Lignans from the Twigs of *Litsea cubeba* and Their Bioactivities

Xiuting Li 1,+, Huan Xia 2,+, Lingyan Wang 2, Guiyang Xia 2, Yuhong Qu 2, Xiaoya Shang 3,* and Sheng Lin 2,*

¹ Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, People's Republic of China

² State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China

³ Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing 100023, People's Republic of China

Supplementary Information

* Corresponding authors. Tel: +86-10-62004533 (X.S.); +86-10-60212110. E-mail: <u>shangxiaoya@buu.edu.cn. (X.Y</u>. Shang) and <u>lsznn@imm.ac.cn</u> (S. Lin)

The List of Contents

no	Contents P						
1	In silico prediction of ECD spectrum	5					
2	Table S1 . Cartesian Coordinates, Relative Energies, and Equilibrium Populations of Low-energy Conformers ($>0.1\%$) of $8R,7'S,8'R-7$ in MeOH.	5-8					
3	Table S2 . Extracted heats and weighting factors of the optimized conformers of $8R,7'S,8'R-7$ at B3LYP/6-311+G(d,p) level in MeOH with PCM model	9					
4	Figure S1. The experimental ECD spectrum of 7 (black), and the calculated ECD spectra of $(8R,7'S,8'R)$ - 7 (red) and $(8S,7'R,8'S)$ - 7 (blue)	10					
5	Figure S2. The UV Spectrum of Compound 1 in MeOH	11					
6	Figure S3. The ESI-Mass Spectrum of Compound 1 in MeOH	12					
7	Figure S4. The HR-Mass Spectrum of Compound 1 in MeOH	13					
8	Figure S5. The IR Spectrum of Compound 1	14					
9	Figure S6. The ¹ H NMR Spectrum of Compound 1 in Acetone- d_6 (500MHz)	15					
10	Figure S7. The ¹³ C NMR Spectrum of Compound 1 in Acetone- d_6 (125MHz)	16					
11	Figure S8. The HSQC Spectrum of Compound 1 in Acetone- d_6 (500MHz)	17					
12	Figure S9. The HMBC Spectrum of Compound 1 in Acetone- d_6 (500MHz)	18					
13	Figure S10. The NOESY Spectrum of Compound 1 in Acetone- d_6 (500MHz)	19					
14	Figure S11. The UV Spectra of Compound 2 in MeOH	20					
15	Figure S12. The ESI-Mass Spectrum of Compound 2 in MeOH	21					
16	Figure S13. The HR-Mass Spectrum of Caaompound 2 in MeOH	22					
17	Figure S14. The IR spectrum of compound 2	23					
18	Figure S15. The ¹ H NMR spectrum of compound 2 in Acetone- d_{66Y} (500MHz)	24					
19	Figure S16. The ¹³ C NMR spectrum of compound 2 in Acetone- d_6 (125MHz)	25					
20	Figure S17. The ¹ H- ¹ H COSY Spectrum of Compound 2 in Acetone- d_6 (500MHz)	26					
21	Figure S18. The HSQC Spectrum of Compound 2 in Acetone- d_6 (500MHz)	27					
22	Figure S19. The HMBC Spectrum of Compound 2 in Acetone- d_6 (500MHz)	28					
23	Figure S20. The 1D NOE Difference Spectrum of Compound 2 in Acetone- d_6 (500MHz)	29					
24	Figure S21. The UV Spectra of Compound 3 in MeOH	30					
25	Figure S22. The ESI-Mass spectrum of compound 3 in MeOH	31					
26	Figure S23. The HR-Mass spectrum of compound 3 in MeOH	32					
27	Figure S24. The IR spectrum of compound 3	33					
28	Figure S25. The ¹ H NMR spectrum of compound 3 in Acetone- d_6 (600MHz)	34					
29	Figure S26. The ¹³ C NMR spectrum of compound 3 in Acetone- d_6 (150MHz)	35					
30	Figure S27. The DEPT Spectrum of Compound 3 in Acetone- d_6 (150MHz)	36					
31	Figure S28. The ¹ H- ¹ H COSY Spectrum of Compound 3 in Acetone- d_6 (600MHz)	37					
32	Figure S29. The HSQC Spectrum of Compound 3 in Acetone- d_6 (600MHz)	38					
33	Figure S30. The HMBC Spectrum of Compound 3 in Acetone- d_6 (600MHz)	39					
34	Figure S31. The 1D NOE Difference Spectrum of Compound 3 in Acetone- d_6 (500MHz)	40					
35	Figure S32. The UV Spectra of Compound 4 in MeOH	41					
36	Figure S33. The ESI-Mass Spectrum of Compound 4 in MeOH	42					
37	Figure S34. The HR-Mass Spectrum of Compound 4 in MeOH	43					
38	Figure S35. The IR Spectrum of Compound 4	44					

39	Figure S36.	The ¹ H NMR Spectrum of Compound 4 in Acetone- <i>d</i> ₆ (500MHz)	45
40	Figure S37.	The ${}^{13}C$ NMR Spectrum of Compound 4 in Acetone- d_6 (125MHz)	
41	Figure S38.	The ¹ H- ¹ H COSY Spectrum of Compound 4 in Acetone- d_6 (500MHz)	47
42	Figure S39.	The HSQC Spectrum of Compound 4 in Acetone-d ₆ (500MHz)	48
43	Figure S40.	The HMBC Spectrum of Compound 4 in Acetone- d_6 (500MHz)	49
44	Figure S41.	The UV Spectra of Compound 5 in MeOH	50
45	Figure S42.	The HR-Mass Spectrum of Compound 5 in MeOH	51
46	Figure S43.	The IR Spectrum of Compound 5	52
47	Figure S44.	The ¹ H NMR spectrum of compound 5 in Acetone- d_6 (600MHz)	53
48	Figure S45.	The ¹³ C NMR spectrum of compound 5 in Acetone- d_6 (150MHz)	54
49	Figure S46.	The ¹ H- ¹ H COSY Spectrum of Compound 5 in Acetone- d_6 (600MHz)	55
50	Figure S47.	The HSQC Spectrum of Compound 5 in Acetone- d_6 (600MHz)	56
51	Figure S48.	The HMBC Spectrum of Compound 5 in Acetone- d_6 (600MHz)	57
52	Figure S49.	The HR-Mass Spectrum of Compound 6 in MeOH	58
53	Figure S50.	The IR Spectrum of Compound 6	59
54	Figure S51.	The ¹ H NMR Spectrum of Compound 6 in Acetone- d_6 (600MHz)	60
55	Figure S52.	The ¹³ C NMR Spectrum of Compound 6 in Acetone- d_6 (600MHz)	61
56	Figure S53.	The ¹ H- ¹ H COSY Spectrum of Compound 6 in Acetone- d_6 (600MHz)	62
57	Figure S54.	The HSQC Spectrum of Compound 6 in Acetone- d_6 (600MHz)	63
58	Figure S55.	The HMBC Spectrum of Compound 6 in Acetone- d_6 (600MHz)	64
59	Figure S56.	The UV and CD Spectra of Compound 7 in MeOH	65
60	Figure S57.	The ESI-Mass spectrum of compound 7 in MeOH	66
61	Figure S58. The HR-Mass spectrum of compound 7 in MeOH		67
62	Figure S59.	The IR spectrum of compound 7	68
63	Figure S60.	The ¹ H NMR spectrum of compound 7 in Acetone- d_6 (500MHz)	69
64	Figure S61.	The ¹³ C NMR spectrum of compound 7 in Acetone- d_6 (125MHz)	70
65	Figure S62.	The ¹ H- ¹ H COSY Spectrum of Compound 7 in Acetone- d_6 (500MHz)	71
66	Figure S63.	The HSQC Spectrum of Compound 7 in Acetone-d ₆ (500MHz)	72
67	Figure S64.	The HMBC Spectrum of Compound 7 in Acetone- d_6 (500MHz)	73
68	Figure S65.	The NOESY Spectrum of Compound 7 in Acetone-d ₆ (500MHz)	74
69	Figure S66.	The IR Spectrum of Compound 8	75
70	Figure S67.	The ¹ H NMR Spectrum of Compound 8 in Acetone- d_6 (600MHz)	76
71	Figure S68.	The ¹³ C NMR Spectrum of Compound 8 in Acetone- d_6 (150MHz)	77
72	Figure S69.	The ¹ H- ¹ H COSY Spectrum of Compound 8 in Acetone- d_6 (600MHz)	78
73	Figure S70.	The HSQC Spectrum of Compound 8 in Acetone- d_6 (600MHz)	79
74	Figure S71.	The HMBC Spectrum of Compound 8 in Acetone- d_6 (600MHz)	80
75	Figure S72.	The NOESY Spectrum of Compound 8 in Acetone- d_6 (600MHz)	81
76	Figure S73.	The HR-Mass Spectrum of Compound 9 in MeOH	82
77	Figure S74.	The IR Spectrum of Compound 9	83
78	Figure S75.	The ¹ H NMR Spectrum of Compound 9 in Acetone- d_6 (500MHz)	84
79	Figure S76.	The ¹³ C NMR spectrum of compound 9 in Acetone- d_6 (500MHz)	85
80	Figure S77.	The ¹ H- ¹ H COSY Spectrum of Compound 9 in Acetone- d_6 (500MHz)	86
81	Figure S78.	The HSQC Spectrum of Compound 9 in Acetone- d_6 (500MHz)	87

82	Figure S79.	The HMBC Spectrum of Compound 9 in Acetone- d_6 (500MHz)	88
83	Figure S80.	The NOESY Spectrum of Compound 9 in Acetone- d_6 (500MHz)	89

In silico prediction of ECD spectrum.

All calculations were performed using Gaussian $16.^{1}$ Conformation search using molecular mechanics calculations was performed in DS (Discovery Studio) 2018 with 20 kcal mol⁻¹ upper energy limit at best level. The stable (Equilibrium Populations of Low-energy >0.1%) conformers performed with the DS 2018 software package were further optimized by using the TDDFT method at the B3LYP/6-31G(d, p) level, and the frequency was calculated at the same level of theory. For all optimized structures, vibrational spectra were calculated to ensure that no imaginary frequencies for energy minimum were obtained. The stable conformers were subjected to ECD calculation by the TDDFT method at the B3LYP/6-311G+(d,p) level with the CPCM model in MeOH. ECD spectra of different conformers were simulated using SpecDis 1.71^{2} with a half-bandwidth of 0.3 eV, and the final calculated ECD spectra were obtained according to the Boltzmann-calculated contribution of each con-former. The calculated ECD spectra were compared with the experimental data.

Table S1. Cartesian Coordinates, Relative Energies, and Equilibrium Populations of

Low-energy Conformers (>0.1%) of 8R,7'S,8'R-7 in MeOH.

Conformation 1 ΔE = 0.00 kcal/mol P(%) = 83.07%					Confo ΔE = 0.9 P(%) :	rmation 2 99 kcal/mo	4
С	-2.967	0.803	2.543	С	-1.684	-0.931	0.860
0	-2.668	1.805	3.487	0	-2.517	-0.347	-0.115
С	-1.982	2.855	2.857	С	-1.777	0.569	-0.880
С	-0.978	2.103	1.986	С	-0.974	1.313	0.187
С	-1.843	0.919	1.483	С	-0.641	0.170	1.179
С	-3.077	-0.548	3.195	С	-2.485	-1.407	2.041
С	-1.985	-1.104	3.887	С	-2.500	-2.772	2.381
С	-2.069	-2.367	4.495	С	-3.243	-3.236	3.488
С	-3.287	-3.093	4.407	С	-3.978	-2.313	4.259
С	-4.394	-2.548	3.715	С	-3.975	-0.937	3.934
С	-4.275	-1.276	3.115	С	-3.226	-0.499	2.820
С	-0.284	2.950	0.931	С	0.203	2.117	-0.344
С	0.933	2.431	0.195	С	0.972	3.053	0.562

· · · · · · · · · · · · · · · · · · ·							
С	-2.494	1.115	0.099	С	0.780	-0.400	1.063
0	-1.542	0.966	-0.958	0	1.042	-0.778	-0.290
С	1.486	1.171	0.493	С	2.109	3.724	0.076
С	2.615	0.687	-0.204	С	2.848	4.600	0.901
С	3.199	1.485	-1.205	С	2.435	4.802	2.232
С	2.661	2.751	-1.522	С	1.297	4.139	2.741
С	1.530	3.213	-0.812	С	0.574	3.270	1.895
0	4.256	1.019	-1.851	0	3.136	5.624	2.995
0	-3.394	-4.284	4.971	0	-4.670	-2.762	5.293
0	-0.711	4.058	0.696	0	0.516	2.003	-1.509
С	-1.096	-0.275	-1.218	С	2.255	-1.284	-0.559
С	-0.011	-0.442	-2.201	С	2.569	-1.654	-1.952
0	-1.526	-1.273	-0.684	0	3.113	-1.456	0.277
С	0.385	0.548	-3.030	С	1.733	-1.410	-2.985
С	1.543	0.465	-3.993	С	2.000	-1.771	-4.426
С	2.366	-0.678	-4.089	С	1.038	-1.430	-5.398
С	3.465	-0.712	-4.979	С	1.233	-1.743	-6.763
С	3.728	0.417	-5.786	С	2.417	-2.410	-7.149
С	2.904	1.551	-5.698	С	3.378	-2.751	-6.183
С	1.819	1.574	-4.811	С	3.175	-2.435	-4.831
0	4.744	0.435	-6.632	0	2.647	-2.726	-8.412
0	3.158	-0.505	0.033	0	3.929	5.253	0.482
С	2.615	-1.417	0.993	С	4.438	5.121	-0.849
0	-0.969	-2.788	5.118	0	-3.286	-4.517	3.847
С	-0.881	-4.036	5.810	С	-2.572	-5.537	3.140
0	-5.512	-3.268	3.658	0	-4.682	-0.110	4.699
С	-6.687	-2.812	2.980	С	-4.729	1.301	4.463
0	3.244	3.452	-2.492	0	0.953	4.365	4.007
С	2.752	4.724	-2.922	С	-0.178	3.738	4.620
0	4.272	-1.764	-5.092	0	0.350	-1.437	-7.710
С	4.106	-2.948	-4.306	С	-0.875	-0.752	-7.425
Н	-3.919	1.096	2.115	Н	-1.204	-1.766	0.365
Н	-2.686	3.427	2.267	Н	-1.142	0.017	-1.560
Н	-1.523	3.501	3.591	Н	-2.437	1.206	-1.450
Н	-0.222	1.718	2.658	Н	-1.661	1.998	0.667
Н	-1.230	0.029	1.458	Н	-0.753	0.545	2.187
Н	-1.060	-0.548	3.951	Н	-1.929	-3.462	1.777
Н	-5.109	-0.842	2.583	Н	-3.210	0.546	2.547
Н	-2.924	2.115	0.024	Н	0.893	-1.274	1.707
Н	-3.312	0.411	-0.066	Н	1.519	0.339	1.376
Н	1.041	0.563	1.264	Н	2.414	3.560	-0.947
Н	1.108	4.180	-1.040	Н	-0.299	2.766	2.278
Н	4.701	1.505	-2.559	Н	2.913	5.811	3.917
Н	-4.198	-4.822	4.943	Н	-5.194	-2.187	5.868
Н	0.465	-1.410	-2.223	Н	3.521	-2.137	-2.113

Н	-0.168	1.477	-2.994	Н	0.797	-0.917	-2.760
Н	2.161	-1.539	-3.474	Η	0.140	-0.921	-5.081
Н	3.105	2.413	-6.317	Η	4.283	-3.261	-6.480
Н	1.198	2.458	-4.761	Н	3.939	-2.716	-4.123
Н	5.351	-0.310	-6.742	Н	2.029	-2.521	-9.128
Н	2.640	-0.976	1.991	Η	4.720	4.085	-1.044
Н	3.221	-2.323	0.997	Η	5.324	5.748	-0.948
Н	1.591	-1.683	0.723	Η	3.692	5.454	-1.573
Н	-1.604	-4.070	6.627	Н	-2.920	-5.594	2.108
Н	0.120	-4.127	6.234	Η	-2.759	-6.495	3.625
Н	-1.037	-4.865	5.118	Η	-1.500	-5.335	3.168
Н	-7.050	-1.889	3.433	Η	-3.729	1.731	4.539
Н	-7.461	-3.574	3.072	Н	-5.364	1.761	5.221
Н	-6.475	-2.657	1.920	Н	-5.156	1.506	3.480
Н	1.732	4.626	-3.298	Η	-1.095	4.018	4.098
Н	3.387	5.089	-3.730	Η	-0.248	4.078	5.653
Н	2.786	5.440	-2.100	Η	-0.057	2.654	4.617
Н	4.199	-2.712	-3.244	Η	-1.488	-1.342	-6.742
Н	4.889	-3.658	-4.575	Η	-1.424	-0.615	-8.357
Н	3.136	-3.404	-4.510	Η	-0.666	0.230	-6.996
-	the	, * ./	J.		~	. >	5
1		, Te	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	<i>Ş</i> ⊷		\$
1		The second second	y ~	*	Confo	rmation 4	 文
1	Confor	rmation 3		*	Confo ΔE = 3.6	rmation 4	 、
	Confor ΔE = 3.0	rmation 3 05 kcal/mo	-	1	Confo ΔΕ = 3.0 Ρ(%)	rmation 4 58 kcal/mol = 0.17%	\$
	Confor ΔE = 3.0 P(%)	rmation 3 95 kcal/mo = 0.49%	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Confo ΔE = 3.0 P(%)	rmation 4 58 kcal/mol = 0.17%	X
C	Confor ΔΕ = 3.0 P(%)	rmation 3 95 kcal/mo = 0.49%	0.532	C	Confo ΔΕ = 3.0 Ρ(%)	rmation 4 58 kcal/mol = 0.17%	1.309
C O	Confor ΔΕ = 3.0 P(%) -2.174 -3.223	rmation 3 5 kcal/mo = 0.49%	0.532	C O	Confo ΔE = 3.0 P(%) -0.546 0.174	$\frac{1}{0.648}$	1.309 2.523
C O C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982	rmation 3 05 kcal/mo = 0.49% 0.581 1.161 2.533	0.532 1.277 1.452	C O C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434	1.309 2.523 2.444
C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561	0.532 1.277 1.452 1.782	C O C C	Confo ΔE = 3.6 P(%) -0.546 0.174 1.327 1.149	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304	1.309 2.523 2.444 1.189
C O C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511	0.532 1.277 1.452 1.782 0.779	C O C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247	1.309 2.523 2.444 1.189 0.303
C O C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958 -1.957	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848	0.532 1.277 1.452 1.782 0.779 0.946	C O C C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453 -1.108	rmation 4 38 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706	1.309 2.523 2.444 1.189 0.303 0.961
C O C C C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958 -1.957 -2.147	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892	0.532 1.277 1.452 1.782 0.779 0.946 0.026	C O C C C C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453 -1.108 -0.266	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757	1.309 2.523 2.444 1.189 0.303 0.961 0.553
C O C C C C C C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958 -1.957 -2.147 -1.951	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892 -3.235	0.532 1.277 1.452 1.782 0.779 0.946 0.026 0.391	C O C C C C C C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453 -1.108 -0.266 -0.797	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757 -3.014	1.309 2.523 2.444 1.189 0.303 0.961 0.553 0.186
C C C C C C C C C C C C C C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958 -1.957 -2.147 -1.951 -1.544	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892 -3.235 -3.535	0.532 1.277 1.452 1.782 0.779 0.946 0.026 0.391 1.720	C O C C C C C C C C C C C C C C C	$Confo \\ \Delta E = 3.0 \\ P(%) \\ \hline -0.546 \\ 0.174 \\ 1.327 \\ 1.149 \\ 0.453 \\ -1.108 \\ -0.266 \\ -0.797 \\ -2.187 \\ \hline \end{array}$	rmation 4 38 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757 -3.014 -3.222	1.309 2.523 2.444 1.189 0.303 0.961 0.553 0.186 0.268
C O C C C C C C C C C C C C C C C C C C	$\begin{array}{c} \textbf{Confor} \\ \textbf{\Delta E} = 3.0 \\ \textbf{P(\%)} \\ \hline -2.174 \\ -3.223 \\ -2.982 \\ -1.491 \\ -0.958 \\ -1.957 \\ -2.147 \\ -1.951 \\ -1.544 \\ -1.343 \end{array}$	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892 -3.235 -3.535 -2.494	0.532 1.277 1.452 1.782 0.779 0.946 0.026 0.391 1.720 2.657	C O C C C C C C C C C C C C C C C C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453 -1.108 -0.266 -0.797 -2.187 -3.049	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757 -3.014 -3.222 -2.188	1.309 2.523 2.444 1.189 0.303 0.961 0.553 0.186 0.268 0.694
C O C C C C C C C C C C C C C C C C C C	Confor ΔE = 3.0 P(%) -2.174 -3.223 -2.982 -1.491 -0.958 -1.957 -2.147 -1.951 -1.544 -1.343 -1.557	rmation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892 -3.235 -3.535 -2.494 -1.158	0.532 1.277 1.452 1.782 0.779 0.946 0.026 0.391 1.720 2.657 2.258	C O C C C C C C C C C C C C C C C C C C	$\begin{array}{c} \textbf{Confo} \\ \textbf{\Delta E} = 3.0 \\ \textbf{P(\%)} \\ \hline \\ -0.546 \\ 0.174 \\ 1.327 \\ 1.149 \\ 0.453 \\ -1.108 \\ -0.266 \\ -0.797 \\ -2.187 \\ -3.049 \\ -2.496 \end{array}$	rmation 4 38 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757 -3.014 -3.222 -2.188 -0.933	1.309 2.523 2.444 1.189 0.303 0.961 0.553 0.186 0.268 0.694 1.035
C O C C C C C C C C C C C C C C C C C C	$\begin{array}{c} \textbf{Confor} \\ \textbf{\Delta E} = 3.0 \\ \textbf{P(\%)} \\ \hline -2.174 \\ -3.223 \\ -2.982 \\ -1.491 \\ -0.958 \\ -1.957 \\ -2.147 \\ -1.951 \\ -1.544 \\ -1.343 \\ -1.557 \\ -0.852 \end{array}$	mation 3 5 kcal/mo = 0.49% 0.581 1.161 2.533 2.561 1.511 -0.848 -1.892 -3.235 -3.535 -2.494 -1.158 3.940	0.532 1.277 1.452 1.782 0.779 0.946 0.026 0.391 1.720 2.657 2.258 1.739	C 0 C C C C C C C C C C C C C C C C C C	Confo ΔE = 3.0 P(%) -0.546 0.174 1.327 1.149 0.453 -1.108 -0.266 -0.797 -2.187 -3.049 -2.496 0.406	rmation 4 58 kcal/mol = 0.17% 0.648 0.620 1.434 2.304 1.247 -0.706 -1.757 -3.014 -3.222 -2.188 -0.933 3.602	1.309 2.523 2.444 1.189 0.303 0.961 0.553 0.186 0.268 0.694 1.035 1.491

	1						
С	-0.465	2.111	-0.545	С	-0.180	1.712	-1.019
0	-0.151	1.058	-1.462	0	-0.576	0.580	-1.806
С	1.133	5.438	2.187	С	2.431	4.631	2.652
С	2.431	5.687	2.664	С	3.052	5.665	3.388
С	3.171	4.617	3.232	С	2.294	6.796	3.769
С	2.606	3.323	3.311	С	0.923	6.889	3.413
С	1.298	3.109	2.824	С	0.339	5.844	2.673
0	4.394	4.822	3.693	0	2.872	7.767	4.459
0	-1.350	-4.789	2.091	0	-2.670	-4.408	-0.062
0	-1.487	4.869	1.293	0	-0.727	3.750	1.090
С	0.317	1.427	-2.665	С	0.390	-0.124	-2.423
С	0.577	0.389	-3.681	С	0.024	-1.443	-2.976
0	0.544	2.576	-2.972	0	1.533	0.259	-2.541
С	0.236	-0.909	-3.524	С	0.752	-2.094	-3.911
С	0.471	-1.999	-4.544	С	0.438	-3.474	-4.440
С	0.041	-3.308	-4.252	С	-0.467	-4.336	-3.783
С	0.239	-4.368	-5.168	С	-0.757	-5.621	-4.303
С	0.878	-4.099	-6.399	С	-0.124	-6.039	-5.494
С	1.304	-2.794	-6.696	С	0.788	-5.189	-6.141
С	1.105	-1.751	-5.780	С	1.069	-3.917	-5.618
0	1.091	-5.053	-7.290	0	-0.369	-7.226	-6.022
0	2.866	6.940	2.539	0	4.335	5.623	3.744
С	4.162	7.375	2.960	С	5.181	4.510	3.432
0	-2.170	-4.136	-0.566	0	-0.042	-4.021	-0.244
С	-2.067	-5.547	-0.362	С	1.379	-3.912	-0.374
0	-0.956	-2.819	3.889	0	-4.354	-2.447	0.753
С	-0.696	-1.836	4.898	С	-5.308	-1.482	1.207
0	3.340	2.351	3.849	0	0.117	7.903	3.728
С	2.874	1.002	3.955	С	0.537	9.049	4.476
0	-0.151	-5.617	-4.926	0	-1.604	-6.464	-3.718
С	-0.809	-5.993	-3.712	С	-2.262	-6.159	-2.485
Н	-2.485	0.635	-0.503	Н	-1.353	1.353	1.459
Н	-3.206	3.047	0.527	Н	2.178	0.777	2.327
Н	-3.607	2.927	2.241	Н	1.457	1.986	3.363
Н	-1.383	2.172	2.786	Н	2.105	2.546	0.748
Н	-0.126	0.980	1.222	Н	1.214	0.521	0.051
Н	-2.452	-1.660	-0.985	Н	0.799	-1.589	0.519
Н	-1.415	-0.347	2.957	Н	-3.135	-0.125	1.358
Н	0.429	2.714	-0.380	Н	0.502	2.339	-1.596
Н	-1.232	2.749	-0.988	Н	-1.074	2.304	-0.829
Н	0.574	6.256	1.756	Н	3.007	3.765	2.365
Н	0.864	2.124	2.887	Н	-0.703	5.923	2.400
Н	4.941	4.131	4.091	Н	3.801	7.755	4.728
Η	-1.071	-5.049	2.980	Н	-3.612	-4.626	-0.034
Н	1.060	0.725	-4.586	Н	-0.886	-1.879	-2.590

Н	-0.244	-1.188	-2.595	Н	1.621	-1.589	-4.311
Н	-0.448	-3.493	-3.306	Η	-0.944	-4.013	-2.872
Н	1.790	-2.589	-7.639	Η	1.277	-5.513	-7.049
Н	1.451	-0.765	-6.050	Н	1.775	-3.280	-6.132
Н	0.828	-5.973	-7.148	Н	-0.985	-7.860	-5.630
Н	4.277	7.240	4.036	Н	6.176	4.705	3.831
Н	4.259	8.436	2.734	Н	4.792	3.599	3.892
Н	4.938	6.836	2.414	Н	5.258	4.386	2.350
Н	-1.042	-5.819	-0.105	Н	1.634	-3.125	-1.086
Н	-2.334	-6.052	-1.290	Н	1.832	-3.707	0.597
Н	-2.763	-5.870	0.414	Н	1.768	-4.859	-0.749
Н	0.111	-1.173	4.579	Н	-6.301	-1.928	1.172
Н	-0.387	-2.346	5.810	Н	-5.091	-1.191	2.236
Н	-1.599	-1.261	5.107	Н	-5.296	-0.606	0.556
Н	1.978	0.957	4.577	Н	0.874	8.750	5.470
Н	3.652	0.399	4.423	Н	-0.315	9.719	4.590
Н	2.667	0.594	2.964	Н	1.324	9.583	3.942
Н	-0.163	-5.795	-2.855	Н	-2.887	-5.272	-2.599
Н	-1.025	-7.061	-3.745	Н	-1.523	-6.007	-1.696
Н	-1.750	-5.450	-3.610	Н	-2.897	-7.001	-2.210

Table S2. Extracted heats and weighting factors of the optimized conformers of

		B3LYP/6-311+G(d,p)			
	Conforman	Extracted basts	Boltzmann-calculated		
	Conformer	Extracted nears	contribution(%)		
	1	-2142.6500828	9.08		
ר מיס <u>סיד</u> מס	2	-2142.6522415	89.52		
8K, / S,8 K- /	3	-2142.6458916	0.11		
	4	-2142.6482445	1.29		

spectra of (8*R*,7'*S*,8'*R*)-7 (red) and (8*S*,7'*R*,8'*S*)-7 (blue)

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.
T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Pescitelli, SpecDis version 1.71, Berlin, Germany, **2017**, http:/specdis-software.jimdo.com.

Figure S2. The UV Spectrum of Compound 1 in MeOH

single Mass Spectrum Deconvolution Report Instrument: LC-MSD-Trap-SL Print Date: 8/28/2012

MSD Trap Report v 4 (A4-Opt2)

Page 1 of 1

Agilent Technologies

Figure S3. The ESI-Mass Spectrum of Compound 1 in MeOH

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 8:10 AM on: 11/22/2013

Figure S4. The HR-Mass Spectrum of Compound 1 in MeOH

Figure S5. The IR Spectrum of Compound 1

DD2-500 1H-NMR sjj-63 IN acetone Mar 4 2013 coldprobe-Probe

Figure S6. The ¹H NMR Spectrum of Compound 1 in Acetone-*d*₆ (500 MHz)

DD2-500 13C-NMR sjj-63 IN acetone Mar 11 2013 coldprobe-Probe

Figure S7. The ¹³ C NMR Spectrum of Compound 1 in Acetone-*d*₆ (125 MHz)

Figure S8. The HSQC Spectrum of Compound 1 in Acetone-d₆ (500 MHz)

Figure S9. The HMBC Spectrum of Compound 1 in Acetone-*d*₆ (500 MHz)

Figure S10. The NOESY Spectrum of Compound 1 in Acetone-*d*₆ (500 MHz)

Figure S11. The UV Spectra of Compound 2 in MeOH

Single Mass Spectrum Deconvolution Report

Figure S12. The ESI-Mass Spectrum of Compound 2 in MeOH

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 12:40 PM on: 11/15/2013

Figure S13. The HR-Mass Spectrum of Compound 2 in MeOH

Figure S14. The IR Spectrum of Compound 2

Figure S15. ¹H NMR Spectrum of Compound 2 in Acetone-*d*₆ (500 MHz)

Bruker AVIIIHD 600 20130428 sjj-71a C13 Acetone

Figure S16. The ¹³ C NMR Spectrum of Compound 2 in Acetone-*d*₆ (150 MHz)

Figure S17. The ¹H-¹H COSY Spectrum of Compound 2 in Acetone-*d*₆ (600MHz)

Figure S18. The HSQC Spectrum of Compound 2 in Acetone-*d*₆ (500 MHz)

Figure S19. The HMBC Spectrum of Compound 2 in Acetone-*d*₆ (600MHz)

Figure S20. The 1D NOE Difference Spectrum of Compound 2 in Acetone-*d*₆ (500 MHz)

Figure S21. The UV Spectra of Compound 3 in MeOH

Single Mass Spectrum Deconvolution Report

Figure S22. The ESI-Mass Spectrum of Compound 3 in MeOH

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 12:55 PM on: 11/15/2013

Figure S23. The HR-Mass Spectrum of Compound 3 in MeOH

Figure S24. The IR Spectrum of Compound 3

Figure S25. The ¹H NMR Spectrum of Compound 3 in Acetone-*d*₆ (600 MHz)

Figure S26. The ¹³ C NMR Spectrum of Compound 3 in Acetone-*d*₆ (150MHz)

Bruker AVIIIHD 600 20130423 sjj-71b DEPT Acetone

Figure S27. The DEPT Spectrum of Compound 3 in Acetone-*d*₆ (150MHz)

Figure 28. The ¹H-¹H COSY Spectrum of Compound 3 in Acetone-*d*₆ (600 MHz)

Figure 29. The HSQC Spectrum of Compound 3 in Acetone-*d*₆ (600 MHz)

Figure 30. The HMBC Spectrum of Compound 3 in Acetone-*d*₆ (600 MHz)

Figure S31. The 1D NOE Difference Spectrum of Compound 3 in Acetone-*d*₆ (500 MHz)

Figure S32. The UV Spectra of Compound 4 in MeOH

Single Mass Spectrum Deconvolution Report

Figure S33. The ESI-Mass Spectrum of Compound 4 in MeOH

Figure S34. The HR-Mass Spectrum of Compound 4 in MeOH

Figure S35. The IR Spectrum of Compound 4

Figure S36.The ¹H NMR Spectrum of Compound 4 in Acetone-*d*₆ (500 MHz)

DD2-500 13C-NMR sjj-96 IN acetone May 20 2013 coldprobe-Probe

Figure S37. The ¹³ C NMR Spectrum of Compound 4 in Acetone-*d*₆ (125 MHz)

Figure S38. The ¹H-¹H COSY Spectrum of Compound 4 in Acetone-*d*₆ (500 MHz)

Figure S39. The HSQC Spectrum of Compound 4 in Acetone-*d*₆ (500 MHz)

Figure 40. The HMBC Spectrum of Compound 4 in Acetone-*d*₆ (500 MHz)

Figure S41. The UV Spectra of Compound 5 in MeOH

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 12:01 PM on: 12/31/2013

Figure S42. The HR-Mass Spectrum of Compound 5 in MeOH

Figure S43. The IR Spectrum of Compound 5

Figure S44.The ¹H NMR Spectrum of Compound 5 in Acetone-*d*₆(600 MHz)

Figure S45.The ¹³ C NMR Spectrum of Compound 5 in Acetone-*d*₆ (150 MHz)

Figure S46. The ¹H-¹H COSY Spectrum of Compound 5 in Acetone-*d*₆ (600 MHz)

Figure S47. The HSQC Spectrum of Compound 5 in Acetone-d₆ (600 MHz)

Figure S48. The HMBC Spectrum of Compound 5 in Acetone-*d*₆ (600 MHz)

Thermo Qexactive Focus Report

Figure S49. The HR-Mass Spectrum of Compound 6 in MeOH

Figure S50.The IR Spectrum of 6

Figure S51. The ¹H NMR Spectrum of Compound 6 in Acetone-*d*₆ (600 MHz)

Figure S52.The ¹³ C NMR Spectrum of Compound 6 in Acetone-*d*₆ (150 MHz)

Figure S53. The ¹H-¹H COSY Spectrum of Compound 6 in Acetone-*d*₆ (600MHz)

Figure S54. The HSQC Spectrum of Compound 6 in Acetone-*d*₆ (600MHz)

Figure S55. The HMBC Spectrum of Compound 6 in Acetone-*d*₆ (600MHz)

Figure S56. The UV and CD Spectra of Compound 7 in MeOH

Single Mass Spectrum Deconvolution Report

Figure S57. The ESI-Mass Spectrum of Compound 7 in MeOH

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 2 of 2

Printed at: 1:12 PM on: 11/15/2013

Figure S58. The HR-Mass Spectrum of Compound 7 in MeOH

Figure S59. The IR Spectrum of Compound 7

Figure S60.The ¹H NMR Spectrum of Compound 7 in Acetone-*d*₆ (500 MHz)

DD2-500 CARBON sjj-94 IN acetone May 15 2013 coldprobe

Figure S61. The ¹³ C NMR Spectrum of Compound 7 in Acetone-*d*₆ (125 MHz)

Figure S62. The ¹H-¹H COSY Spectrum of Compound 7 in Acetone-*d*₆ (500 MHz)

Figure S63. The HSQC Spectrum of Compound 7 in Acetone-*d*₆ (500 MHz)

Figure S64. The HMBC Spectrum of Compound 7 in Acetone-*d*₆ (500 MHz)

Figure S65. The NOESY Spectrum of Compound 7 in Acetone-*d*₆ (500 MHz)

Figure S66. The IR Spectrum of Compound 8

Figure S67.THe ¹H NMR Spectrum of Compound 8 in Acetone-*d*₆ (600 MHz)

Figure S68.The ¹³C NMR spectrum of compound 8 in Acetone-*d*₆ (150 MHz)

Figure S69. The ¹H-¹H COSY Spectrum of Compound 8 in Acetone-*d*₆ (600 MHz)

Figure S70. The HSQC Spectrum of Compound 8 in Acetone-d₆ (600 MHz)

Figure S71. The HMBC Spectrum of Compound 8 in Acetone-d₆ (600 MHz)

Figure S72. The NOESY Spectrum of Compound 8 in Acetone-*d*₆ (600 MHz)

Figure S73. TheHR-Mass Spectrum of Compound 9 in MeOH

Figure S74. The IR Spectrum of Compound 9

Figure S75.The ¹H NMR Spectrum of Compound 9 in Acetone-*d*₆ (500 MHz)

DD2-500 13C-NMR sjj-120 IN acetone Jul 17 2013 coldprobe-Probe

Figure S76.The ¹³ C NMR Spectrum of Compound 9 in Acetone-*d*₆ (500 MHz)

Figure S77. The ¹H-¹H COSY Spectrum of Compound 9 in Acetone-*d*₆ (500 MHz)

Figure S78. The HSQC Spectrum of Compound 9 in Acetone-d₆ (500 MHz)

Figure S79. The HMBC Spectrum of Compound 9 in Acetone-d₆ (500 MHz)

Figure S80. The NOESY Spectrum of Compound 9 in Acetone-d₆ (500 MHz)