Bifunctional Bioactive Polymer Surfaces with Micrometer and Submicrometer-sized Structure: The Effects of Structure Spacing and Elastic Modulus on Bioactivity

Sarah M. Elsayed ^{1, 2, §}, Vania Tanda Widyaya ^{1,§}, Yasir Shafi ¹, Alice Eickenscheidt ¹, and Karen Lienkamp ^{1,*}

 ¹ Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany;
² Department of Advanced Technology and New Materials Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, 21934 Alexandria, Egypt;
sarah.mahmoud@imtek.uni-freiburg.de (S.M.E.); vania.widyaya@imtek.uni-freiburg.de (V.T.W.);
myaasir@outlook.com (Y.S); alice.eickenscheidt@imtek.uni-freiburg.de (A.E.).
* Correspondence: lienkamp@imtek.uni-freiburg.de; Tel.: +49-761-203-95090.

§ contributed equally

Supporting Information

1. Contact angle results

Table S1. Contact angle data (static, advancing and receding contact angles) for the structured functionalized surfaces **SMAMP@Au_Si** and **SMAMP@Au_PSB@Si**. Contact angles of Si, the polymer monolayers, and 200 nm, 500 nm, 1 µm and 2 µm spacing structured surfaces have been previously published [43] and presented here for comparison.

Commission of	Contact angle (°)				
Sample type	hetastatic	hetaadvancing	hetareceding		
Si	71 ± 1	75 ± 3	41 ± 3		
PSB monolayer	34 ± 3	35 ± 3	22 ± 1		
SMAMP monolayer	59 ± 3	61 ± 3	33 ± 3		
SMAMP@Au_Si					
200 nm	56 ± 3	55 ± 3	33 ± 2		
500 nm	60 ± 2	69 ± 2	45 ± 1		
1 µm	63 ± 3	71 ± 4	47 ± 3		
2 µm	54 ± 3	66 ± 3	48 ± 2		
SMAMP@Au_PSB@Si					
200 nm	52 ± 3	56 ± 3	21 ± 1		
500 nm	56 ± 2	57 ± 1	27 ± 2		
1 µm	53 ± 3	59 ± 2	34 ± 3		
2 µm	39 ± 2	40 ± 0	36± 0		

2. Atomic force microscopy

Figure S1: Atomic force microscopy (AFM) height images of polystyrene colloid monolayers with 2 μm diameter.

3. Surface Plasmon Resonance Spectroscopy

Figure S2. Reflectivity curves after each processing step of the 2 µm functionalized surfaces studied by surface plasmon resonance spectroscopy (SPR) for a. SMAMP@SiO₂_Au; b. SMAMP@SiO₂_PSB@Au.

	SMAMP@SiO2_PSB@Au			SMAMP@SiO2_Au		
	Layer thickness/nm	arepsilon'	$\varepsilon^{\prime\prime}$	Layer thickness/nm	arepsilon'	$\varepsilon^{\prime\prime}$
LaSNFN9 glass		3.4036	0		3.5736	0
Cr	0.40	-6.423	20	0.6	-6.263	20
Au	41.0	-11.85	1.3	50.3	-11.462	1.68
SiO2	10.9	2.13	0	10.5	2.13	0
LS-BP	2.0	2.25	0	0	2.25	0
PSB	9.0	2.04	0	0	2.04	0
3EBP	0.9	2.25	0	2.0	2.25	0
SMAMP	10.0	2.08	0	10.0	2.08	0

Table S2. Average layer thickness and permittivity (ε' = real part, ε'' = imaginary part) for the 2 µm patterned functionalized surfaces calculated from fits to the surface plasmon resonance (SPR) curves

4. Optical micrographs of human keratinocytes

Figure S3. Optical micrographs of human keratinocytes (GM-K) after 24 h (A-G), 48 h (A'-G') and 72 h (A'-G'') growth on a. **SMAMP@Au_Si** and b. **SMAMP@Au_PSB@Si** functionalized surfaces with 2 μm ,1 μm , 500 nm and 200 nm spacing. Scale bars: 100 μm.

5. Live-Dead Staining of Keratinocytes

Figure S4. Live- dead staining images of human Keratinocytes (GM-K) after 72 h grown on a. **SMAMP@Au_Si** and b. **SMAMP@Au_PSB@Si** functionalized surfaces with 2 µm, 1 µm, 500 nm and 200 nm spacing. The green stain (SYTO 16, A-F) visualizes live cells and the red stain (propidium iodide, A'-F') the dead cells. Merged images are an overlay of both (A"-F"). Scale bars: 100 µm.