Supplementary Information

Biomimetic non-heme iron-catalyzed epoxidation of challenging terminal alkenes using aqueous H_2O_2 as an environmentally friendly oxidant

Anja Fingerhut^a, Jorge Vargas-Caporali^b, Marco Antonio Leiva-Ramírez^b, Eusebio Juaristi^{b,c,*} and Svetlana B. Tsogoeva^{a,*}

^a Department of Chemistry and Pharmacy, Institute of Organic Chemistry I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany. ^b Department of Chemistry, Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico Nacional 2508, 07360 Ciudad de México, Mexico. ^c El Colegio Nacional, Donceles # 104, Centro Histórico, 06020 Ciudad de México, Mexico.

*E-Mail: juaristi@relaq.mx and svetlana.tsogoeva@fau.de

Table of Contents

1	DETERMINATION OF YIELD VIA ¹ H NMR USING PYRAZINE AS INTERNAL STANDARD	2
2	SCREENING OF REACTION CONDITIONS FOR NON-ENANTIOSELECTIVE EPOXIDATION	3
3	SCREENING OF REACTION CONDITIONS FOR ENANTIOSELECTIVE EPOXIDATION	4
4	REARRANGEMENT OF EPOXIDE	5
5	COMPARATIVE TABLE	6
6	¹ H NMR AND ¹³ C NMR SPECTRA OF NEW LIGANDS	8
7	HPLC CHROMATOGRAMS	17
8	INVESTIGATION OF IRON(III) COMPLEX VIA UV-VIS SPECTROSCOPY	25
9	INFRARED EXPERIMENTS OF IRON (III) COMPLEX	26
10	NMR EXPERIMENTS OF IRON(III) COMPLEX	27
11	MS-ESI EXPERIMENT OF IRON(III) COMPLEX	.29
12	X-RAY CRYSTALLOGRAPHIC DATA	30

1 Determination of yield via ¹H NMR using pyrazine as internal standard

Exemplary: Table 2, Entry 1:

 1 H-NMR of reaction mixture after SiO₂-plug containing pyrazine as internal standard (m = 4.32 mg, n = 53.9 μ mol)

1H (pyrazine) \triangleq 53.9 µmol

1H (epoxide) \triangleq 53.9 μmol x 4.05 = 218 μmol (n (epoxide))

 \rightarrow yield = n (epoxide) / n (alkene) = 218 µmol / 500 µmol = 0.44 \rightarrow 44%

2 Screening of reaction conditions for non-enantioselective epoxidation

 Table 1. Screening of reaction conditions.

Entry	Modification of reaction conditions	yield [%] ^{a)}
1	-	53
2	1 h <i>in situ</i> catalyst generation (under inert conditions)	traces
3	1 h <i>in situ</i> catalyst generation (not under inert conditions)	54
4	1 h <i>in situ</i> catalyst generation and 5 mol% CH ₃ CO ₂ H	44
5	2 h reaction time and 2 h H_2O_2 addition.	45
6	15°C	22
7	0.05 M substrate	42
8	0.2 M substrate	25
9	addition of H_2O_2 over 3 h period	52
10	10 mol% catalyst loading	55
11	0°C	13
12	50°C	27
13	$1 \text{ h H}_2\text{O}_2$ addition plus 15 h stirring	50
14	1 h H ₂ O ₂ addition + 1 h stirring	53
15	+ 5 mol% H ₂ Pydic	19
16	+ 5 mol% mandelic acid	26
17	irradiation with cold light	52

a) Determined via pyrazine as internal standard.

3 Screening of reaction conditions for enantioselective epoxidation

 Table 2. Screening of reaction conditions.

Entry	Modification of reaction conditions	yield [%] ^{a)}	ee-value
			(R) [%]
1	-	44	26
2	1 h in situ catalyst generation with air-bubbling	42	24
3	at 0°C	23	36
4	+ 5 mol% mandelic acid	32	27
5	L10 (5 mol%)	31	26

a) Determined via pyrazine as internal standard.

4 Rearrangement of Epoxide

$$R \xrightarrow{O} DCM, r.t. R$$

Table 3. First rearrangement attempts from epoxide towards corresponding aldehyde using SiO₂.

Entry	Substrate	Time	Temperature	Yield [%] ^{c)}
1 ^{a), b)}	C C C	5 h	reflux	17
2		18 h	reflux	34
3 ^{a)}		18 h	r.t.	29
4 ^{a)}		2.5 h	reflux	32

a) 3.33 g/mmol SiO₂; b) CDCl₃; c) Determined via pyrazine as internal standard.

5 Comparative Table

Table 4. Results obtained in this work contrasted with the results described in literature for non-heme iron-catalyzed epoxidation of the corresponding olefins.

		Results o	f this work	Results described in literature		erature
Entry	Product	Yield ^{a),b)}	ee ^{c)}	Yield ^{d)}	ee ^{d)}	Ref.
1		44	26 (<i>R</i>)	40	-	[1]
	0.			84	8	[2]
2		30	27 (R)	30	-	[3]
	V 2			15	-	[4]
2		1.4	20 (C)	66	-	[5]
3	O ₂ N 3	14	29 (3)	90	-	[6]
4		25	25 (<i>R</i>) ^{e)}	_	-	-
		-))	82	-	[7]
5	MeO 5	5 ^{e)}	14 (R) ^{e)}	70	-	[8]
6	6	22	16 (S)	67	45	[9]
7	7	<5 ^{f)}	n.d. ^{g)}	60	-	[10]
0		22	50	32	19	[9]
8	8	32	50	49	-	[11]
0		27	1C (D)	44	-	[3]
9	9	27	10 (K)	72	-	[8]
10		<5	27 (2 <i>R,</i> 3S)	38	90	[9]
11 ^{h)}		7	51 (2 <i>R,</i> 3S)	-	-	-

a) Yields determined via ¹H NMR with pyrazine as internal standard. b) Results described in this work. c) ee values determined via chiral HPLC measurement. d) Results described in literature for non-heme iron-catalyzed epoxidation employing H_2O_2 and miscellaneous ligands and/or additives (see references for further details). e) ee value determined after derivatization: aminolysis with isopropylamine towards corresponding β -aminoalcohol. f) Detected via ¹H-NMR and ESI-MS. g) n. d.: not determined. h) *in situ* catalyst generation with **L10** (5 mol%), FeCl₃·6H₂O (5 mol%), (S)-(+)-mandelic acid (15 mol%), 1.6 mL 2-Me-2-BuOH, followed by the addition of alkene (0.166 mmol) and 2 eq. H₂O₂ *via* syringe pump at r. t. (3 h reaction time).

References (see Table 4)

- 1. Bitterlich, B.; Anilkumar, G.; Gelalcha, F. G.; Spilker, B.; Grotevendt, A.; Jackstell, R.; Tse, M. K.; Beller, M. Development of a General and Efficient Iron-Catalyzed Epoxidation with Hydrogen Peroxide as Oxidant. *Chem. Asian J.* **2007**, *2*, 521-529.
- Gelalcha, F. G.; Anilkumar, G.; Tse, M. K.; Bruckner, A.; Beller, M. Biomimetic Iron-Catalyzed Asymmetric Epoxidation of Aromatic Alkenes by Using Hydrogen Peroxide. *Chem. Eur. J.* 2008, 14, 7687-7698.
- 3. Park, H.; Ahn, H. M.; Jeong, H. Y.; Kim, C.; Lee, D. Non-heme iron catalysts for olefin epoxidation: conformationally rigid aryl–aryl junction to support amine/imine multidentate ligands. *Chem. Eur. J.* **2018**, *24*, 8632-8638.
- 4. Papastergiou, M.; Stathi, P.; Milaeva, E. R., Deligiannakis, Y.; Louloudi, M. Comparative study of the catalytic thermodynamic barriers for two homologous Mnand Fe-non-heme oxidation catalysts. *J. Catal.* **2016**, *341*, 104-115.
- Singh, K. K.; Tiwari, M. K.; Dhar, B. B.; Vanka, K.; Sen Gupta, S. Mechanism of oxygen atom transfer from Fe^v(O) to olefins at room temperature. *Inorg. Chem.* 2015, 54, 6112-6121.
- 6. Wang, B.; Lee, Y.-M.; Seo, M. S.; Nam, W. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. *Angew. Chem., Int. Ed.* **2015**, *54*, 11740-11744.
- Shaabani, A.; Mohammadian, R.; Farhid, H.; Karimi Alavijeh, M.; Amini, M. M. Irondecorated, guanidine functionalized metal-organic framework as a non-heme ironbased enzyme mimic system for catalytic oxidation of organic substrates. *Catal. Lett.* 2019, 149, 1237-1249.
- 8. Perandones, B. F.; del Rio Nieto, E.; Godard, C.; Castillon, S.; De Frutos, P.; Claver, C. Fe-Catalyzed olefin epoxidation with tridentate non-heme ligands and hydrogen peroxide as the oxidant. *ChemCatChem* **2013**, *5*, 1092-1095.
- 9. Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. Asymmetric Epoxidation with H₂O₂ by Manipulating the Electronic Properties of Non-heme Iron Catalysts. *J. Am. Chem. Soc.* **2013**, *135*, 14871-14878.
- 10. Iron(III) aroylhydrazone complexes: Structure, electrochemical studies and catalytic activity in oxidation of olefins. *J. Mol. Catal. A Chem.* **2009**, *304*, 139-146.
- 11. Moelands, M. A. H.; Schamhart, D. J.; Folkertsma, E.; Lutz, M.; Spek, A. L.; Klein Gebbink, R. J. M. Facial triad modeling using ferrous pyridinyl prolinate complexes: synthesis and catalytic applications. *Dalton Trans.* **2014**, *43*, 6769-6785.

6 ¹ H NMR and ¹³C NMR spectra of new ligands

7 HPLC chromatograms

2-Naphthalen-2-yl-oxirane

Peak	t _R	Area	Area (%)
1	18.236	5621.8	49.24
2	21.563	5796	50.76

See Entry 1, Table 2

2-Phenyloxirane

(Chiral HPLC (Macherey-Nagel OD): <i>n</i> -hexane/ <i>i</i> -PrOH 99:1, 1.0 ml/min flow rate, λ = 210 nm;
ſ	DAD1 C. Sig=210.8 Ref=off (AN IA\AF15-110RP D)

Peak	t _R	Area	Area (%)
1	6.799	6357.5	49.627
2	7.186	6453	50.373

Peak	t _R	Area	Area (%)
1	6.772	1174.8	36.338
2	7.153	2058.1	63.662

2-(4-Nitro-phenyl)-oxirane

Peak	t _R	Area	Area (%)
1	13.998	360.44	49.94
2	14.865	339.40	50.06

Peak	t _R	Area	Area (%)
1	25.338	8679.2	64.625
2	27.024	4750.9	35.375

2-Methyl-2-phenyloxirane

Chiral HPLC (Macherey-Nagel OD): *n*-hexane/*i*-PrOH 99:1, 1.0 ml/min flow rate, λ = 210 nm;

	Peak	t _R	Area	Area (%)
ľ	1	5.377	13850.2	50.000
l	2	6.102	13850	50.000

See Entry 6, Table 2

Peak	t _R	Area	Area (%)
1	5.36	3153	41.812
2	6.1	4387.9	58.188

2-Methyl-3-phenyloxirane

Chiral HPLC (Daicel Chiralpak	AS): <i>n</i> -hexane/ <i>i</i> -PrOH 99:1.	0.5 ml/min flow rate. λ = 210 nm:
Ciniar in EC (Baicer ciniaipak	<i>noj: n</i> nexane <i>j</i> i i on 55.±,	

Peak	t _R	Area	Area (%)
1	10.667	32920.4	49.569
2	14.177	33493	50.431

Peak	t _R	Area	Area (%)
1	10.5	28623.3	75.183
2	13.878	9448.3	24.817

2,3-Diphenyloxirane

Chiral HPLC	(Daicel Chiral	pak IB): n-hexa	ane/i-PrOH 92:8,	, 1.0 ml/min flow rate	$\lambda = 210 \text{ nm};$
--------------------	----------------	-----------------	------------------	------------------------	-----------------------------

Peak	t _R	Area	Area (%)
1	4.731	4576.1	49.973
2	5.759	4581.1	50.027

Peak	t _R	Area	Area (%)
1	4.912	13954.8	58.083
2	6.267	10070.9	41.917

Phenyl(3-phenyloxiran-2-yl)methanone

Peak	t _R	Area	Area (%)
1	9.304	547.6	49.702
2	10.223	554.1	50.298

Peak	t _R	Area	Area (%)
1	9.497	884.6	36.474
2	10.472	1540.7	63.526

See Entry 11, Table 2

Peak	t _R	Area	Area (%)
1	9.62	304.5	24.589
2	10.465	934	75.411

8 Investigation of Fe(III) complex via UV-Vis spectroscopy

9 Infrared Experiments of Fe(III) complex

¹H, 500 MHz, methanol-*d*₃

¹³C, 125.765 MHz, methanol-*d*₃

10 MS-ESI Experiment of Fe(III) complex

11 X-Ray Crystallographic Data

Table A

Experimental details

Crystal data	
Chemical formula	$C_{17}H_{30}N_4O$
$M_{ m r}$	306.45
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	141
<i>a</i> , <i>b</i> , <i>c</i> (Å)	6.9534 (3), 14.0923 (5), 18.9394 (7)
$V(Å^3)$	1855.86 (12)
Ζ	4
Radiation type	Cu Ka
$\mu (\mathrm{mm}^{-1})$	0.55
Crystal size (mm)	$0.45 \times 0.39 \times 0.26$
Data collection	
Diffractometer	Bruker D8 VENTURE
Absorption correction	Multi-scan
	SADABS2016/2 - Bruker AXS area detector scaling and absorption correction
T_{\min}, T_{\max}	0.677, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	12734, 3632, 3452
R _{int}	0.035
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.618

Table AExperimental details

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.038, 0.096, 1.09
No. of reflections	3632
No. of parameters	216
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.23, -0.18
Absolute structure	Refined as an inversion twin.
Absolute structure parameter	0.1 (4)

Computer programs: Bruker APEX3 software, SAINT V8.38A integration software, SORTAV (Blessing, 1995), SHELXS2013 (Sheldrick, 2008),

SHELXL2018/3 (Sheldrick, 2018), ORTEP-3 for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).

Table B

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4…O11 ⁱ	0.95	2.45	3.356 (2)	159
C6—H6A…N8	0.98	2.55	3.027 (2)	110
C6—H6C…O11 ⁱⁱ	0.98	2.54	3.482 (2)	162
N12—H12…N8	0.83 (3)	2.12 (2)	2.597 (2)	117 (2)

Symmetry codes: (i) -*x*+1/2, -*y*+1, *z*+1/2; (ii) -*x*+3/2, -*y*+1, *z*+1/2.

Computing details

Data collection: Bruker *APEX3* software; cell refinement: *SAINT* V8.38A integration software; data reduction: *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2018); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012).

(shelx)

Crystal data

$C_{17}H_{30}N_4O$	F(000) = 672
$M_r = 306.45$	$D_{\rm x} = 1.097 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, P2 ₁ 2 ₁ 2 ₁	Cu Ka radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 9103 reflections
a = 6.9534(3) Å	$\theta = 3.9 - 72.3^{\circ}$
b = 14.0923 (5) Å	$\mu = 0.55 \text{ mm}^{-1}$
c = 18.9394 (7) Å	T = 141 K
$V = 1855.86 (12) \text{ Å}^3$	Block, colourless
Z = 4	$0.45 \times 0.39 \times 0.26 \text{ mm}$
Data collection	
Bruker D8 VENTURE diffractometer	12734 measured reflections 3632 independent reflections
Radiation source: sealed x-ray microsource	3452 reflections with $I > 2\sigma(I)$
Multilayer mirrors monochromator	$R_{\rm int} = 0.035$
φ or ω oscillation scans	$\theta_{\text{max}} = 72.3^{\circ}, \ \theta_{\text{min}} = 3.9^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
SADABS2016/2 - Bruker AXS area detector scaling	$k = -17 \rightarrow 16$
and absorption correcti	$l = -22 \rightarrow 23$
$T_{min} = 0.677, T_{max} = 0.754$	

Refinement

Refinement on F^2	Hydrogen site location: mixed
Least-squares matrix: full	H atoms treated by a mixture of independent
$R[F^2 > 2\sigma(F^2)] = 0.038$	and constrained refinement
$wR(F^2) = 0.096$	$w = 1/[\sigma^2(F^2) + (0.0536P)^2 + 0.1847P]$
S = 1.09	where $P = (F_0^2 + 2F_c^2)/3$
3632 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
216 parameters	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
0 constraints	Absolute structure: Refined as an inversion twin.
Primary atom site location: dual	Absolute structure parameter: 0.1 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. *Refinement*. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	Uiso*/Ueq
C2	0.3729 (3)	0.51502 (13)	0.81217 (10)	0.0274 (4)
C4	0.2396 (3)	0.48785 (15)	0.91227 (11)	0.0371 (4)
H4	0.144996	0.478742	0.947808	0.045*
C5	0.4333 (3)	0.48187 (15)	0.92274 (10)	0.0338 (4)
Н5	0.496783	0.46861	0.96604	0.041*
C6	0.7258 (3)	0.49392 (16)	0.84670 (10)	0.0352 (4)
H6A	0.763954	0.544904	0.814422	0.053*
H6B	0.75851	0.432403	0.825763	0.053*
H6C	0.793877	0.501301	0.891665	0.053*
C7	0.3917 (3)	0.53921 (13)	0.73808 (10)	0.0272 (4)
C9	0.5455 (3)	0.56919 (12)	0.63061 (9)	0.0247 (4)
H9	0.408052	0.573869	0.61549	0.03*
C10	0.6423 (2)	0.48977 (13)	0.58749 (9)	0.0248 (3)
C13	0.8078 (3)	0.33434 (13)	0.59699 (10)	0.0300 (4)
H13	0.818462	0.342356	0.544672	0.036*
C14	1.0118 (3)	0.31556 (14)	0.62544 (11)	0.0331 (4)
C15	1.1452 (3)	0.39353 (17)	0.59928 (16)	0.0516 (6)
H15A	1.272017	0.386047	0.621168	0.077*
H15B	1.091777	0.455574	0.611966	0.077*
H15C	1.157823	0.389187	0.547843	0.077*
C16	1.0829 (3)	0.22042 (17)	0.59710 (18)	0.0551 (7)
H16A	1.069924	0.219389	0.545578	0.083*
H16B	1.00607	0.169023	0.61759	0.083*
H16C	1.21828	0.211756	0.609928	0.083*
C17	1.0160 (5)	0.3147 (3)	0.70620 (14)	0.0720 (9)
H17A	1.145193	0.297563	0.722449	0.108*
H17B	0.922929	0.268148	0.723832	0.108*
H17C	0.98247	0.377843	0.72406	0.108*
C18	0.6634 (3)	0.25497 (17)	0.61048 (17)	0.0544 (7)
H18A	0.711664	0.195721	0.589983	0.082*
H18B	0.539995	0.271339	0.588671	0.082*
H18C	0.645806	0.246831	0.66146	0.082*
C19	0.6426 (3)	0.66769 (13)	0.61868 (10)	0.0303 (4)
C20	0.8590 (3)	0.66265 (16)	0.63368 (12)	0.0403 (5)

	x	У	Ζ	Uiso*/Ueq
H20A	0.880126	0.634832	0.680459	0.06*
H20B	0.913638	0.726724	0.632361	0.06*
H20C	0.921503	0.623174	0.597792	0.06*
C21	0.6082 (4)	0.70108 (16)	0.54278 (12)	0.0447 (5)
H21A	0.672692	0.657792	0.509924	0.067*
H21B	0.660107	0.765247	0.536865	0.067*
H21C	0.469829	0.701575	0.532976	0.067*
C22	0.5494 (3)	0.73969 (15)	0.66897 (12)	0.0417 (5)
H22A	0.576565	0.721556	0.717924	0.062*
H22B	0.41006	0.740513	0.661321	0.062*
H22C	0.602216	0.802981	0.659783	0.062*
N1	0.5181 (2)	0.49860 (11)	0.85900 (8)	0.0280 (3)
N3	0.2014 (2)	0.50889 (13)	0.84311 (9)	0.0339 (4)
N8	0.5499 (2)	0.54364 (11)	0.70524 (8)	0.0257 (3)
N12	0.7308 (2)	0.42302 (12)	0.62562 (8)	0.0286 (3)
O11	0.6345 (2)	0.48868 (10)	0.52280 (7)	0.0374 (3)
H7	0.267 (3)	0.5536 (16)	0.7145 (12)	0.033 (6)*
H12	0.721 (3)	0.4291 (17)	0.6690 (13)	0.035 (6)*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0268 (8)	0.0257 (8)	0.0299 (8)	0.0000 (7)	0.0033 (7)	-0.0030 (7)
C4	0.0392 (10)	0.0389 (10)	0.0331 (9)	0.0029 (9)	0.0128 (8)	0.0010 (9)
C5	0.0422 (10)	0.0336 (9)	0.0257 (9)	0.0024 (9)	0.0059 (8)	-0.0005 (8)
C6	0.0261 (9)	0.0481 (12)	0.0315 (9)	0.0003 (8)	-0.0005 (7)	-0.0014 (9)
C7	0.0244 (9)	0.0268 (8)	0.0303 (9)	0.0020 (7)	-0.0002 (7)	-0.0024 (7)
С9	0.0223 (8)	0.0281 (8)	0.0236 (8)	0.0020 (7)	-0.0017 (6)	0.0016 (7)
C10	0.0229 (7)	0.0267 (8)	0.0250 (8)	-0.0016 (7)	-0.0014 (6)	-0.0008 (7)
C13	0.0301 (10)	0.0266 (9)	0.0333 (9)	0.0043 (7)	0.0007 (7)	-0.0022 (8)
C14	0.0295 (9)	0.0306 (9)	0.0393 (10)	0.0049 (8)	0.0009 (8)	0.0036 (8)
C15	0.0342 (11)	0.0348 (11)	0.0858 (18)	-0.0030 (10)	0.0005 (12)	0.0015 (12)
C16	0.0311 (11)	0.0326 (11)	0.102 (2)	0.0059 (9)	0.0098 (12)	-0.0033 (12)
C17	0.0647 (18)	0.105 (3)	0.0463 (14)	0.0288 (18)	-0.0145 (13)	0.0212 (16)
C18	0.0322 (11)	0.0338 (11)	0.097 (2)	0.0000 (9)	0.0089 (12)	-0.0044 (12)
C19	0.0337 (10)	0.0264 (9)	0.0309 (9)	0.0000 (8)	-0.0005 (8)	0.0011 (7)
C20	0.0350 (11)	0.0392 (11)	0.0467 (11)	-0.0094 (9)	0.0005 (9)	-0.0035 (10)
C21	0.0614 (15)	0.0350 (10)	0.0377 (11)	-0.0012 (10)	0.0006 (10)	0.0097 (9)
C22	0.0489 (12)	0.0280 (9)	0.0481 (12)	0.0027 (9)	0.0043 (10)	-0.0035 (9)
N1	0.0289 (7)	0.0285 (8)	0.0267 (7)	0.0000 (6)	0.0027 (6)	-0.0030 (6)
N3	0.0307 (8)	0.0362 (9)	0.0348 (8)	0.0010 (7)	0.0082 (7)	-0.0013 (7)
N8	0.0268 (7)	0.0265 (7)	0.0237 (7)	0.0018 (6)	-0.0009 (6)	-0.0004 (6)
N12	0.0326 (8)	0.0302 (8)	0.0229 (7)	0.0076 (7)	-0.0012 (6)	-0.0013 (6)
011	0.0494 (8)	0.0394 (8)	0.0235 (6)	0.0102 (7)	-0.0039 (6)	-0.0009 (6)

Geometric parameters

Bond lengths (Å)				
C2—N3	1.331 (2)	C14—C17	1.530 (3)	
C2—N1	1.364 (2)	C15—H15A	0.98	
С2—С7	1.450 (2)	C15—H15B	0.98	
C4—C5	1.363 (3)	C15—H15C	0.98	
C4—N3	1.369 (3)	C16—H16A	0.98	

	Bond lengths (\AA)		
C4—H4	0.95	C16—H16B	0.98
C5—N1	1.364 (2)	C16—H16C	0.98
С5—Н5	0.95	C17—H17A	0.98
C6—N1	1.464 (2)	C17—H17B	0.98
С6—Н6А	0.98	C17—H17C	0.98
C6—H6B	0.98	C18—H18A	0.98
С6—Н6С	0.98	C18—H18B	0.98
C7—N8	1.265 (2)	C18—H18C	0.98
С7—Н7	1.00 (2)	C19—C21	1.531 (3)
C9—N8	1.459 (2)	C19—C20	1.533 (3)
C9—C10	1.540 (2)	C19—C22	1.535 (3)
C9—C19	1.560 (3)	C20—H20A	0.98
С9—Н9	1	C20—H20B	0.98
C10-011	1.227 (2)	C20—H20C	0.98
C10—N12	1.336 (2)	C21—H21A	0.98
C13—N12	1.464 (2)	C21—H21B	0.98
C13—C18	1.525 (3)	C21—H21C	0.98
C13—C14	1.540 (3)	C22—H22A	0.98
C13—H13	1	C22—H22B	0.98
C14—C15	1.521 (3)	C22—H22C	0.98
C14—C16	1.527 (3)	N12—H12	0.83 (3)

Bond Angles (°)

N3-C2-N1	111.45 (16)	C14—C16—H16C	109.5
N3—C2—C7	121.50 (17)	H16A—C16—H16C	109.5
N1—C2—C7	127.03 (16)	H16B-C16-H16C	109.5
C5—C4—N3	110.12 (17)	C14—C17—H17A	109.5
C5—C4—H4	124.9	C14—C17—H17B	109.5
N3—C4—H4	124.9	H17A—C17—H17B	109.5
C4—C5—N1	106.73 (18)	C14—C17—H17C	109.5
C4—C5—H5	126.6	H17A—C17—H17C	109.5
N1—C5—H5	126.6	H17B—C17—H17C	109.5
N1-C6-H6A	109.5	C13-C18-H18A	109.5
N1-C6-H6B	109.5	C13-C18-H18B	109.5
H6A—C6—H6B	109.5	H18A—C18—H18B	109.5
N1-C6-H6C	109.5	C13-C18-H18C	109.5
H6A—C6—H6C	109.5	H18A—C18—H18C	109.5
H6B—C6—H6C	109.5	H18B-C18-H18C	109.5
N8—C7—C2	124.48 (17)	C21—C19—C20	109.96 (19)
N8—C7—H7	121.9 (13)	C21—C19—C22	108.27 (17)
С2—С7—Н7	113.6 (13)	C20—C19—C22	109.26 (18)
N8—C9—C10	108.98 (14)	С21—С19—С9	109.99 (16)
N8—C9—C19	110.54 (14)	С20—С19—С9	110.90 (16)
C10—C9—C19	112.38 (15)	С22—С19—С9	108.40 (16)
N8—C9—H9	108.3	C19—C20—H20A	109.5
С10—С9—Н9	108.3	C19—C20—H20B	109.5
С19—С9—Н9	108.3	H20A—C20—H20B	109.5
O11—C10—N12	123.46 (17)	C19—C20—H20C	109.5
O11—C10—C9	121.30 (16)	H20A—C20—H20C	109.5
N12-C10-C9	115.23 (15)	H20B-C20-H20C	109.5
N12-C13-C18	108.88 (17)	C19—C21—H21A	109.5

Bond Angles (°)			
N12-C13-C14	110.73 (16)	C19—C21—H21B	109.5
C18—C13—C14	114.94 (17)	H21A—C21—H21B	109.5
N12—C13—H13	107.3	C19—C21—H21C	109.5
C18—C13—H13	107.3	H21A—C21—H21C	109.5
C14—C13—H13	107.3	H21B-C21-H21C	109.5
C15—C14—C16	108.80 (18)	C19—C22—H22A	109.5
C15—C14—C17	108.6 (2)	C19—C22—H22B	109.5
C16—C14—C17	109.8 (2)	H22A—C22—H22B	109.5
C15—C14—C13	108.88 (17)	C19—C22—H22C	109.5
C16—C14—C13	109.04 (18)	H22A—C22—H22C	109.5
C17—C14—C13	111.64 (19)	H22B—C22—H22C	109.5
C14—C15—H15A	109.5	C2—N1—C5	106.52 (16)
C14—C15—H15B	109.5	C2—N1—C6	129.38 (15)
H15A—C15—H15B	109.5	C5—N1—C6	124.04 (16)
C14—C15—H15C	109.5	C2—N3—C4	105.17 (17)
H15A—C15—H15C	109.5	C7—N8—C9	118.07 (16)
H15B—C15—H15C	109.5	C10-N12-C13	124.71 (16)
C14—C16—H16A	109.5	C10—N12—H12	115.1 (17)
C14—C16—H16B	109.5	C13—N12—H12	119.1 (17)
H16A—C16—H16B	109.5		

Torsion Angles (°)

N3-C4-C5-N1	-0.5 (2)	C10—C9—C19—C22	-174.58 (15)
N3—C2—C7—N8	-178.00 (19)	N3-C2-N1-C5	-0.4(2)
N1-C2-C7-N8	3.9 (3)	C7—C2—N1—C5	177.86 (18)
N8-C9-C10-O11	170.40 (17)	N3-C2-N1-C6	176.74 (19)
C19—C9—C10—O11	-66.7 (2)	C7—C2—N1—C6	-5.0 (3)
N8-C9-C10-N12	-8.7 (2)	C4—C5—N1—C2	0.5 (2)
C19—C9—C10—N12	114.21 (18)	C4-C5-N1-C6	-176.78 (19)
N12-C13-C14-C15	-64.0(2)	N1-C2-N3-C4	0.1 (2)
C18—C13—C14—C15	172.1 (2)	C7—C2—N3—C4	-178.29 (18)
N12-C13-C14-C16	177.39 (18)	C5-C4-N3-C2	0.3 (2)
C18—C13—C14—C16	53.5 (3)	C2C7N8C9	-179.87 (16)
N12-C13-C14-C17	55.9 (3)	C10-C9-N8-C7	-122.76 (17)
C18—C13—C14—C17	-68.0 (3)	C19—C9—N8—C7	113.26 (18)
N8—C9—C19—C21	-170.77 (17)	O11-C10-N12-C13	-8.3 (3)
C10-C9-C19-C21	67.2 (2)	C9-C10-N12-C13	170.72 (16)
N8—C9—C19—C20	67.4 (2)	C18-C13-N12-C10	-98.8 (2)
C10—C9—C19—C20	-54.6 (2)	C14-C13-N12-C10	133.88 (19)
N8—C9—C19—C22	-52.6 (2)		

Table A

Experimental details

Crystal data	
Chemical formula	$C_{17}H_{33}N_4O$
$M_{ m r}$	309.47
Crystal system, space group	Monoclinic, P21
Temperature (K)	142
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.0138 (5), 13.0776 (8), 9.4290 (6)
β (°)	108.996 (4)
$V(Å^3)$	934.36 (10)
Ζ	2
Radiation type	Cu Ka
$\mu ({\rm mm}^{-1})$	0.55
Crystal size (mm)	0.32 imes 0.17 imes 0.11
Data collection	
Diffractometer	Bruker D8 VENTURE
Absorption correction	Multi-scan SADABS2016/2 - Bruker AXS area detector scaling and absorption correction
T_{\min}, T_{\max}	0.575, 0.752
No. of measured,	12600, 2823, 2188
independent and	
observed $[I > 2\sigma(I)]$	
reflections	0.005
R _{int}	0.085
θ_{\max} (°)	61.4
$(\sin \theta / \lambda)_{\max} (A^{-1})$	0.570
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.136, 1.05
	S36

L10

Table A

Experimental details

No. of reflections	2823
No. of parameters	212
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({ m e \ \AA^{-3}})$	0.14, -0.36
Absolute structure	Flack x determined using 788 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.2 (3)

Computer programs: Bruker APEX3 software, SAINT V8.38A integration software, SORTAV (Blessing, 1995), SHELXS2013 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2018), ORTEP for Windows (Farrugia, 2012), WinGX publication routines (Farrugia, 2012).

Table B

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C5—H5…O11 ⁱ	0.95	2.54	3.461 (6)	162
N12—H12…N3 ⁱⁱ	1.00 (6)	2.12 (6)	3.112 (6)	173 (5)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1.

Computing details

Data collection: Bruker *APEX3* software; cell refinement: *SAINT* V8.38A integration software; data reduction: *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2018); molecular graphics: *ORTEP* for Windows (Farrugia, 2012); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012).

(shelx)

Crystal data

C ₁₇ H ₃₃ N ₄ O $M_r = 309.47$ Monoclinic, P2 ₁ Hall symbol: P2yb a = 8.0138 (5) Å b = 13.0776 (8) Å c = 9.4290 (6) Å $\beta = 108.996$ (4)° V = 934.36 (10) Å ³ Z = 2	F(000) = 342 $D_x = 1.1 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 4408 reflections $\theta = 5.0-61.0^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 142 K Nedle, yellow $0.32 \times 0.17 \times 0.11 \text{ mm}$
--	---

Data collection

Bruker D8 VENTURE	12600 measured reflections
diffractometer	2823 independent
Radiation source: sealed x-ray microsource	reflections 2188
Graphite monochromator	reflections with $I > 2\sigma(I)$
φ or ω oscillation scans	$R_{\rm int} = 0.085$
Absorption correction: multi-scan	$\theta_{\text{max}} = 61.4^{\circ}, \ \theta_{\text{min}} = 5.0^{\circ}$
<i>SADABS2016</i> /2 - Bruker AXS area detector scaling	$h = -9 \rightarrow 9$
and absorption correction	$k = -14 \rightarrow 14$
$T_{\min} = 0.575, \ T_{\max} = 0.752$	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	H atoms treated by a mixture of independent and constrained
Least-squares matrix: full	refinement
$R[F^2 > 2\sigma(F^2)] = 0.053$	$w = 1/[\sigma^2(F_o^2) + (0.0604P)^2 + 0.2044P]$
$wR(F^2) = 0.136$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
2823 reflections	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
212 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
1 restraint	Extinction correction: SHELXL2018/3 (Sheldrick 2018),
0 constraints	$Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: dual	Extinction coefficient: 0.015 (2)
Secondary atom site location: difference Fourier map	Absolute structure: Flack x determined using 788 quotients
Hydrogen site location: mixed	[(I+)-(I-)]/[(I+)+(I-)]
	(Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-
	259).
	Absolute structure parameter: 0.2 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	Uiso*/Ueq
C2	0.3348 (6)	0.6980 (4)	0.3103 (5)	0.0382 (11)
C4	0.3312 (7)	0.8611 (4)	0.2862 (6)	0.0462 (13)
H4	0.35655	0.931443	0.307661	0.055*
C5	0.2177 (7)	0.8236 (4)	0.1544 (6)	0.0455 (13)
Н5	0.150157	0.861998	0.069571	0.055*
C6	0.1311 (8)	0.6446 (4)	0.0569 (6)	0.0610 (16)
H6A	0.071904	0.679762	-0.038017	0.092*
H6B	0.043321	0.608073	0.089694	0.092*
H6C	0.216946	0.595744	0.04262	0.092*
C7	0.3643 (6)	0.5916 (4)	0.3689 (5)	0.0402 (12)
H7A	0.375645	0.545345	0.289401	0.048*
H7B	0.475741	0.588434	0.454325	0.048*
С9	0.2174 (7)	0.4479 (3)	0.4451 (5)	0.0399 (12)
H9	0.33545	0.428946	0.517268	0.048*
C10	0.1924 (7)	0.3884 (4)	0.2987 (5)	0.0411 (12)
C13	0.2989 (7)	0.2483 (3)	0.1769 (6)	0.0441 (13)
H13	0.182689	0.263213	0.099002	0.053*
C14	0.4412 (6)	0.2703 (4)	0.1042 (5)	0.0466 (12)
C15	0.6244 (8)	0.2388 (5)	0.2048 (7)	0.0696 (18)
H15A	0.712189	0.259567	0.158441	0.104*
H15B	0.628447	0.164366	0.217997	0.104*
H15C	0.650458	0.272049	0.30275	0.104*
C16	0.3938 (8)	0.2135 (5)	-0.0458 (6)	0.0645 (17)
H16A	0.274134	0.232295	-0.108318	0.097*
H16B	0.399434	0.139552	-0.027595	0.097*
H16C	0.477638	0.232147	-0.097413	0.097*
C17	0.4435 (8)	0.3847 (4)	0.0725 (6)	0.0594 (16)
H17A	0.489048	0.422025	0.167537	0.089*
H17B	0.323367	0.407958	0.01827	0.089*
H17C	0.519617	0.397686	0.011484	0.089*
C18	0.2916 (9)	0.1377 (4)	0.2241 (6)	0.0618 (16)

	x	У	Ζ	Uiso*/Ueq
H18A	0.277223	0.092684	0.137794	0.093*
H18B	0.191415	0.128578	0.260932	0.093*
H18C	0.401311	0.120407	0.303971	0.093*
C19	0.0762 (7)	0.4195 (4)	0.5182 (5)	0.0473 (13)
C20	0.0639 (8)	0.3039 (4)	0.5296 (7)	0.0593 (15)
H20A	-0.015704	0.286892	0.586023	0.089*
H20B	0.181366	0.275884	0.581448	0.089*
H20C	0.018026	0.274557	0.428684	0.089*
C21	0.1366 (9)	0.4653 (5)	0.6773 (6)	0.0627 (17)
H21A	0.141411	0.540003	0.670733	0.094*
H21B	0.254068	0.439047	0.733583	0.094*
H21C	0.052905	0.44613	0.728686	0.094*
C22	-0.1051 (7)	0.4627 (5)	0.4306 (6)	0.0557 (15)
H22A	-0.193409	0.435466	0.472006	0.084*
H22B	-0.135983	0.442913	0.32489	0.084*
H22C	-0.102243	0.537427	0.438568	0.084*
N1	0.2217 (5)	0.7193 (3)	0.1702 (5)	0.0412 (10)
N3	0.4031 (5)	0.7818 (3)	0.3831 (4)	0.0442 (10)
N8	0.2189 (5)	0.5574 (3)	0.4178 (5)	0.0420 (11)
H8A	0.22442	0.591095	0.503666	0.05*
H8B	0.115367	0.57492	0.346681	0.05*
N12	0.3115 (6)	0.3156 (3)	0.3053 (5)	0.0415 (10)
011	0.0704 (4)	0.4108 (3)	0.1833 (4)	0.0496 (10)
H12	0.410 (8)	0.308 (5)	0.402 (7)	0.080 (19)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.037 (3)	0.038 (3)	0.037 (3)	-0.002 (2)	0.009 (2)	0.003 (2)
C4	0.054 (3)	0.036 (3)	0.050 (3)	0.000 (2)	0.018 (3)	0.006 (2)
C5	0.047 (3)	0.043 (3)	0.044 (3)	0.007 (2)	0.011 (2)	0.011 (2)
C6	0.070 (4)	0.053 (4)	0.043 (3)	-0.002(3)	-0.004 (3)	-0.002 (3)
C7	0.040 (3)	0.040 (3)	0.038 (3)	0.000(2)	0.009 (2)	0.000(2)
C9	0.048 (3)	0.030 (3)	0.036 (3)	0.000(2)	0.005 (2)	0.001 (2)
C10	0.042 (3)	0.039 (3)	0.039 (3)	-0.003(2)	0.008 (2)	0.001 (2)
C13	0.052 (3)	0.032 (3)	0.040 (3)	0.000 (2)	0.004 (2)	-0.001 (2)
C14	0.048 (3)	0.048 (3)	0.040 (3)	0.005 (3)	0.010 (2)	-0.005(2)
C15	0.064 (4)	0.073 (5)	0.064 (4)	0.012 (3)	0.010 (3)	-0.008 (3)
C16	0.073 (4)	0.073 (5)	0.046 (3)	-0.001 (3)	0.018 (3)	-0.012 (3)
C17	0.068 (4)	0.061 (4)	0.059 (3)	-0.004 (3)	0.035 (3)	0.003 (3)
C18	0.090 (4)	0.036 (3)	0.048 (3)	-0.002 (3)	0.007 (3)	0.001 (3)
C19	0.052 (3)	0.047 (3)	0.043 (3)	-0.010 (3)	0.016 (2)	0.001 (2)
C20	0.073 (4)	0.043 (4)	0.061 (4)	-0.010 (3)	0.021 (3)	0.006 (3)
C21	0.077 (4)	0.068 (4)	0.050(3)	-0.016 (3)	0.030 (3)	-0.007(3)
C22	0.047 (3)	0.061 (4)	0.061 (4)	-0.004 (3)	0.021 (3)	0.006 (3)
N1	0.044 (2)	0.034 (3)	0.041 (2)	0.0030 (18)	0.0081 (19)	0.0042 (18)
N3	0.052 (2)	0.035 (2)	0.045 (2)	-0.005(2)	0.0149 (19)	0.000(2)
N8	0.046 (3)	0.037 (3)	0.043 (2)	-0.0019 (18)	0.015 (2)	-0.0006 (18)
N12	0.052 (3)	0.030 (2)	0.037 (2)	0.001 (2)	0.009 (2)	-0.0033 (17)
O11	0.051 (2)	0.048 (2)	0.041 (2)	0.0042 (17)	0.0036 (17)	0.0014 (17)

Geometric parameters

	Ва	ond lengths (Å)		
C2—N3	1.314 (6)	C15—H15A	0.98	
C2—N1	1.366 (6)	C15—H15B	0.98	

Bond lengths (Å)				
C2—C7	1.488 (7)	C15—H15C	0.98	-
C4—C5	1.369 (7)	C16—H16A	0.98	
C4—N3	1.378 (6)	C16—H16B	0.98	
C4—H4	0.95	C16—H16C	0.98	
C5—N1	1.372 (6)	C17—H17A	0.98	
С5—Н5	0.95	C17—H17B	0.98	
C6—N1	1.455 (6)	C17—H17C	0.98	
C6—H6A	0.98	C18—H18A	0.98	
C6—H6B	0.98	C18—H18B	0.98	
C6—H6C	0.98	C18—H18C	0.98	
C7—N8	1.456 (6)	C19—C20	1.520 (8)	
C7—H7A	0.99	C19—C22	1.527 (7)	
С7—Н7В	0.99	C19—C21	1.540 (7)	
C9—N8	1.456 (6)	C20—H20A	0.98	
C9—C10	1.539 (7)	C20—H20B	0.98	
C9—C19	1.550 (7)	C20—H20C	0.98	
С9—Н9	1	C21—H21A	0.98	
C10-011	1.238 (5)	C21—H21B	0.98	
C10-N12	1.335 (6)	C21—H21C	0.98	
C13—N12	1.473 (6)	C22—H22A	0.98	
C13—C18	1.521 (7)	C22—H22B	0.98	
C13—C14	1.537 (7)	C22—H22C	0.98	
С13—Н13	1	N8—H8A	0.91	
C14—C15	1.522 (7)	N8—H8B	0.91	
C14—C17	1.528 (8)	N12—H12	1.00 (6)	
C14-C16	1.532 (7)			

Bond Angles (°)

N3—C2—N1	111.6 (4)	H16A—C16—H16C	109.5
N3—C2—C7	126.7 (4)	H16B—C16—H16C	109.5
N1—C2—C7	121.7 (4)	C14—C17—H17A	109.5
C5—C4—N3	110.1 (5)	C14—C17—H17B	109.5
C5—C4—H4	124.9	H17A—C17—H17B	109.5
N3—C4—H4	124.9	C14—C17—H17C	109.5
C4—C5—N1	105.8 (5)	H17A—C17—H17C	109.5
C4—C5—H5	127.1	H17B—C17—H17C	109.5
N1-C5-H5	127.1	C13-C18-H18A	109.5
N1—C6—H6A	109.5	C13-C18-H18B	109.5
N1—C6—H6B	109.5	H18A—C18—H18B	109.5
H6A—C6—H6B	109.5	C13-C18-H18C	109.5
N1—C6—H6C	109.5	H18A—C18—H18C	109.5
H6A—C6—H6C	109.5	H18B-C18-H18C	109.5
H6B—C6—H6C	109.5	C20—C19—C22	109.5 (5)
N8—C7—C2	111.0 (4)	C20—C19—C21	109.0 (5)
N8—C7—H7A	109.4	C22—C19—C21	109.0 (5)
C2—C7—H7A	109.4	C20—C19—C9	110.1 (4)
N8—C7—H7B	109.4	C22—C19—C9	112.0 (4)
С2—С7—Н7В	109.4	C21—C19—C9	107.2 (4)
H7A—C7—H7B	108	C19—C20—H20A	109.5
N8-C9-C10	110.2 (4)	C19—C20—H20B	109.5
N8—C9—C19	111.3 (4)	H20A-C20-H20B	109.5
C10—C9—C19	112.1 (4)	C19—C20—H20C	109.5
N8—C9—H9	107.7	H20A—C20—H20C	109.5
С10—С9—Н9	107.7	H20B-C20-H20C	109.5
С19—С9—Н9	107.7	C19—C21—H21A	109.5
O11-C10-N12	123.8 (5)	C19—C21—H21B	109.5

Bond Angles (°)			
O11—C10—C9	120.3 (5)	H21A—C21—H21B	109.5
N12-C10-C9	115.8 (4)	C19—C21—H21C	109.5
N12-C13-C18	109.1 (4)	H21A—C21—H21C	109.5
N12-C13-C14	113.1 (4)	H21B-C21-H21C	109.5
C18—C13—C14	114.4 (5)	C19—C22—H22A	109.5
N12-C13-H13	106.6	C19—C22—H22B	109.5
C18—C13—H13	106.6	H22A—C22—H22B	109.5
C14—C13—H13	106.6	C19—C22—H22C	109.5
C15—C14—C17	108.5 (5)	H22A—C22—H22C	109.5
C15-C14-C16	110.0 (5)	H22B—C22—H22C	109.5
C17—C14—C16	108.1 (4)	C2—N1—C5	107.0 (4)
C15-C14-C13	112.1 (5)	C2—N1—C6	126.1 (4)
C17—C14—C13	109.2 (4)	C5—N1—C6	126.8 (4)
C16-C14-C13	108.9 (4)	C2—N3—C4	105.6 (4)
C14—C15—H15A	109.5	C9—N8—C7	114.3 (4)
C14—C15—H15B	109.5	C9—N8—H8A	108.7
H15A—C15—H15B	109.5	C7—N8—H8A	108.7
C14—C15—H15C	109.5	C9—N8—H8B	108.7
H15A—C15—H15C	109.5	C7—N8—H8B	108.7
H15B-C15-H15C	109.5	H8A—N8—H8B	107.6
C14—C16—H16A	109.5	C10-N12-C13	122.1 (4)
C14—C16—H16B	109.5	C10—N12—H12	117 (4)
H16A—C16—H16B	109.5	C13—N12—H12	120 (4)
C14—C16—H16C	109.5		

Torsion Angles (°)

N3-C4-C5-N1	-0.7 (6)	C10-C9-C19-C21	168.3 (4)
N3—C2—C7—N8	99.0 (5)	N3—C2—N1—C5	-0.5 (6)
N1—C2—C7—N8	-77.9 (5)	C7—C2—N1—C5	176.8 (5)
N8—C9—C10—O11	-50.8 (6)	N3-C2-N1-C6	176.3 (5)
C19—C9—C10—O11	73.7 (6)	C7—C2—N1—C6	-6.3 (7)
N8—C9—C10—N12	127.4 (5)	C4—C5—N1—C2	0.7 (6)
C19—C9—C10—N12	-108.1 (5)	C4—C5—N1—C6	-176.1 (5)
N12-C13-C14-C15	70.0 (6)	N1—C2—N3—C4	0.1 (5)
C18—C13—C14—C15	-55.8 (6)	C7—C2—N3—C4	-177.1 (5)
N12-C13-C14-C17	-50.2 (5)	C5—C4—N3—C2	0.4 (6)
C18-C13-C14-C17	-176.0 (4)	C10-C9-N8-C7	-63.2 (5)
N12-C13-C14-C16	-168.0 (4)	C19—C9—N8—C7	171.8 (4)
C18—C13—C14—C16	66.2 (6)	C2C7N8C9	167.0 (4)
N8—C9—C19—C20	173.8 (4)	O11-C10-N12-C13	-5.5 (8)
C10-C9-C19-C20	49.9 (6)	C9-C10-N12-C13	176.3 (4)
N8—C9—C19—C22	51.7 (5)	C18—C13—N12—C10	-121.9 (5)
С10—С9—С19—С22	-72.2 (5)	C14-C13-N12-C10	109.5 (5)
N8—C9—C19—C21	-67.8 (5)		