Characterization of polysulfides, polysulfanes and other unique species in the reaction between GSNO and H₂S

Murugaeson R Kumar and Patrick J Farmer*

- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798
- S1. LCMS of oxidized polysulfides in MeOH with 1% formic acid mobile phase
- S2. LC-MS/MS of GSSnG products
- **S3**. Reaction of GSNO with H₂S in carbonate buffer at pH 10
- S4. Reaction of GSNO with H₂S at different temperatures
- **S5.** Reaction of GSNO with H_2S gas
- S6. Reactions of GSSG and GSH w/wo elemental Sulfur
- S7. Comparison of reaction of GSNO and H2S w/wo elemental Sulfur
- S8. Reaction of GSH with sodium thiosulfate, Na₂S₂O₃.
- **S9.** Reaction of GSNO with H₂S with and without NaS₂O₃
- **S10.** Mass spectra of reduced GSS_nH identified in the reaction of GSNO with H_2S .
- **S11.** LC-MS/MS of GSS_nH products
- S12. LC-MS/MS of GSSnSO3H products
- S13. MS comparison of GSSH and GSO₂H in aerobic reactions
- S14. LC-MS/MS of GSSnSO2H products
- S15. LC-MS/MS of GSSnNH2 products
- S16. LC-MSMS of GSNS_nA₂ products

S1. LCMS of oxidized polysulfides in MeOH with 1 % formic acid mobile phase

Figure S1. LC-HRMS analysis of oxidized glutathione polysulfane species formed in a 1:5 reaction of GSNO with Na₂S at pH 7, with 0.1% formic acid-methanol as carrier stream. A) The total ion LC spectra. (inset) Normalized selective ion chromatograms (SICs) showing a series of GSS_nSG polysulfanes, n = 0-8, and the separation times of each within the overall LC spectra. (B) Region of the total ion mass spectra showing peaks assigned as shown, to dications.

Figure S2. LCMS MS/MS study of glutathione polysulfides (oxidized) formed in the reaction of GSNO 1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

S3. Reaction of GSNO with H₂S in carbonate buffer at pH 10.

High pH reactions of GSNO with H₂S. The reaction solutions were allowed to stand for an hour before LC/MS analysis. For temperature dependent studies the reaction solutions were incubated at 37 °C in Excella E24 incubator.

Figure S3. Reactions at high pH. Orbitrap LCMS study of reaction of GSNO (1 mM) with Na₂S (5 mM) in carbonate buffer at pH 10. (Top) SIC of glutathione polysulfides (oxidized) species and (Bottom) their corresponding mass spectra.

S4. Reaction of GSNO with H₂S at different temperatures

Figure S4. SIC of glutathione polysulfides obtained from the analysis of LCMS of reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7. (A) 25 $^{\circ}$ C and (B) 35 $^{\circ}$ C.

S5. Reaction of GSNO with H₂S gas

Reaction of GSNO or GSSG with H₂S(g). As a control reaction. gaseous H₂S was generated by addition of concentrated HCl to Na₂S under inert N₂ purge which was bubbled directly through an aqueous solution of GSNO or GSSG in iP buffer pH 7. The reaction solutions were allowed to stand for an hour before LC/MS analysis.

Figure S5. Orbitrap LCMS study of reaction of GSNO (1mM) with H₂S (gas) generated from Na₂S-HCl mixture in iP buffer at pH 7. (Top) SIC of glutathione polysulfides (oxidized) species and (Bottom) their corresponding mass spectra.

S6. Reactions of GSSG and GSH with elemental Sulfur.

Reactions with elemental Sulfur(s). To reaction solutions of GSH (1 mM) or GSSG (1 mM) were added elemental sulfur (solid) in iP buffer, pH 7 and allowed to stand for 24 h.

Figure 6. SICs of oxidized glutathione polysulfides (GSS_xSG) from the Orbitrap LCMS analysis of reaction of (A) 1 mM of GSSG, (B) 1 mM of GSH with excess S in iP buffer at pH 7 and (C) relative distribution of the glutathione polysulfide species.

S7. Comparison of reaction of GSNO with H₂S with and without the presence of elemental Sulfur.

Reactions of GSNO/H₂S in presence and absence of S(s). To the reaction solutions of GSNO (1 mM) and Na₂S (5 mM), were added elemental sulfur (solid) in iP buffer, pH 7 and allowed to stand for 24 h.

Figure S7. Relative distribution of the glutathione polysulfide species calculated in the presence (red) and absence (black) of S with GSNO (1 mM) and Na₂S (5 mM) in iP buffer at pH 7.

S8. Reaction of GSH with sodium thiosulfate, Na₂S₂O₃.

Reactions of sulfite and thiosulfate with GSH. 5 mM of GSH was mixed either with 10-fold excess Na₂SO₃ or Na₂S₂O₃ in iP buffer pH 7. The reaction solutions were allowed to stand overnight before LC/MS analysis.

Figure S8. Orbitrap LCMS study of reaction of GSH (1 mM) with Na₂S₂O₃ (5 mM) in iP buffer at pH 7. Top: SIC of glutathione polysulfides (oxidized) species. Bottom: their corresponding mass spectra.

S9. Reaction of GSNO with H₂S with and without NaS₂O₃.

Figure S9. Orbitrap LCMS study of reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7, in the (**A**) absence, (**B**) presence of Na₂S₂O₃ (5 mM) and their relative distributions of GSS_nSG products (**C**); Na₂S₂O₃ absence (squares) and Na₂S₂O₃ presence (circles).

S10. Mass spectra of reduced GSSnH identified in the reaction of GSNO with H₂S.

Figure S10. Orbitrap MS glutathione polysulfides (reduced) formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

S11. LC-MS/MS of GSSnH products

Figure S11. Orbitrap LCMS MS/MS study of glutathione polysulfides (reduced) formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

Figure S12. Orbitrap LCMS MS/MS study of glutathione polythiosulfonates formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

S13. MS comparison of GSSH and GSO₂H in aerobic reactions

Figure S13. LCMS study in the negative ion mode of GSSH and GSO₂H and glutathione sulfinic acid formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

S14. LC-MS/MS of GSSnSO₂H product

Figure S14. Orbitrap LCMS MS/MS study of glutathione sulfinic acid formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

Figure S15. Orbitrap LCMS MS/MS study of GSS_nNH₂ products formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) in iP buffer at pH 7.

Figure S16. Orbitrap LCMS MS/MS study of GSNS_nA₂ products formed in the reaction of GSNO (1 mM) with Na₂S (5 mM) and IA (5 mM) in iP buffer at pH **7**.