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Abstract: Administration of subanesthetic doses of ketamine during brain maturation represents
a tool to mimic an early insult to the central nervous system (CNS). The cerebellum is a key
player in psychosis pathogenesis, to which oxidative stress also contributes. Here, we investigated
the impact of early celastrol administration on behavioral dysfunctions in adult mice that had
received ketamine (30 mg/kg i.p.) at postnatal days (PNDs) 7, 9, and 11. Cerebellar levels of
8-hydroxydeoxyguanosine (8-OHdG), NADPH oxidase (NOX) 1 and NOX2, as well as of the
calcium-binding protein parvalbumin (PV), were also assessed. Furthermore, celastrol effects on
ketamine-induced alterations of proinflammatory (TNF-α, IL-6 and IL-1β) and anti-inflammatory
(IL-10) cytokines in this brain region were evaluated. Early celastrol administration prevented
ketamine-induced discrimination index decrease at adulthood. The same was found for locomotor
activity elevations and increased close following and allogrooming, whereas no beneficial effects
on sniffing impairment were detected. Ketamine increased 8-OHdG in the cerebellum of adult
mice, which was also prevented by early celastrol injection. Cerebellar NOX1 levels were enhanced
at adulthood following postnatal ketamine exposure. Celastrol per se induced NOX1 decrease in
the cerebellum. This effect was more significant in animals that were early administered with
ketamine. NOX2 levels did not change. Ketamine administration did not affect PV amount in
the cerebellum. TNF-α levels were enhanced in ketamine-treated animals; however, this was not
prevented by early celastrol administration. While no changes were observed for IL-6 and IL-1β
levels, ketamine determined a reduction of cerebellar IL-10 expression, which was prevented by early
celastrol treatment. Our results suggest that NOX inhibition during brain maturation prevents the
development of psychotic-like behavioral dysfunctions, as well as the increased cerebellar oxidative
stress and the reduction of IL-10 in the same brain region following ketamine exposure in postnatal
life. This opens novel neuroprotective opportunities against early detrimental insults occurring
during brain development.
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1. Introduction

The recreational use of the N-methyl-D-aspartate receptor (NMDA-R) antagonist ketamine,
at subanesthetic doses, has been widely reported to cause psychedelic effects in humans [1].
Moreover, the development of a psychotic-like state has also been described following prolonged
assumption of this psychoactive compound [2,3]. Despite an increasing scientific interest in ketamine’s
psychotogenic effects, the mechanisms underlying the pathological contribution of this NMDA-R
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antagonist in psychosis development need to be further elucidated. In this context, the administration
of subanesthetic doses of ketamine to rodents represents a reliable tool to mimic neuropathological
alterations reminiscent of those observed in psychotic patients, in terms of biomolecular alterations,
neurochemical dysfunctions and behavioral impairment [4]. Indeed, in rodents, increased locomotor
activity and decreased discrimination abilities have been respectively associated with the agitation
and disorganized behavior, as well as with the cognitive impairment observed in subjects suffering
from psychosis [5–7]. Moreover, abnormalities in social behavior, such as withdrawal and decreased
interactions, have been related to negative symptoms observed in psychotic patients [8].

Numerous lines of evidence have considered the psychotic disease to be the final result of a series
of events occurring during the early stages of brain development [9]. Hence, animal models obtained
by administering ketamine during a crucial period of central nervous system (CNS) maturation,
such as the second postnatal week of life [10], might provide information on the possible pathogenetic
contribution of an early insult to an enduring psychotic state in adulthood.

Together with the widely known role of the prefrontal cortex in the pathogenesis of psychosis,
in recent years, an emerging interest has been directed towards a possible implication of cerebellum in
the development of this mental disorder [11,12]. Indeed, preclinical, clinical, neuroanatomical and
neuroimaging reports began to highlight its important role not only in motor function regulation but
also in the modulation of emotional and cognitive processes [13–16]. Structural cerebellar abnormalities,
such as deficits in its gray matter volume, have also been described in antipsychotic-naive schizophrenic
patients [17]. Moreover, vascular insults occurring in this brain region resulted in the onset of
unremitting psychosis [18].

Administration of subanesthetic doses of ketamine in both early life stages and adult life has been
widely reported to reduce the amount of the calcium-binding protein parvalbumin (PV) in different
brain regions, such as prefrontal cortex and hippocampus [19–22]. However, poor evidence is available
on the effects of early ketamine administration on cerebellar amount of PV, which has been shown to
play a key role in regulating several physiological processes in this brain region [23], such as cell firing,
synaptic transmission, as well as the resistance to neuronal degeneration following a variety of acute
or chronic insults [24,25].

Oxidative stress, defined as an imbalance between reactive oxygen species (ROS) production
and the antioxidant defenses of the cells, has been described as a key player in the pathogenesis
of several CNS diseases, going from neurodegenerative to neuropsychiatric disorders [26],
including psychosis [27]. The family of the Nicotinamide Adenine Dinucleotide Phosphate (NADPH)
oxidase (NOX) enzymes represents one of the major ROS sources in the CNS, where it is involved
in several physiological functions [28]. In particular, enhanced levels of NOX1 enzyme have been
reported in neuropsychiatric diseases characterized by psychotic symptoms [29,30], and increased NOX2
expression was observed in specific brain regions, such as the prefrontal cortex and nucleus accumbens
of environmental [19,31,32] and pharmacologic rodent models of psychosis, including the one obtained
by ketamine administration in adult mice [33–35]. NOX1 and NOX2 mRNA and proteins have been
detected in rodent cerebellum starting from postnatal day (PND) 4, meaning that the developing
cerebellum is able to actively produce ROS. Moreover, administration of antioxidant/NOX inhibitor
compounds, such as apocynin, has been demonstrated to decrease ROS levels in Purkinje cells [36].
However, so far, little is known about possible changes of NOX1 and NOX2 enzymes in this brain
area following an early CNS insult leading to a later psychotic disease. Together with oxidative
stress, increased inflammatory states and/or reduced anti-inflammatory pathways have been reported
following ketamine administration [37–39]. Furthermore, the developing CNS has been described as
being particularly vulnerable to enhanced peripheral and central inflammation following an external
insult [40].

Together with its anti-inflammatory actions [41], celastrol, extracted from the medicinal plant
Tripterygium wilfordii, has been described to have significant benefits in preventing neuropathological
alterations observed in animal models of neurodegenerative diseases [42–44], through numerous
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mechanisms, including ROS level decrease [45]. In particular, celastrol has been characterized as
an effective NOX enzyme inhibitor, with an increased potency against NOX1 and NOX2, acting via
the suppression of the association between the enzymatic subunits, located in the cytosol, and the
membrane flavocytochrome [46]. Importantly, no available reports investigate the effects of celastrol
administration in animal models of psychosis. Moreover, no evidence has been previously published
on the possible impact of celastrol administration during a crucial period of brain maturation, or on
the development of a psychotic state following an early CNS insult.

A major challenge in the field of oxidative stress in the CNS is represented by the possibility
to directly measure ROS production and release in this body district. Therefore, different indirect
approaches have been used to quantify free radical amount in the CNS, including the analysis of
8-hydroxydeoxyguanosine (8-OHdG), a reliable marker of DNA oxidation levels [47,48].

Here, we investigated the impact of early celastrol administration on behavioral dysfunctions
observed in adult mice exposed to subanesthetic doses of ketamine at PNDs 7, 9 and 11. The effects
of this compound on ketamine-induced oxidative stress, as well as on NADPH oxidase expression
alterations and PV levels in the cerebellum, were also assessed. Moreover, we also evaluated early
celastrol effects on possible ketamine-induced changes of proinflammatory (Tumor Necrosis Factor
alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β)), as well as anti-inflammatory
[interleukin-10 (IL-10)] cytokines in the same brain region.

2. Results

2.1. Early Celastrol Administration Prevented Cognitive Dysfunctions in Adult Mice Exposed to Ketamine in
Postnatal Life

To evaluate the possible effects of early celastrol administration on cognitive dysfunctions induced
by ketamine exposure in postnatal life, we performed the Novel Object Recognition (NOR) test
in 10 weeks mice. While no differences were detected in the discrimination index among saline,
dimethyl sulfoxide (DMSO) and celastrol-treated mice, a significant decrease of this parameter was
observed in adult mice who had received ketamine in postnatal life. Early celastrol administration to
ketamine-treated mice was able to prevent this cognitive dysfunction (Figure 1, One Way Analysis of
variance-ANOVA, followed by Tukey’s post hoc test F = 7.387, p < 0.01 ketamine vs. saline; p < 0.05
ketamine vs. DMSO and vs. ketamine + celastrol; p < 0.001 ketamine vs. celastrol; p > 0.05 saline
vs. DMSO, celastrol and ketamine + celastrol; p > 0.05 DMSO vs. celastrol and ketamine + celastrol;
p > 0.05 celastrol vs. ketamine + celastrol).
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Figure 1. Celastrol administration in postnatal life prevented ketamine-induced cognitive dysfunctions,
evaluated at adulthood. Discrimination index (N − F)/(N + F) (N = time spent in exploration of the
novel object during the T2; F = time spent in exploration of the familiar object in the T2) in adult mice
receiving saline (Sal, n = 6) or ketamine (Ket, n = 13) or a 50% DMSO in phosphate-buffered saline
(PBS) (DMSO, n = 7) or celastrol (Cel, n = 6) or ketamine + celastrol (Ket + Cel, n = 14) at PNDs 7, 9 and
11. One Way ANOVA, followed by Tukey’s post hoc test F = 7.387, *** p < 0.001; ** p < 0.01; * p < 0.05.
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2.2. Early Celastrol Administration Prevented Locomotor Dysfunctions in Adult Mice Exposed to Ketamine in
Postnatal Life

To assess the possible impact of early celastrol administration on ketamine-induced locomotor
alterations, we performed the Open Field (OF) test in adult mice. Ketamine administration in postnatal
life significantly enhanced locomotor activity at 10 weeks of age, with respect to the saline, DMSO and
celastrol-treated groups, within which no differences were observed. Celastrol co-administered with
ketamine at PNDs 7, 9 and 11 was able to prevent the observed hyperlocomotion (Figure 2, One Way
ANOVA, followed by Tukey’s post hoc test, F = 10.34, p < 0.001 ketamine vs. saline, DMSO, celastrol
and ketamine + celastrol; p > 0.05 saline vs. DMSO, celastrol and ketamine + celastrol; p > 0.05 DMSO
vs. celastrol and ketamine + celastrol; p > 0.05 celastrol vs. ketamine + celastrol).
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2.3. Early Celastrol Administration Prevented Social Behavior Dysfunctions in Adult Mice Exposed to
Ketamine in Postnatal Life

To investigate the effects of early celastrol administration on ketamine-induced social behavior
impairments, we performed the Social Interaction (SI) test in adult mice. Animals receiving ketamine
at PNDs 7, 9 and 11 showed a decrease in the sniffing time with respect to saline, DMSO- and
celastrol-treated mice. A significant difference in this parameter was also observed in ketamine-treated
mice who had also received celastrol in postnatal life compared to the saline group (Figure 3A, One Way
ANOVA, followed by Tukey’s post hoc test, F = 6.856, p < 0.01 ketamine vs. saline; p < 0.05 ketamine
vs. DMSO and celastrol; p < 0.05 ketamine + celastrol vs. saline; p > 0.05 saline vs. DMSO and celastrol;
p > 0.05 DMSO vs. celastrol; p > 0.05 ketamine vs. ketamine + celastrol). Postnatal ketamine exposure
caused a significant increase in the close following time, which was prevented by the concomitant
treatment with celastrol (Figure 3B, One Way ANOVA, followed by Tukey’s post hoc test, F = 13.10,
p < 0.05 ketamine vs. saline; p < 0.001 ketamine vs. DMSO, celastrol and ketamine + celastrol; p > 0.05
saline vs. DMSO, celastrol and ketamine + celastrol; p > 0.05 DMSO vs. celastrol and ketamine +

celastrol; p > 0.05 celastrol vs. ketamine + celastrol). The same pattern was observed for the celastrol
effects on ketamine-induced elevation of time spent in allogroming (Figure 3C, One Way ANOVA,
followed by Tukey’s post hoc test, F = 12.50, p < 0.001 ketamine vs. saline and DMSO; p < 0.01 ketamine
vs. celastrol and ketamine + celastrol; p > 0.05 saline vs. DMSO, celastrol and ketamine + celastrol;
p > 0.05 DMSO vs. celastrol and ketamine + celastrol; p > 0.05 celastrol vs. ketamine + celastrol).
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Figure 3. Celastrol administration in postnatal life prevented ketamine-induced social behavior
dysfunctions in later adulthood. (A). Time spent in sniffing (seconds, sec) in adult mice receiving saline
(Sal, n = 4) or ketamine (Ket, n = 8) or a 50% DMSO in PBS (DMSO, n = 4) or celastrol (Cel, n = 4) or
ketamine + celastrol (Ket + Cel, n = 7) at PNDs 7, 9 and 11. One Way ANOVA, followed by Tukey’s
post hoc test F = 6.856, ** p < 0.01; * p < 0.05. (B). Time spent in close following (seconds, sec) in adult
mice receiving saline (Sal, n = 4) or ketamine (Ket, n = 7) or a 50% DMSO in PBS (DMSO, n = 4) or
celastrol (Cel, n = 4) or ketamine + celastrol (Ket + Cel, n = 7) at PNDs 7, 9 and 11. One Way ANOVA,
followed by Tukey’s post hoc test F = 13.10, *** p < 0.001; * p < 0.05. (C). Time spent in allogroming
(seconds, sec) in adult mice receiving saline (Sal, n = 5) or ketamine (Ket, n = 6) or a 50% DMSO in PBS
(DMSO, n = 4) or celastrol (Cel, n = 4) or ketamine + celastrol (Ket + Cel, n = 6) at PNDs 7, 9 and 11.
One Way ANOVA, followed by Tukey’s post hoc test F = 12.50, *** p < 0.001; ** p < 0.01.

2.4. Early Celastrol Administration Prevented Oxidative Stress Increase in the Cerebellum of Adult Mice
Exposed to Ketamine in Postnatal Life

To assess the effects of early celastrol administration on ketamine-induced oxidative stress in
the cerebellum of adult mice, we quantified 8-OHdG levels in this brain region. Mice receiving
ketamine at PNDs 7, 9 and 11 showed a significant elevation of this biomarker of oxidative stress with
respect to saline-treated animals whose 8-OHdG amount was comparable to the one of the DMSO
and celastrol-treated animals. Early celastrol administration was able to prevent ketamine-induced
enhancement of this biomarker (Figure 4, One Way ANOVA, followed by Tukey’s post hoc test,
F = 6.361, p < 0.05 ketamine vs. saline; p < 0.01 ketamine vs. ketamine + celastrol; p > 0.05 saline
vs. DMSO, celastrol and ketamine + celastrol; p > 0.05 DMSO vs. celastrol and ketamine + celastrol;
p > 0.05 celastrol vs. ketamine + celastrol).
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2.5. Early Celastrol Administration Decreased NOX1 Levels in the Cerebellum of Adult Mice Per Se and
Following Ketamine Exposure

To evaluate the effects of early celastrol administration on ketamine-induced NADPH oxidase
alterations in the cerebellum, we measured NOX1 and NOX2 levels in this area. NOX1 amount
was significantly increased by ketamine administration in postnatal life. Celastrol, injected as single
treatment at the same time point, reduced NOX1 levels compared to both saline or ketamine-treated
mice. The amount of this NADPH oxidase isoform was further reduced when celastrol was administered
early to ketamine-treated animals (Figure 5, One Way ANOVA, followed by Tukey’s post hoc test
F = 50.30, p < 0.05 ketamine vs. saline and ketamine + celastrol vs. celastrol; p < 0.01 celastrol vs.
saline; p < 0.001 ketamine + celastrol vs. saline and vs. DMSO and ketamine vs. DMSO, celastrol and
ketamine + celastrol; p > 0.05 saline vs. DMSO).

Molecules 2019, 24, x FOR PEER REVIEW 6 of 21 

 

 

Figure 4. Celastrol administration in postnatal life prevented ketamine-induced oxidative stress in 
the cerebellum in later adulthood. 8-OHdG levels (ng/mg tissue) in the cerebellum of adult mice 
receiving saline (Sal, n = 3) or ketamine (Ket, n = 5) or a 50% DMSO in PBS (DMSO, n = 3) or celastrol 
(Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9 and 11. One Way ANOVA, followed 
by Tukey’s post hoc test F = 6.361 *p < 0.05; **p < 0.01. 

2.5. Early Celastrol Administration Decreased NOX1 Levels in the Cerebellum of Adult Mice Per Se and 
Following Ketamine Exposure 

To evaluate the effects of early celastrol administration on ketamine-induced NADPH oxidase 
alterations in the cerebellum, we measured NOX1 and NOX2 levels in this area. NOX1 amount was 
significantly increased by ketamine administration in postnatal life. Celastrol, injected as single 
treatment at the same time point, reduced NOX1 levels compared to both saline or ketamine-treated 
mice. The amount of this NADPH oxidase isoform was further reduced when celastrol was 
administered early to ketamine-treated animals (Figure 5, One Way ANOVA, followed by Tukey’s 
post hoc test F = 50.30, p < 0.05 ketamine vs saline and ketamine + celastrol vs celastrol; p < 0.01 
celastrol vs saline; p < 0.001 ketamine + celastrol vs saline and vs DMSO and ketamine vs DMSO, 
celastrol and ketamine + celastrol; p > 0.05 saline vs DMSO). 

 

Figure 5. Celastrol administration in postnatal life decreased NOX1 levels in the cerebellum of adult 
mice. NOX1 levels (pg/mg tissue) in the cerebellum of adult mice receiving saline (Sal, n = 3) or 
ketamine (Ket, n = 5) or a 50% DMSO in PBS (DMSO, n = 3) or celastrol (Cel, n = 3) or ketamine + 
celastrol (Ket + Cel, n = 5) at PNDs 7, 9 and 11. One Way ANOVA, followed by Tukey’s post hoc test 
F = 50.30, *p < 0.05; **p < 0.01; ***p < 0.001.  

 

Figure 5. Celastrol administration in postnatal life decreased NOX1 levels in the cerebellum of adult
mice. NOX1 levels (pg/mg tissue) in the cerebellum of adult mice receiving saline (Sal, n = 3) or
ketamine (Ket, n = 5) or a 50% DMSO in PBS (DMSO, n = 3) or celastrol (Cel, n = 3) or ketamine +
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Ketamine administration at PNDs 7, 9 and 11 did not significantly alter NOX2 amount in the
cerebellum of adult mice, and no differences in the levels of this NADPH oxidase isoform were detected
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among all the other experimental groups (Figure 6, One Way ANOVA, followed by Tukey’s post hoc
test F = 1.158, p > 0.05 for all comparisons).
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post hoc test, F = 2.632, p > 0.05 for all comparisons).
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Figure 7. PV levels were not altered in the cerebellum of adult mice exposed to ketamine in postnatal
life. PV levels (ng/mg tissue) in the cerebellum of adult mice receiving saline (Sal, n = 3) or ketamine
(Ket, n = 5) or a 50% DMSO in PBS (DMSO, n = 3) or celastrol (Cel, n = 3) or ketamine + celastrol
(Ket + Cel, n = 5) at PNDs 7, 9 and 11. One Way ANOVA, followed by Tukey’s post hoc test F = 2.632,
p > 0.05 for all comparisons.
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2.6. Early Celastrol Administration Did not Prevent TNF-α Increase in the Cerebellum of Adult Mice Exposed
to Ketamine in Postnatal Life

To investigate the effects of early celastrol administration on ketamine-induced inflammation in the
cerebellum, we measured levels of TNF-α, IL-6 and IL-1β in this brain area. Ketamine administration
in postnatal life determined an enhancement of cerebellar TNF-α in later adulthood compared to
controls which showed comparable TNF-α amount with respect to the DMSO and celastrol-treated
groups. Increased TNF-α were also detectable in adult mice receiving both ketamine and celastrol at
PNDs 7, 9 and 11 (Figure 8A, One Way ANOVA, followed by Tukey’s post hoc test F = 7.382, p < 0.05
ketamine vs. saline, saline vs. ketamine + celastrol and celastrol vs. ketamine + celastrol), whereas no
significant alterations in the amount of IL-6 (Figure 8B, One Way ANOVA, followed by Tukey’s post
hoc test F = 1.444 p > 0.05 for all comparisons) and IL-1β (Figure 8C, One Way ANOVA, followed by
Tukey’s post hoc test F = 2.103 p > 0.05 for all comparisons) in the same brain region were found.
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Figure 8. Celastrol administration in postnatal life did not prevent ketamine-induced TNF-α increase
in the cerebellum in later adulthood. (A). TNF-α levels (pg/mg tissue) in the cerebellum of adult
mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 5) or a 50% DMSO in PBS (DMSO, n = 3) or
celastrol (Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9 and 11. One Way ANOVA,
followed by Tukey’s post hoc test F = 7.382, * p < 0.05. (B). IL-6 levels (pg/mg tissue) in the cerebellum
of adult mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 5) or a 50% DMSO in PBS (DMSO,
n = 3) or celastrol (Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9 and 11. One Way
ANOVA, followed by Tukey’s post hoc test F = 1.444, p > 0.05. (C). IL-1β levels (pg/mg tissue) in the
cerebellum of adult mice receiving saline (Sal, n = 3) or ketamine (Ket, n = 5) or a 50% DMSO in PBS
(DMSO, n = 3) or celastrol (Cel, n = 3) or ketamine + celastrol (Ket + Cel, n = 5) at PNDs 7, 9 and 11.
One Way ANOVA, followed by Tukey’s post hoc test F = 2.103 p > 0.05.
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2.7. Early Celastrol Administration Prevented IL-10 Decrease in the Cerebellum of Adult Mice Exposed to
Ketamine in Postnatal Life

To assess the effects of early celastrol administration on ketamine-induced decrease of
anti-inflammatory cytokines in the cerebellum, we quantified IL-10 levels in this brain region.
Mice administered with ketamine at PNDs 7, 9 and 11 showed reduced IL-10 amounts in later
adulthood compared to saline-treated animals, whose levels of this cytokine were comparable to the
ones detected in mice receiving DMSO or celastrol. Early celastrol administration in ketamine-treated
animals was able to prevent IL-10 reduction in the cerebellum (Figure 9, One Way ANOVA, followed
by Tukey’s post hoc test F = 15.19, p < 0.001 ketamine vs. saline, ketamine vs. celastrol and ketamine
vs. ketamine + celastrol; p < 0.01 ketamine vs. DMSO).
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3. Discussion

In this work, we demonstrated that early celastrol administration prevented discrimination
ability dysfunctions, locomotor activity alterations and social behavior impairment in adult mice
that had received ketamine at PNDs 7, 9 and 11. Previously published in vivo studies investigating
possible beneficial effects of celastrol on CNS disorders have mainly regarded neurodegenerative
disorders, including Alzheimer’s disease [43–45], Parkinson’s diseases [49–51], amyotrophic lateral
sclerosis [42,52] and multiple sclerosis [53,54], epilepsy [55,56], cerebral ischemia and ischemic
stroke [57–59] as well as traumatic brain injury [60,61]. One in vitro report indirectly investigated
the impact of celastrol on the expression of specific genes, such as Fragile X Mental Retardation 1
(FMR1), linked to different psychiatric diseases, including schizophrenia [62]. Therefore, a novelty
of our study with respect to the existing literature in the field is related to the evaluation of the
effects of celastrol in psychotic disease by using a mouse model of the disorder. Importantly, this was
obtained by negatively impacting the process of brain maturation with an early detrimental insult,
represented by ketamine administration. Indeed, it has been reported that the developing brain is more
vulnerable to the neurotoxicity induced by this psychoactive compound compared to the mature brain,
in terms of enhanced neuronal cell death, neurogenesis alterations, disruptions of γ-aminobutyric
acid (GABA)ergic interneuron development, altered NMDA-R expression, impaired synaptogenesis
and increased oxidative stress production [63]. These disturbances during a critical period of brain
maturation, i.e., the first 2–3 weeks of life in rodents, when brain growth spurt occurs, have been
reported to trigger brain dysfunctions later in life, resulting finally in psychotic-like neuropathological
and behavioral alterations [64]. Thus, our observations suggest that early administration of celastrol
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concomitantly to a brain insult might block the detrimental effects of ketamine with respect to the
development of CNS and stop the progression of cerebral damage.

Decreased discrimination ability in rodents has been considered a behavioral feature mimicking
the cognitive dysfunctions observed in psychotic patients [6]. Our findings regarding the preventive
effects of early celastrol administration on ketamine-induced decrease in cognitive functions are in line
with previous observations reporting a beneficial impact of this compound on learning and memory
dysfunctions induced by metabolic alterations [65] or by neurodegenerative processes, induced by
aggregation of specific proteins [45,66]. However, these studies were mainly focused on the behavioral
effects of celastrol administration in adult life or even later, when the CNS insults leading to brain
damage might have already been consolidated.

Elevations in locomotor activity in rodents are known to mimic the psychomotor agitation observed
in subjects suffering from psychosis [5]. In our experimental conditions, early celastrol-treated mice,
also exposed to ketamine in postnatal life, did not show an increase in locomotor activity with respect
to the other experimental groups. Accordingly, the beneficial effects of celastrol on locomotor activity
dysfunctions have been previously described in animal models of epilepsy, where motor function
alterations were rapidly reduced by celastrol administration [67].

In this work, we also showed that ketamine administration at PNDs 7,9 and 11 induced
dysfunctions in social behavior at adulthood. In particular, we reported decreased sniffing time
in ketamine-treated mice with respect to controls. Together with its relation to social hierarchy in
rodents, the sniffing behavior has been shown to be related to the establishment of normal social
interactions [68]. Importantly, decreased social interactions in rodents have been paralleled to
a negative symptom observed in psychotic patients, i.e., the social withdrawal [5]. Our findings are in
line with previous work reporting a decreased sniffing time in rats treated with another NMDA-R
antagonist, phencyclidine [69], together with a positive effects of antipsychotic treatment in reverting
this social deficit [70]. Moreover, decreased duration of sniffing was observed in animal models of
neuropsychiatric diseases also characterized by psychotic symptoms, such as autism [71]. In our
experimental conditions, mice receiving ketamine in postnatal life also showed increased time spent in
close-following and allogrooming. Close following is generally considered a mutual investigation
behavior, while allogroming has been described as a standard behavior of altruism and reciprocal
cooperation [72]. However, despite their general classification as non-aggressive behaviors, elevations in
these social outcomes have been associated with subordination of the partner and abnormal dominance
establishment [73], which could be seen as aggressive-like behaviors [74]. Accordingly, Becker et al.
described a decrease in non-aggressive behavior in ketamine-treated rats [72]. Our findings might
appear to be in contradiction with a previous work reporting that ketamine ameliorates aggressive-like
behavior induced by neonatal maternal separation in mice [75]. However, in this study, lower doses of
ketamine (15 mg/kg) were used and the administration time (post-natal days 35–49) was not comparable
to those followed in our research procedure. In our experimental conditions, celastrol did not show
beneficial effects on the ketamine-induced social withdrawal at adulthood but was able to prevent
the observed increase in aggressive-like behavior. This is in line with previous findings reporting
beneficial effects of antioxidant therapies in attenuating aggressive behavior induced by different
stimuli [76] and describing aggressivity enhancement in mice with a genetic reduction of antioxidant
functions [77]. In apparent contrast with our findings, Phensy and co-workers demonstrated that
antioxidant treatment with N-acetyl cysteine was able to prevent social interaction dysfunctions
induced by ketamine administration during postnatal life. However, in this work, administration of
this antioxidant compound was performed throughout the entire period of brain development.
Thus, we cannot exclude that prolonged administration of celastrol during brain maturation might
also have an impact on social withdrawal observed at adulthood.

In our study, we found that early celastrol administration prevented elevations in cerebellar
oxidative stress observed in mice treated with ketamine in postnatal life. The cerebellum has
been gaining increasing importance in the pathogenic mechanisms underlying the development
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of psychosis [11,78–80] and of other psychiatric diseases, clinically characterized by psychotic
symptoms [81]. In addition to the ketamine-induced detrimental effects on the prefrontal
cortex [22,82,83], the negative impact of this NMDA-R antagonist also on the developing cerebellum has
been shown in non-human primates [84]. In good agreement with our observations, previous works
have reported increased direct and indirect biomarkers of oxidative stress in the cerebellum of
animal models of neuropsychiatric disorders [85,86]. In particular, Filiou and co-workers described
cerebellar oxidative stress-induced structural alterations in the G72/G30 transgenic schizophrenia
mouse model [87]. Moreover, antipsychotic medication has been demonstrated to inhibit the activity of
specific enzymes, which can also produce free radicals in rodent cerebellum [88,89]. The increased
oxidative stress observed in this brain region may also be considered a possible trigger of the
cerebello-thalamo-cortical network dysfunctions which have been described as predictors of disease
progression in individuals at ultra-high risk for psychosis [12,90]. In support of this concept,
interesting lines of evidence describe a positive effects of antioxidant treatments in preventing cerebellar
dysfunctions observed in neuropsychiatric diseases also characterized by psychotic symptoms, such as
autism spectrum disorder [91].

An important finding of our study consists in the observed increased cerebellar NOX1 levels in adult
mice who had received ketamine in postnatal life, whereas NOX2 amount was not affected by this early
detrimental insult. A physiological role of the NADPH oxidase enzymatic family in different stages of
cerebellum development has been previously described [36]. Moreover, Olguín-Albuerne and Morán
reported a key role of NADPH oxidase-derived ROS in controlling the development of cerebellar
granule neurons during brain maturation [92]. However, in vitro and in vivo evidence highlighted
a crucial role of NOX enzymes in the development of structural and functional alterations in cerebellum
following different insults [93–95]. Increased NOX1 enzyme expression and activity has been implicated
not only in the pathogenesis of neurodegenerative disorders [96–98], but also in neurotoxic processes
mediated by sustained microglia activation [99]. Thus, the observed NOX1 increase following postnatal
ketamine administration should also be considered in the context of the effects that this NMDA-R
antagonist has on the inflammatory states of the brain. Supporting this perspective, it has been
reported that exposure to subanesthetic doses of ketamine is able to activate neuroinflammatory
pathways [83] and to induce microglia activation in rodent brains [100]. In our experimental conditions,
early celastrol administration was able per se to decrease NOX1 levels in the cerebellum of adult
mice which did not receive ketamine in postnatal life. Although speculative, a possible explanation
for this result could be related to possible celastrol effects on other ketamine-independent events
occurring in mature brain and implicating a role of the NADPH oxidase system, such as protein
aggregation [101] or specific heat shock proteins expression and/or activation [102,103]. Hence, in the
presence of a neurodetrimental insult, i.e., ketamine, early celastrol administration was able to further
lower cerebellar NOX1 levels. With respect to these findings, additional investigations are needed to
further unravel molecular mechanisms of actions of celastrol and its possible impact on NOX1 enzyme
expression. Indeed, in this context, a limitation of this study is represented by the absence of the
evaluation of the enzyme activation in the cerebellum. The lack of NOX2 increase following postnatal
ketamine exposure observed in our experimental conditions could be explained by a region-specific
effect of this NMDA-receptor antagonist in inducing an enhancement of this NADPH oxidase isoform.
In line with this hypothesis, Zhang and co-workers previously described that cortical NOX2 was
upregulated in adult rats treated with ketamine from PND6 to PND8 [20]. Moreover, in further support,
an interesting study of Boczek et al. analyzed the effects of repeated ketamine administration on
different brain areas, i.e., cortex, cerebellum, hippocampus and striatum, revealing region-specific
effects of this NMDA-R antagonist [104]. However, we cannot totally exclude that the observed
celastrol effects might be related to other pathways, other than the inhibition of NOX enzymes, finally
resulting in decreased ROS levels, such as the enhancement of antioxidant capacity [105], the increase
of antioxidant enzyme activity [106] and the targeting of mitochondria respiratory chain [107].
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Decreased PV levels and loss of phenotype of PV-positive interneurons have been described in
brain regions other than cerebellum, such as prefrontal cortex and hippocampus, in pharmacologic
and non-pharmacologic animal models of psychosis [22,108]. With respect to this issue, a novelty
of the present study is the absence, at least in our experimental conditions, of the reduction of
PV amount in the cerebellum of adult mice administered with ketamine in the early stages of life,
suggesting a region-specific effect of this NMDA-R antagonist. Moreover, our findings should also be
considered in the light of the link existing between NADPH oxidases and PV. Indeed, NOX2 enzyme
alterations have been reported to mediate cortical PV changes induced by different neurodetrimental
insults, such as ketamine administration [34] or traumatic brain injury [109]. Thus, the lack of PV
alterations observed in our experimental conditions might be related to the absence of NOX2 changes
in the same brain region, suggesting a different mechanism of action underlying ketamine effects in the
cerebellum with respect to what observed in the prefrontal cortex.

Here, we also showed that ketamine administration in early life stages caused increased levels
of a specific proinflammatory cytokine, the TNF-α, in the cerebellum, without affecting cerebellar
levels of IL-6 and IL-1β. Behavioral manifestations in psychiatric disorders such as schizophrenia
and autism have been reported to be sustained by early neuroinflammatory processes which involve
specific brain regions, including the cerebellum [110]. Moreover, patients with first psychotic episode,
drug-naive schizophrenia, and subjects at ultra-high risk of psychosis have been described to share
altered cerebellar-default mode network connectivity which appears to be modulate by inflammation in
this brain region [111]. Moreover, in good agreement with our findings, previous evidence has reported
a crucial role of TNF-α in regulating ketamine-induced neurotoxicity in the hippocampus [112,113],
which is known to be functionally connected with the cerebellum [114,115]. In our experimental
conditions, early celastrol administration was not able to prevent the ketamine-induced TNF-α increase
in the cerebellum. This finding might appear in apparent contradiction with previous lines of evidence
showing an effect of this compound in lowering TNF-α in monocytes and macrophages [45], as well as
in the brain of animal models of neurodegenerative disorders, such as Alzheimer’s disease [116,117],
amyotrophic lateral sclerosis [42] and Parkinson’s disease [50]. However, in most of the animal models
on which celastrol has previously been tested for the evaluation of its effects on TNF-α, the pathological
and/or neurotoxic insult leading to the neurodegenerative condition mainly occurred at adulthood.
Moreover, other routes of administration (such as the oral one), as well as different doses and considered
brain regions might also explain our findings. Further research is certainly needed to highlight possible
different effects of celastrol on pro-inflammatory cytokines based on the time of the insult occurring
in the brain. The lack of ketamine-induced cerebellar IL-6 increase that we observed might also be
considered in the light of the unaltered NOX2 and PV expression we found in the same brain region.
Indeed, a molecular association between IL-6, NOX2 and PV has been previously reported in the
ketamine model of psychosis [35].

In this study, we also reported that early celastrol administration prevented ketamine-induced
decrease of IL-10, an anti-inflammatory cytokine, in the cerebellum. Accordingly, an imbalance between
pro-inflammatory and anti-inflammatory cytokines has been described in both schizophrenia [118]
and other psychiatric disorders characterized by psychotic symptoms, such as bipolar disorders [119].
Intriguingly, IL-10 has been described as the most important player both in the resolution of the
inflammatory cascade [120] and in the protection against possible detrimental effects following
a neurotoxic insults [121,122]. Moreover, a key role of this anti-inflammatory cytokine in preventing
glutamate-mediated cerebellar granule cell death has been reported [123], together with the regulation
of synapses formation and functioning in the developing brain [124]. Thus, we could hypothesize that,
at least in our experimental conditions, early celastrol administration might exert a protective effect
against a neurotoxic insult, represented by ketamine, on the developing cerebellum, acting also on the
anti-inflammatory pathways related to IL-10.

In conclusion, our study suggests that early NOX inhibition by celastrol during a crucial
period of CNS maturation can prevent the development of psychotic-like behavioral dysfunctions,
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the increased oxidative stress and the IL-10 reduction in the cerebellum of adult mice exposed to
an early neurodetrimental insult, i.e., ketamine. This might open new pharmacological insights into
the possible use of this compound for neuroprotective purposes during brain development.

4. Materials and Methods

4.1. Animals

Mice were housed at constant room temperature (22 ± 1 ◦C) and relative humidity (55 ± 5%)
under a 12 h light/dark cycle (lights on from 7:00 AM to 7:00 PM), with free access to food and water.
Experimental procedures involving animals and their care were performed in conformity with the
institutional guidelines of the Italian Ministry of Health (D.Lgs. n.26/2014), the Guide for the Care and
Use of Laboratory Animals: Eight Edition, the Guide for the Care and Use of Mammals in Neuroscience
and Behavioral Research (National Research Council, 2004), the Directive 2010/63/EU of the European
Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific
purposes, as well as the ARRIVE guidelines. We daily monitored animal welfare during the entire
period of experimental procedures. All efforts were made to minimize the number of animals used and
their suffering. The experimental protocol was approved by the Italian Ministry of Health (approval
number 679/2017-PR, protocol n. B2EF8.17).

4.2. Experimental Design

Five C57/Bl6 adult male mice and 10 adult females (Envigo, San Pietro al Natisone, Italy) weighing
25–30 g (8–10 weeks of age) were mated (one male and two females per cage).

Male pups were divided into the following five experimental groups:

1. pups administered with saline (10 mL/kg i.p.);
2. pups administered with ketamine (Sigma-Aldrich Corporation, Saint Louis, MO, US; 30 mg/kg

i.p., dissolved in saline) [10,33];
3. pups administered with celastrol (Sigma Aldrich, Milano, Italy; 1 mg/kg i.p., dissolved in 50%

DMSO/PBS) [43];
4. pups administered with a 50% DMSO/PBS solution (5 mL/kg i.p.)—we have referred to this

treatment throughout the text as “DMSO”;
5. pups administered with ketamine (30 mg/kg i.p., dissolved in saline, injected in the right side of the

peritoneum) and celastrol (1 mg/kg i.p., dissolved in 50% DMSO/PBS, injected in the left side of the
peritoneum)—we have referred to this treatment throughout the text as “ketamine + celastrol”.

The above-mentioned treatments were repeated at PNDs 7, 9 and 11.
All pups were grown until adulthood, i.e., 10 weeks of age, when behavioral tests were performed.

Immediately after, mice were euthanized by cervical dislocation for the collection of cerebella on which
neurochemical and biomolecular analysis were conducted. The tissue was frozen in isopentane and
stored at −80 ◦C until analysis was performed.

Body weight gain during the experimental protocol was calculated as the difference between body
weight at PND 7 (the time of the first ketamine and/or celastrol injection) and body weight at 10 weeks
of age (the time at which the behavioral tests were performed). No statistical differences were detected
among the experimental groups (Supplementary Material A). Moreover, body weight at the time of
the behavioral tests (10 weeks of age) was comparable among experimental groups (Supplementary
Material B). No evident signs of hair loss and/or alopecia were observed during the experimental
protocol for all the animals included in this study.
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4.3. Behavioral Tests

4.3.1. NOR Test

The NOR test was performed as previously described [19,125] in a squared plastic-made arena
(40 cm × 40 cm × 40 cm). For the habituation, mice were allowed to freely explore the arena for 10 min
over five days. Mice were acclimatized to the testing room for one hour prior the beginning of the test.
The test included two trials (training trial, T1 and testing trial, T2) of 3 min with an intertrial time of
1 min [126,127]. In T1, mice were put in the center of the arena and left free to explore two identical
objects (two white light bulbs, fixed on the floor of the arena by velcro) for 3 min. In the testing trial
(T2), one of the light bulbs was substituted with a novel object (a light blue plastic-made brick). At the
beginning of the experimental procedure and between T1 and T2, the objects were cleaned with 20%
v/v ethanol to remove any olfactory cues. Moreover, the arena was cleaned each time to remove mouse
feces. Both T1 and T2 were videorecorded using a fixed camera. Then, an investigator, blind to the
identity of the tested mouse, analyzed the animal behavior, including in the scoring of object sniffing
and touching, as well as having moved the vibrissae while directing the nose toward the object at
a distance of 1 cm. The following behaviors were not considered: sitting on, leaning against, and
chewing the objects. The discrimination index was calculated using the following formula: (N − F)/(N
+ F) (N = times spent in exploration of the novel object during the T2; F = times spent in exploration of
the familiar object in the T2) [19].

4.3.2. OF Test

The OF test was performed as previously described [128], in a square plastic arena
(40 cm × 40 cm × 40 cm), virtually divided into nine equal squares with black horizontal and vertical
lines [129]. Mice were acclimatized to the testing room for one hour prior the beginning of the test.
For the habituation, mice were allowed to freely move into the arena for 10 min over five days. The day
of the test, mice were initially placed in the same corner and then left to move freely in the arena for
5 min. The experimental procedures were videorecorded using a fixed camera and then analyzed by
a blind investigator who manually scored as spontaneous locomotor activity the total of horizontal
and vertical displacements performed during the test (squares crossed with the four paws).

4.3.3. SI Test

The SI test was performed, as previously described [130–132], in a plexiglass rectangular cage
(45cm × 30cm × 25cm), located under a fixed camera. Briefly, 24 h before, as well as on the morning of
the test, the cages were cleaned, the testing mouse was weighed in order to choose an appropriate
intruder, which was labelled with a white, sticking tape on the tail. Mice were acclimatized to the
testing room for one hour prior the beginning of the test. The testing mouse was left undisturbed in
the cage for 15 min. Then, the intruder was introduced, and the social behavior was videorecorded
for 10 min. Analysis of behavior was conducted by a blind researcher and the following parameters
were considered for the scoring: time (seconds) spent by the testing mouse in sniffing the intruder,
time (seconds) spent by the testing mouse in close following the intruder and time (seconds) spent by
the testing mouse in the allogrooming to the intruder.

4.4. Enzyme-Linked Immunosorbent Assays (ELISAs)

Samples were homogenized in 10 volumes of PBS with protease inhibitors, as previously
described [133,134]. Commercially available ELISA kits were used for measurement of 8-OHdG
(JaICA, Shizuoka, Japan), NOX2 (MyBiosource, San Diego, CA, USA), NOX1 (MyBiosource, San Diego,
CA, USA), PV (MyBiosource, San Diego, CA, USA), TNF-α (MyBiosource, San Diego, CA, USA),
IL-6 (MyBiosource, San Diego, CA, USA), IL-1β (MyBiosource, San Diego, CA, USA) and IL-10
(MyBiosource, San Diego, CA, USA) in the cerebellum, according to the manufacturer’s instructions.
Each sample analysis was performed in duplicate to avoid intra-assay variations.
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4.5. Blindness of the Study

Researchers performing data analysis were blind with respect to the treatment conditions.
The blindness was maintained until the end of the analysis process.

4.6. Statistical Analysis

GraphPad 5.0 software for Windows was used to perform statistical analyses. Data were analyzed
by One Way ANOVA, followed by Tukey’s post hoc test. For all tests, a p value < 0.05 was considered
statistically significant. Results are expressed as means ±mean standard error (SEM).

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/1420-3049/
24/21/3993/s1.
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