Supplementary data for:

Insights into heterologous biosynthesis of arteannuin B and artemisinin in Physcomitrella patens

Nur Kusaira Khairul Ikram^{1,4}, Arman Beyraghdar Kashkooli^{3,5}, Anantha Peramuna², Alexander R. van der Krol³, Harro Bouwmeester^{3,6} and Henrik Toft Simonsen²*

Supplemental Figure S1. Genotyping of the moss lines via PCR using gene-specific primers of 1. *ADS*, 1641bp 2. *CYP71AV1-ADH1*, 2709bp and 3. *DBR2-ALDH1* (2748bp). Each transgenic line is shown for constructs *ADS*; *ADS-CYP71AV1-ADH1*; *ADS-CYP71AV1-ADH1-DBR2-ALDH1*; *ADS-DBR2-ALDH1* and *ADS DBR21-ALDH-CYP71AV1-ADH1*. The PCR products were sequence-verified.

1

Supplemental Figure S2. UPLC-MRM-MS analysis of artemisinin from various constructs introduced in *P. patens* (*ADS-CYP71AV1-ADH1*; *ADS-DBR21-ALDH*; *ADS-DBR21-ALDH-CYP71AV1-ADH1*), an internal standard (IS) and WT as control with retention time (RT). TIC represents the sum of MRM channels used for the detection of artemisinin: *m/z* 283.19>219.21; 283.19>247.19 and 283.19>265.22. For the full identification of artemisinin production *P. patens* please see previously published results [23].

Supplemental Figure S3. UPLC-MRM-MS analysis of arteannuin B produced in (a) liquid culture of *ADS*-transgenic *P. patens*, (b) an internal standard (arteannuin B), and (c) co-injection of *ADS*-transgenic *P. patens* and internal standard (arteannuin B) as control with 4.62 retention time (RT). TIC represents the sum of MRM channels used for the detection of arteannuin B. The signal at 4.9-5 is not artemisinin, and was not identified which is also discussed in previously published work [23].

Supplemental Table S1. Primers used

	Primer Sequence	Comment	
1	TCAGAATTAGATTGACATATATGTTGAAAATGGATCAAAG	Forward primer for HR 5' flanking region	
2	ATTCCATTCTTGGTCAGATGAGTTTACTCTTTC	Reverse primer for HR 5' flanking region	
3	TAATTCTTTCTTTTGAGGTATATATTATCTTAGCATGG	Forward primer for HR 3' flanking region	
4	ACGAAGGCCGTTCTTCCCTGG	Reverse primer for HR 3' flanking region	
5	CCCTGTTGTTTGGTGTTACTTCTGCAGGTCGAAGCTAAATGGGCTAACGAAGGC	Forward primer for ADS	
6	GGCGTCTCGCATATCTCATTAAAGCAGGACTCAGATGGACATCGGGTAAACCAG	Reverse primer for ADS	
7	TAATGAGCATTGCATGTCTAAGTTATAAAAAATTACCAC	Forward primer for ZmUBI promoter	
8	AAATAATTATAAAACATACTTGTTTATTATAATAGATAGGTACTCAAGGTTAGAGC	Reverse primer for ZmUBI promoter	
9	GTCTCGCATATCTCATTAAAGCAGGAC	Forward primer for OCS terminator	
10	GTTACCCGGCCGCCGTCCTCAAAAAGAAAGAAATTA	Reverse primer for OCS terminator	
11	CTACTCCAAAAATGTCAAAGATACAGTCTCAGAAG	Forward primer for G418 selection casette	
12	ACTGGATTTTGGTTTTAGGAATTAGAAATTTTATTGATAGAAG	Reverse primer for G418 selection casette	
13	GGCCCGAGGTCATTCATATGC	Forward primer for rice actin promoter	
14	GTGCCATTGCTTTGAGGATAGATTTCATTCTAGAGGATCCCCGATATCTTCTACC	Reverse primer for rice actin promoter	
		Forward primer for CYP71ADH1-LP4/2A-	
15	ATGAAATCTATCCTCAAAGCAATGGCAC	ADH1	
		Reverse primer for CYP71ADH1-LP4/2A-	
16	AGTAGCAACTTCGTCTGCTGCATTTGATCAAAACTTAATAAGGATTTTCACGCAGTCAGG	ADH1	
17	AGCGGCCGATCGTTCAAAC	Forward primer for NOS terminator	
18	GAGACTGTATCTTTGACATTTTTGGAGTATTAGCATTCTTTCT	Reverse primer for NOS terminator	
19	TACTCCAAAAATGTCAAAGATACAGTCTCAGAAG	Forward primer for Hyg selection casette	
20	AGTTTTGATCTTGAAAGATCTTTTATCTTTAGAGTTAAGAACTCTT	Reverse primer for Hyg selection casette	
21	ACAACCAAGCGGCTTGAAACAATAG	Forward primer for AtiUBI promoter	
22	GGAGAACAGAGTAGGTTTTTCGGACATCTTTTGTGTTTCGTCTTCTCTCACGTAGAAAC	Reverse primer for AtiUBI promoter	
		Forward primer for DBR2-LP4/2A-	
23	ATGTCCGAAAAACCTACTCTGTTCTCC	ALDH1	
		Reverse primer for DBR2-LP4/2A-	
24	AGCAAGCAAGAGATGGGATTCTTGATAAGAGTCTCTTCACAGCCACGGACTGTCATAG	ALDH1	
25	AGAGACTCTTATCAAGAATCCCATCTCTTGC	Forward primer for Arabidopsis terminator	
26	ACTGTATCTTTGACATTTTTGGAGTAGAGTTTGGTACGTCACAAACTTAAATCATTTTAC	Reverse primer for Arabidopsis terminator	
27	ATCCGCCCGATCGCTAACTTC	Forward primer for qPCR-ADS	
28	CTGGATCTCGTCGATCAGCTTCAAC	Reverse primer for qPCR-ADS	
29	CTCTTACAGGCGAGATTGTGCTCTATC	Forward primer for qPCR-CYP71AV1	
30	TCTTGCACGAGGTTCCAACACTC	Reverse primer for qPCR-CYP71AV1	
31	GGAAGCATCAAAGATCGGCATTGG	Forward primer for qPCR-ADH1	
32	GAGAAGTTCATCAAGCTGGATCTCCTTG	Reverse primer for qPCR-ADH1	
33	CGGTTGGCTTACCTGCACG	Forward primer for qPCR-DBR2	
34	AAGTCGGCATCCCCTTGTGC	Reverse primer for qPCR-DBR2	
35	ATGTCAAGCGGGGCTAACGG	Forward primer for qPCR-ALDH1	
36	CTTGCAGCTTTCACTGCGAGG	Reverse primer for qPCR-ALDH1	

Supplemental Table S2. Optimized MRM transition settings for UPLC-MRM-MS measurement of artemisinin, artemisinic acid, dihydroartemisinic acid, artemisinic alcohol and dihydroartemisinic alcohol.

	Parent Daughte	Daughter	Cono voltago	Colligion voltage
	(<i>m</i> / <i>z</i>)	(m/z)	Colle voltage Collision voltag	
	283.19	265.22	12	14
Artemisinin		247.19	12	8
		219.21	12	8
	235.16	217.21	18	14
Artemisinic acid		199.25	18	16
		189.22	18	10
	237.16	163.17	16	28
Dihydroartemisinic acid		107.12	16	26
		81.10	16	18
Artomicinia alashal	221.16	203.27	14	20
Artemismic alconor		147.09	14	10
	223.22	205.27	14	24
Dihydroartemisinic alcohol		109.13	14	14
		95.07	14	12

Compound	Retention time (minute)
Artemisinin	4.90
Arteannuin B	4.62
Dihydroartemisinic alcohol	6.31
Artemisinic alcohol	6.17
Dihydroartemisinic acid	5.92
Artemisinic acid	6.03

Supplementary Table S3. Retention time of measured metabolites by UPLC-MRM-MS, positive ionization mode.