2,3, . . . for structures with a lamellar spacing (2)

(a/d)2 = 2,3, 4, 6, 8, 9, 10, 11, 12, 14, . . . for the Pn3m space group (Diamond cubic, D) (3)

(a/d)2 = 2,4, 6, 8, 10, 12, 14, 16, 18, . . . for the Im3m space group (Primitive cubic, P) (4)

(a/d)2 = 6, 8, 14, 16, 20, 22, 24, 26, . . . for the Ia3d space group (Gyroid cubic, G) (5)

4.5. Nanoparticle Size Determination

The hydrodynamic diameters of the particles in the nanodispersions were determined based on
the principle of quasi-elastic light scattering (QELS). The particle size distribution was determined
by means of a Nano-ZS90 device (Malvern Instruments) collecting the intensity of the scattered light
at an angle of 90◦ with regards to the incident laser beam. Data collection was carried out at 25 ◦C.
The samples were diluted to 1/10 in a buffer in order to ensure Brownian motion conditions for the
particles. The refractive index and viscosity of the MilliQ water wree equal to 1.330 and 0.8872,
respectively. Each analysis was a result of three consecutive measurements.

4.6. Cell Culture

The human neuroblastoma SH-SY5Y cells were cultured in DMEM medium with high glucose
supplement, 10% FBS, and 0.5% streptomycin-penicillin. They were incubated at 37 ◦C in a saturated
humidity atmosphere containing 5% CO2. Before every experiment, the cells were grown in plastic
Nunc cell culture flasks (75 cm2) (Thermo Scientific, Illkirch, France) and were treated with 10 µM
retinoic acid (RA) for 5 days towards differentiation into neuronal cells [19,40,71,72]. The adherent
SH-SY5Y cells were divided twice weekly with the use of 0.05% trypsin-EDTA for up to 5 min, followed
by centrifugation (200× g) at 4 ◦C for 5 min. The cells were counted using a KOVA®cell counting
chamber (VWR, Fontenay-sous-Bois, France), and seeded at densities of 2 × 104 cells/well in 96-well
plates or 106 cells/flask (25 cm2) (depending on the type of biological analysis to be carried out).
After 24 h, the SH-SY5Y cells were incubated with RA (10 µM) for 5 days, changing the medium
with RA at least once. The neuronal phenotype was distinguished by the extensive proliferation
of neurites [71,72].

4.7. Cell Viability

The cell viability was determined by the tetrazolium salt test (3-(4,5-dimethylthiazol-2-yl)
-2,5-diphenyl tetrazolium bromide, MTT) [19,40]. The solution of MTT was prepared in PBS and was
filtered prior to use. This reagent is reduced to formazan by the mitochondrial succinate dehydrogenase
enzyme in living cells. The MTT compound forms a purple precipitate, the quantity of which is
proportional to the metabolic activity of the living cells. The cells were seeded at a density of 20 × 104

cells/well in 96-well plates. After 5 days of treatment with 10 µM retinoic acid, cubosome nanoparticles
were incubated with the cells at lipid concentrations of 0.5 µM at 37 ◦C for 24 h. Untreated cells
maintained in DMEM medium were used as controls. MTT was added at a concentration of 5 mg/mL
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at 37 ◦C. After 1 h of incubation of the cells with MTT, the medium was removed, and the cells were
dissolved in 100% DMSO to solubilize the formazan precipitate. The optical density was then measured
at 570 nm by a microplate reader. The quantification was done using measurements of a minimum of
six wells.

4.8. Catalase Enzymatic Activity (Peroxidatic Function) in Supernatants of Cell Lysates

Catalase (CAT) activity was measured in SH-SY5Y cell lysates in order to evaluate the effect of
the liquid crystalline cubosomal nanoparticle treatment on the enzymatic function. CAT catalyzes
the dismutation of two molecules of hydrogen peroxide into molecular oxygen and two molecules of
water, according to relationship (6). This enzyme acts at higher concentrations of hydrogen peroxide
than the enzyme peroxidase. CAT also exhibits peroxidatic activity, presented by relationships (7)
and (8) below.

Here, SH-SY5Y cells were seeded at a density of 106 cells in 25 cm2 culture flasks containing 5 ml
of DMEM medium. After 24 h, the cell culture medium was replaced by 10 µM of RA solution for
5 days of incubation. Then, aqueous dispersions of fish oil, curcumin, catalase or lipid nanoparticles
(0.5 µM) were introduced in the FBS-free medium. After 24 h incubation, the cells were collected
by centrifugation at 1500× g for 10 min at 4 ◦C. The cell pellet was homogenized on ice in 1 ml of
cold buffer of potassium phosphate. Then, the samples were centrifuged at 10000× g for 15 min at
4 ◦C. The assay was performed with the supernatants according to the instructions of the Cayman’s
Catalase Assay Kit (catalogue No. 707002) (Cayman Chemical, Ann Arbor, MI, USA), which utilizes
the peroxidatic function of CAT for determination of the enzyme activity.

CAT catalytic activity: 2 H2O2 ——-catalase——> 2 H2O + O2 (6)

CAT peroxidatic activity: H2O2 + AH2 ——catalase——> 2 H2O + A (7)

where AH2 and A represent the substrate, i.e., low molecular weight aliphatic alcohols serving as
electron donors. In the present methodology,

CAT peroxidatic activity: H2O2 + CH3OH —–catalase——> 2 H2O + CH2O (8)

This method is based on the reaction of the enzyme CAT with methanol in the presence of
an optimal concentration of H2O2 according to equation (8). The produced formaldehyde was
measured colorimetrically with Purpald as the chromogen. The absorbance was monitored at 540 nm
using a plate reader.
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Figure 9. Schematic protocol employed in the catalase enzymatic activity assay. The assay is performed
with supernatants of cell lysates, which contain the cytosolic catalase. The cell lysates are first subjected
to differential centrifugation, and the colorimetric measurements of the CAT peroxidatic activity are
taken with the resulting supernatants.
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4.9. Statistical Analyses

The data are presented as the mean values of standard deviation (SD) of three independent
experiments. The results were analyzed by the Tukey test after one-way analysis of variance (ANOVA).
The probability values p < 0.05 were considered statistically significant across the treatment groups.
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