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Abstract: To successfully design and optimize the application of hydrogel matrices one has to
effectively combine computational design tools with experimental methods. In this context, one of
the most promising techniques is molecular modeling, which requires however accurate molecular
models representing the investigated material. Although this method has been successfully used
over the years for predicting the properties of polymers, its application to biopolymers, including
gelatin, is limited. In this paper we provide a method for creating an atomistic representation of
gelatin based on the modified FASTA codes of natural collagen. We show that the model created in
this manner reproduces known experimental values of gelatin properties like density, glass-rubber
transition temperature, WAXS profile and isobaric thermal expansion coefficient. We also present that
molecular dynamics using the INTERFACE force field provides enough accuracy to track changes
of density, fractional free volume and Hansen solubility coefficient over a narrow temperature
regime (273–318 K) with 1 K accuracy. Thus we depict that using molecular dynamics one can
predict properties of gelatin biopolymer as an efficient matrix for immobilization of various bioactive
compounds, including enzymes.
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1. Introduction

In recent years, a significant growth has been observed in the dynamics of research on naturally
derived polymers [1–3]. Due to their widespread availability in nature and beneficial properties such
as renewability, non-toxicity, biocompatibility and biodegradability, bio-origin materials have become
favourable alternatives to conventional fossil-based polymers [4,5]. Currently, intensive research is
focused on the field of biomaterials development. This phenomenon is the indicated response related
to the increased pro-ecological consciousness of worldwide society as well as to the gradual decline
in oil resources resulting in reduced availability of polymers based on petroleum derivatives [6,7].
Biopolymers of natural origin (e.g., cellulose, chitosan, agarose, carrageenan, alginate, pectins, gelatin,
milk proteins, etc.) are huge group of multipurpose organic compounds of diverse functional properties,
based on the specificity of the reactive groups present in their structure. This all contributes to the
fact that renewable polymeric biomaterials are currently being successfully utilized in a variety of
medical [8–10], pharmaceutical [11–13], food processing [3,14–17], sensing [18–21], agricultural [22,23],
environmental protection [24–26] and other biotechnological applications.
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Moreover, the use of hydrogels based on natural-derived biopolymers as carriers for effective
immobilization of biocatalysts is of great practical interest [3,27–32]. The application of this type of
matrices is relatively simple, cheap and does not cause severe changes in the native structure of
enzymes after immobilization, which enable them to retain an appropriate level of catalytic properties.
Most of all, the significant merits of hydrogel-based natural carriers are their ability to create multilayer
and semipermeable systems, similarity to natural tissues, green/pro-environmental character and the
possibility of simple modification of their functional properties by changing the ratio of individual
building blocks and/or introducing new components into their structures [33–35].

To date, most studies on obtaining hydrogels with the desired properties have been performed only
experimentally—generally using the so-called trial and error method [33]. As a final result, this pathway
can be fairly effective, but its execution is long, tedious and requires outstanding practical experience.
Taking into account the time and costs of experimental research, it would be much more efficient
and economical to use computational tools enabling virtual design of a three-dimensional hydrogel
network with specific structural properties, i.e., crosslinking degree, pore size, and mechanical strength.
In this way, it would be possible to design hydrogel materials with given characteristics required for
a particular application without the necessity to perform a series of experimental preliminary tests.
Moreover, it is anticipated, that thanks to this solution, it would be feasible to restrict the range of
concentrations of individual reagents (such as: hydrogel building blocks, or cross-linking agents)
considered during practical research on preparation of materials with the desired properties.

The subject of our research is gelatin—the product of partial acidic or alkaline hydrolysis
of collagen—which consists of peptide chains of varying length [36]. Due to its biocompatibility,
biodegradability, high availability and low cost this animal-originated biopolymer is widely used in
variety of practical applications. The multi-functionality of gelatin is also determined by numerous
active moieties located on its polypeptide chains, which are potential crosslinking and docking sites
for a variety of desirable functional molecules [37–39]. Furthermore, this biopolymer is considered as
Generally Recognized As Safe (GRAS) by the United States Food and Drug Administration (FDA) [40].
That makes it the material of choice in many targeted applications in the food, cosmetics, pharmaceutical
and medical industries [40–43]. Although there are numerous experimental studies concerning the
properties and utilization of gelatin, papers analysing its features using molecular modeling are few at
most [44–47]. One probable reason is the difficulty in creating a reliable atomistic model due to the
complex nature of gelatin as a biopolymer. Natural occurring gelatin consists of 13 semi-randomly
ordered units of amino acids and thus creating reliable yet efficient models is difficult. The most detailed
studies are those performed by Zaupa et. al. [45,46] where they studied functionalized gelatin models
with desaminotyrosine (DAT) and desaminotyrosyl-tyrosine (DATT). Using a combination of classical
methods like Molecular Dynamics [48] and Monte Carlo [49] they related the level of functionalization
with the swelling degree and mechanical properties of gelatin. In turn, Knani et al. [47] studied novel
porous soy protein conjugates with gelatin and alginate. Using molecular dynamics they calculated the
mixing energies between soy and gelatin and alginate. By calculating the radial distribution function
they estimated the interaction distance between the compounds and crosslinking agent and thus
crosslinking degree.

In order to optimize the utilization of a biopolymer matrix one has to have a method of relating
its chemical and physical characteristics with the individual properties of the immobilized compound.
Since in our research studies we focused on using gelatin and its derivatives as a carrier for enzyme
immobilization, the crucial factors that determine its application are related with mechanical, structural
and transport features of the investigated bio-matrix. The activity of the enzyme is directly related
with the diffusion of the substrates and products through the polymer net, whereas its stability is
related to the mechanical and energetic properties. Molecular modeling approaches may thus offer
the possibility of directly relating the chemical structure of such a bio-matrix with its applications, in
this case enzyme immobilization. The fundamental problem in this approach is a creation of a proper
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molecular model of the gelatin that could be effectively used to reproduce the desired properties of
materials based on this biopolymer.

The main roadmap of the research is to create a method that combines both experimental data
and simulations to optimize the application of a hydrogel matrix as an enzyme immobilization carrier.
To fulfill this goal one needs to know the operational parameters of the matrix (density, pore distribution,
transport and mechanical properties, reactivity, swelling, etc.) as a function of temperature and the
chemical properties of the matrix itself modified by the crosslinks and functional groups. In molecular
simulations the first step is to create a reliable atomistic model. The model has to be then validated
by the agreement of chosen observables calculated in simulations with experimental values. In our
paper we choose such observables as density (giving the rough estimation of packing and separation
of mass of polymer in the given volume), glass-rubber transition temperature, thermal expansion
coefficient, Hansen solubility parameter and wide angle X-ray scattering (WAXS) profiles. We postulate
that the gelatin model proposed in our research will also give the possibility of tracking structural
changes like specific volume and fractional free volume in the temperature operational range of the
considered enzyme. In order to provide simulation data including solvent effects explicitly one has to
use coarse-grained simulations like dissipative particle dynamics (DPD). In this approach, the definition
of the super-atom structure (beads) is given by the definition of atomistic model of the investigated
polymer and the interactions between super-atoms (beads) are a function of the Hansen solubility
parameter. Once the DPD model is created, it is possible to measure the pore distribution and other
properties in the presence of solvent and compare it with experimental values. Due these facts the
choice of the initial atomistic model of gelatin and validation of structural (density, WAXS), energetic
(Hansen solubility parameter) and thermal (isobaric thermal expansion coefficient) parameters iare
crucial steps towards study of hydrogel in the presence of solvent and eventually an immobilized
enzyme in a given range of operational temperatures.

We intend to show that molecular dynamics as applied to our model provides enough accuracy
to predict some fundamental properties of gelatin as a polymer, like density, glass-rubber transition
temperature, isobaric thermal expansion coefficient and WAXS profile. Then by varying temperature
from 273 to 318 K we are able to track changes of its density, fractional free volume (FFV) and Hansen
solubility parameter. In the following studies, it is planned to include solvent effect using our previously
validated gelatin model.

2. Results

2.1. Structural Model of Gelatin

In this section we propose a novel method to create a virtual model of gelatin fibers from
collagen PDB structures as well as various results verifying the correctness of our model. Gelatin is
an important material in biotechnology, medicine and food industry. Thus one requires detailed
studies of its mechanical, transport, sorption and chemical properties. Among a number of methods
available to analyze the aforementioned features molecular modeling is one of the most versatile.
In order to apply molecular modeling techniques like ab initio, Molecular Dynamics, Monte Carlo and
eventually coarse-grained methods like DPD, one need first an atomistic model of the gelatin structure.
Unfortunately the literature or available structural databases do not provide a detailed gelatin sequence.
Thus in our work we have developed a procedure to create such a model using combination of currently
available software supported by scripts written in Python programming language.

The procedure starts by importing the human-derived α-1 collagen fiber FASTA code from the
Uniprot database. It should be noted that one of the key features of the gelatin structure is a presence of
hydroxylated prolines. Unfortunately this molecular residue is not present in the original FASTA code.
Thus to fill this gap in our code the hydroxyproline is denoted as an X element. After this operation,
the collagen string is represented by 1464 amino acids (see the Materials and Methods section).
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The sequence is then divided using Python code simulating natural gelatin cleavage by trypsin.
Trypsin cut peptides on the C-terminal side of lysine and arginine amino acid residues. If a proline
residue is on the carboxyl side of the cleavage site, the cleavage will not occur. Once we obtain the
FASTA code with an appropriate distribution of peptides the code is being translated to PDB molecular
format using the Avogadro software. As a result we have obtained a gelatin chain consisting of
280 amino acids (Figure 1). Using the procedure proposed in our study, one can create gelatin fibers of
any length or number of chains.
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Figure 1. Final gelatin sequence of 280 amino acids length. Abbreviations: G—Glycine,
A—Alanine, V—Valine, L—Leucine, I—Isoleucine, P—Proline, X—Hydroxyproline, S—Serine,
T—Threonine, M—Methionine, F—Phenylalanine, D—Aspartic acid, N—Asparagine, E—Glutamic
acid, Q—Glutamine, K—Lysine, R—Arginine.

Having obtained the appropriate structure file, the gelatin fiber was then folded using
Polymatic [50] tool and INTERFACE force field (Figure 2).
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atoms are colored in grey, oxygen in red, nitrogen in blue and hydrogen in white.

INTERFACE is an extension of the PCFF force field using the same functional form, however,
the parametrization has been majorly improved. The interesting property of the INTERFACE FF is
its transferability, which give it the ability to study organic-inorganic systems. Furthermore, it was
optimized to study given phenomena under various pH conditions. Thus it is the computational tool
of special interest in the case of research on hydrogel matrices. Due to possibility of analyzing not only
hydrogel structure but also pH dependent interfaces of complex solid state hydrogel. The detailed
discussion about parametrization and properties of the INTERFACE force field may be found in our
pervious study [48].
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2.2. Veryfication of the Model

In order to verify the obtained model, the system was then equilibrated using Molecular Dynamics
as implemented in the LAMMPS simulation package. The motion equations were integrated using the
Velocity Verlet algorithm with a 1 fs timestep. The studied system is highly amorphous and has a large
number of degrees of freedom. Therefore, it requires an equilibration protocol that prevents the system
from occupying a high energy metastable state. Thus, we have derived the equilibration protocol that
includes heating up and careful cooling down steps. First, the system was heated up to 600 K in the
NPT canonical ensemble using Nose-Hoover thermostat and Andersen barostat (1 Pa) and then was
equilibrated for 300 ps and after that gradually cooled down by 50 K in each step. In each run, the
temperature and pressure were equilibrated for 50 ps until next step began. Upon reaching desired
final temperature i.e., 298 K the system was equilibrated for another 500 ps in NPT ensemble and then
for another 500 ps in NVT ensemble. This procedure lead to obtain the final density 1.3248 g/cm3 being
only 2% lesser from experimental value 1.35 g/cm3 [51].

To further investigate the quality of our model we have calculated the WAXS profiles in the range
of 5 to 50 degrees of the 2θ angle (Figure 3). The major peak of WAXS profile of the model is located at
19.39◦. This value is slightly larger from that of natural dry gelatin (22.40◦) suggesting that gelatin
fibers are separated a little more from each other than in the natural state. That conclusion corresponds
well with a little lesser density of virtual model of gelatin proposed in this study.
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By calculating the change of specific volume being defined as the inverse of the density, one
may also estimate glass-rubber transition (Tg). By performing series of NPT-MD simulations in the
temperature range of 100 to 600 K we estimated Tg as 424.7 K (Figure 4). One has to point out is that the
experimental result concerning the Tg of dry gelatin is not well established as an exact value. There are
numerous experimental values given in the literature [53], ranging from 368 K to 473 depending on
the chosen method (dilatometry, viscoelastic, DTA). The most reliable result seems to be 448 ± 10 K
reported in the Polymer Data Handbook [53] which is very close to our result (424.7 K). Such agreement
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indicates that our model, besides properly mapping structural changes, may also reproduce thermal
coefficients like heat capacity or isobaric thermal coefficient.
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2.3. Temperature Resolution of the Model

Since in our study the crucial factor is the temperature resolution of the model we studied the
change of temperature in 273–318 K regime with 1 K temperature increment. One of the characteristic
values for polymeric identifying its thermal properties if the isobaric thermal coefficient defined as:

αp =
1
V

(
∂V
∂T

)
p

(1)

where V is the volume and T is the temperature. To the best of our knowledge, the isobaric thermal
coefficient of the solid gelatin is unknown. Taffel [54] calculated the mean isobaric thermal coefficient of
the 25% gelatin mixture in water in the temperature range 273–318 K as 3.864 × 10−4 1/K. As indicated
in his work, assuming a linear relationship of gelatin thermal expansion coefficient with water
concentration, its value obtained for dry gelatin is 8 × 10−4 1/K. In our simulation we calculate the
density (ρ) of the system. Nevertheless, using the fact that ρ = M/V where M is the total mass of the
system and V its volume the equation can be easily transformed into:

αp = −

(
∂lnρ
∂T

)
p

(2)

Thus by measuring the slope of the lnρ(T) function one can calculate the isobaric thermal
expansion coefficient (αp) (Figure 5). to the value obtained as a result of our study (6.072 × 10−4 1/K) is
being very close to the value predicted by Taffel (8 × 10−4 1/K) [54].
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The value of the slope is −6.0723 ∗ 10−4
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K .

The ANOVA analysis (Table 1) indicates that although large variations in the value of the Lnρ
values around the line there is enough data to postulate linear change of the Lnρ with temperature.

Table 1. ANOVA table for Lnρ(T) model indicating that non-zero slope value hypothesis cannot be
rejected (DF—degrees of freedom, SSE—Sum of Squared Errors, MSE—Mean Squared Error).

DF SSE MSE F Value p-Value

Lnρ
Model 1 0.00211 0.00211 47.56219 2.61381 × 10−8

Error 40 0.00177 4.42581 ×
10−5

Total 41 0.00388

At the final stage of our analysis of developed gelatin model we have calculated the changes of
Hansen solubility parameter and fractional free volume with temperature. The Hansen solubility
parameter δ is defined as:

δ =
√

CED, (3)

where CED is the cohesive energy density of the system.
The Hansen solubility parameter was computed by dividing the value of the total non-bonded

energy predicted by the INTERFACE force field Ei by the actual volume Vi of the unit cell in the
simulation in every frame of the simulation and averaging over the number N of frames in the NPT
equilibrium regime:

δ(T) =

∑N
i=1

√
Enb

i (Ti)

Vi(Ti)

N
(4)

The results are presented in Figure 6.
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Our model indicates that the Hansen solubility parameter for 298 K 27.2 ± 0.05 MPa0.5. This value
is a little higher than the one obtained by Zaupa et al. [46] (25.02 ± 3.6 MPa0.5). However, his model
included 0.8% of water resulting in smaller density of the system namely 1.233 g/cm3. Due to larger
separation between chains in the Zaupa model, such differences may be expected. We also calculated
the change of δ with temperature (Figure 6). The ANOVA test (Table 2) also in this case indicated that
tracking the change of δ using our model is possible.

Table 2. ANOVA table for δ(T) model indicating that non-zero slope value hypothesis cannot be
rejected, (DF—degrees of freedom, SSE—Sum of Squared Errors, MSE—Mean Squared Error).

DF SSE MSE F Value p-Value

δ(T)
Model 1 0.54061 0.54061 9.68304 0.00347

Error 39 2.17741 0.05583

Total 40 2.71802

The fractional free volume (FFV) is defined as:

FFV =
Vtotal −Vgelatin

Vtotal
(5)

where Vtotal is the total volume of the simulation box and Vgelatin is the volume of space occupied
by the polymer. Thus by calculating the volume of the simulation box and gelatin in every frame in
equilibrium one can easily calculate the dependence of FFV on temperature (Figure 7) as:

FFV(T) =
∑N

i=1 FFVi(Ti)

N
(6)
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Moreover, as one can see from ANOVA analysis (Table 3) our model provides enough statistical
evidence to track changes of FFV in the operational temperature range of the enzyme in such cross-linked
gelatin matrix.

Table 3. The ANOVA table for FFV(T) model indicating that non-zero slope value hypothesis cannot
be rejected, (DF—degrees of freedom, SSE—Sum of Squared Errors, MSE—Mean Squared Error).

DF SSE MSE F Value p-Value

FFV
Model 1 0.00153 0.00153 22.45198 2.71 × 10−5

Error 40 0.00272 6.79 × 10−5

Total 41 0.00424

3. Discussion

The typical approach for studying and optimizing the applications of gelatin is a biochemical
one, where gelatin is treated as a protein derivative and its properties are mainly governed by the
different kinds of functionalization. In our complementary approach, we consider gelatin from the
point of view of polymer science. In this context, the properties of the material can be described by
several factors that can be directly measured in experiments. These parameters are related with desired
functional properties—(e.g., permeability, swelling, thermal expansion, miscibility) being defined by
self-diffusion coefficient, fractional free volume, Hansen solubility and others. Such calculations, using
molecular modeling, are widely used not only in science but also in industry because they connect
the values of the aforementioned parameters with the physicochemical environment of the polymer
and thus offer the possibility to tune its performance. Although gelatin is by definition a polymer this
approach is rarely used to study and optimize its properties.

Due to the fact that the overriding aim of our research is to study how the physicochemical
properties of a biopolymer matrix affects the catalytic features of a given enzyme (its activity and
stability) in a given operational temperature range (namely 273–318 K), in this case, we intend to
use this polymeric approach to develop virtual model of gelatin that could be applicable for further
designing the functional hydrogel materials characterized by strictly defined structural properties.
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One of the limiting factors of enzyme activity is the intake of substrate in the vicinity of the active
site and the expulsion of product. This phenomenon is directly related by the diffusion of these both
reactants. One of the fundamentals factors affecting diffusivity in porous materials was previously
defined by fractional free volume (FFV) (Equation (5)). The mobility of substrate/product can be
characterized by the self-diffusion coefficient related with FFV by the Fujita model:

D = D0RTAe−
B

FFV (7)

where D is the self-diffusion coefficient of the small molecules penetrating in the polymeric solid, D0 is
the pre-exponential diffusion value when the penetrant concentration is 0. This equation can be easy
linearized by applying log function resulting in:

log D = C + T −
B

FFV
(8)

where C = log D0 + log R + log A. In order to compute the model one has to calculate self-diffusion
coefficient vs. FFV at different temperatures.

Another important issue is the Hansen solubility parameter δ [55]. The importance of this
coefficient rises from Flory-Huggins and Flory-Rehner [46] theory that describes the miscibility of
given polymer with other polymers or solvents as well as the equilibrium swelling ratio by means
of the Hansen solubility parameter. By computing the value of δ for polymer (gelatin) and solvent
(water) one can calculate so callaed χ interaction parameter using formula:

χsp =
V

RT

(
δs − δp

)2
(9)

Then using the Flory-Rehner equation one can calculate how the equilibrium sweling degree
is changing due to crosslinking level, functionalizatino or change of operational parameters of the
process. The Flory Rehner equation is given by:

d =

[
Ln(1− vs) + vs + χv2

s

]
Vsol

[
v

1
3
s −

2vs
φ

] (10)

where vs is the polymer volume, φ is the polymer molar fraction, d is the crosslinking density, Vsol is
the molar volume of the solvent. Thus the equilibrium swelling can be computed as:

Q =
1
vs

, (11)

The method presented in the paper offers possibility to directly compute aferomentioned
parameters. If however one wants to study solvent effects explicitly in order to track the FFV
distribution or study transport phenomena in the presence of an immobilized enzyme the swelling
nature of the hydrogel requires large systems exceeding 100,000 atoms or more. In such case DPD
or other coarse-grained methods seem like a natural choice. However as indicated before an initial
atomistic model of the system is also required together with interaction parameters being a function of
Hansen solubility parameter.

Moreover statistical analysis shows that data provided by the molecular simulations are sufficient
to study the thermal evolution in such narrow regime (273–318 K). That information is essential from
the point of view of further studies of activity and stability of the bioactive element implemented in
cross-linked biopolymer structure. As presented in Section 2, the F-tests indicated that we managed to
observe significant changes of parameters over a very narrow temperature range and thus create a
reliable linear model.
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Summing up the performed research, in this paper we have presented a method for creating
an effective atomistic model of gelatin using collagen models and computer simulation of its partial
enzymatic decomposition to gelatin fibers catalyzed by trypsin. The proposed method combines simple
operations on FASTA strings with Monte Carlo and Molecular Dynamics Simulations. Subsequently we
have shown that our atomistic model of gelatin combined with the INTERFACE force field and the
NPT Molecular Dynamics method is capable to predict various energetic and structural properties
characteristic for polymers like density, glass-rubber transition temperature and isobaric compressibility
coefficient. Furthermore we indicate that our method is valid for tracking structural changes over
a narrow temperature range and energetic changes by means of fractional free volume and Hansen
solubility coefficient, and thus providing additional insight into further optimization of application of
gelatin-based carrier for enzyme immobilization.

4. Materials and Methods

The FASTA code of collagen alpha-1 helix has been imported from Uniprot database. The string
was then transformed into the final one letter code of the amino acid sequence using Python 2.7 scripts
(Figure 8).
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free user license. The pdb file of the gelatin model was transformed into a 3D amorphous matrix with 
periodic boundary conditions using the Polymatic software under the nanoHUB web application. 
The cubic simulation box has 31.89 Å in every dimension and contains 3462 atoms. All the NPT 
Molecular Dynamics simulations were carried out in LAMMPS molecular dynamics package using 
the INTERFACE force field. The value of the free volume was computed using the iRASPA package 
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Figure 8. FASTA code of a collagen chain composed of 1464 amino acids. Abbreviations:
G—Glycine, A—Alanine, V—Valine, L—Leucine, I—Isoleucine, P—Proline, X—Hydroxyproline,
S—Serine, T—Threonine, C—Cysteine, M—Methionine, F—Phenylalanine, Y—Tyrosine,
W—Tryptophan, D—Aspartic acid, N—Asparagine, E—Glutamic acid, Q—Glutamine, K—Lysine,
R—Arginine, H—Histidine.

The FASTA code was then translated into a pdb file using the Avogadro 2.0 software under a free
user license. The pdb file of the gelatin model was transformed into a 3D amorphous matrix with
periodic boundary conditions using the Polymatic software under the nanoHUB web application.
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The cubic simulation box has 31.89 Å in every dimension and contains 3462 atoms. All the NPT
Molecular Dynamics simulations were carried out in LAMMPS molecular dynamics package using the
INTERFACE force field. The value of the free volume was computed using the iRASPA package using
an algorithm firstly introduced by Connolly [56]. As presented in Figure 9 the Connolly and accessible
surface, the probe molecule (represented as red sphere of given radius) was rotated on the surface
defined by the van der Walls spheres of the constituent elements of given material. The center of the
probe molecule defines the accessible surface.Molecules 2019, 24, x FOR PEER REVIEW 12 of 15 
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Figure 10 presents the Connolly and accessible surface calculated using water as probe molecule.
As one can observe the occupied volume in the system is much greater than a simple sum of the vdW
spheres of the constituent atoms. By subtracting the occupied volume from the simulation box volume
one can calculate the free volume and eventually compute the fractional free volume (FFV).
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The WAXS intensity was calculated by projecting interatomic position vector ri j on the scattering
vector Q using following equation:

I(Q) =
∑

kj

fk(Q) f j(Q)eirkjQ, (12)

where:
Q =

2 sinθ
λ

, (13)

The θ is the scattering angle and λ = 1.54178 Å is the wave length of X-ray radiation.
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