Supplementary material

Speciation studies of bifunctional 3-hydroxy-4-pyridinone ligands in the presence of Zn^{2+} at different ionic strengths and temperatures

Anna Irto¹, Paola Cardiano¹, Salvatore Cataldo², Karam Chand³, Rosalia Maria Cigala¹, Francesco Crea¹, Concetta De Stefano¹, Giuseppe Gattuso¹, Nicola Muratore², Alberto Pettignano², Silvio Sammartano^{1*} and Maria Amélia Santos^{3,*}

- ¹ Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università di Messina, Viale F. Stagno d'Alcontres, 31 98166 Messina, Italy; airto@unime.it (A.I.); pcardiano@unime.it (P.C.); rmcigala@unime.it (R.M.C.); fcrea@unime.it (F.C.); cdestefano@unime.it (C.D.S.); ggattuso@unime.it (G.G.)
- ² Dipartimento di Fisica e Chimica Emilio Segrè, ed. 17, Università di Palermo, Viale delle Scienze, I-90128, Palermo, Italy;
- salvatore.cataldo@unipa.it (S.C.); nicola.muratore@unipa.it (N.M.); alberto.pettignano@unipa.it (A.P.)
- ³ Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovísco Pais 1, 1049-001 Lisboa, Portugal;
- kc4chemistry@gmail.com (K.C.)
- * Correspondence: ssammartano@unime.it (S.S.), Tel.: +39 0906765749; masantos@ist.utl.pt (M.A.S.), Tel.: +351 218419000

Ligand	T/K	$\log \beta_1^{\rm H}$	$\log \beta_2^{\mathrm{H}} (\log K_2^{\mathrm{H}})$	$\log \beta_3 \ (\log K_3^{\rm H})$	$\log \beta_4^{\rm H} (\log K_4^{\rm H})$
L1	298.15	9.947	14.36 (4.41)	17.74 (3.38)	-
	310.15	10.029	13.62 (3.59)	16.54 (2.92)	-
<i>L2</i>	298.15	10.73	19.52 (8.79)	24.17 (4.65)	27.43 (3.26)
	310.15	10.99	17.05 (6.06)	21.02 (3.97)	24.08 (3.06)
L3	298.15	10.93	20.70 (9.77)	25.60 (4.90)	29.02 (3.42)
	310.15	10.93	17.71 (6.78)	22.50 (4.79)	25.93 (3.43)
<i>L4</i>	298.15	11.10	20.44 (9.34)	24.60 (4.16)	27.87 (3.27)
	310.15	11.13	17.93 (6.80)	22.00 (4.07)	25.30 (3.30)
L5	298.15	11.08	20.468(9.388)	23.68 (3.21)	-
	310.15	10.57	16.53 (5.96)	19.53 (3.00)	-

Table S1. Overall^{a)} and stepwise^{b)} protonation constants^{a)} of *L1-L5* ligands reported in the literature [8] at $I = 0.15 \text{ mol } \text{L}^{-1}$ in NaCl_(aq), T = 298.15 K and 310.15 K

^{a)} $\log \beta_r^{\text{H}}$ refer to eq. (2); ^{b)} $\log K_r^{\text{H}}$ refer to eq. (1); ^{c)} Std. dev.

			$\log\!\beta_{\mathrm{r}}^{\mathrm{H}\mathrm{a}} \left(\log\!K_{\mathrm{r}}^{\mathrm{H}}\right)^{\mathrm{b}}$				
Ligand	<i>I</i> /mol kg ⁻¹	T/\mathbf{K}	$\mathrm{H}L^{(1-\mathrm{z})}$	$H_2 L^{(2-z)}$	$H_3 L^{(3-z)}$	$H_4L^{(4-z)}$	
L2	0.149	288.15	10.28	19.56 (9.28)	24.29 (4.73)	27.45 (3.16)	
	0.150	298.15	10.73	19.51 (8.78)	24.16 (4.65)	27.42 (3.26)	
	0.512	298.15	9.96	17.62 (7.66)	22.50 (4.88)	25.60 (3.10)	
	0.756	298.15	9.87	17.26 (7.39)	22.20 (4.94)	25.44 (3.24)	
	1.034	298.15	10.05	16.76 (6.71)	21.15 (4.39)	24.87 (3.72)	
	0.151	310.15	10.99	17.04 (6.05)	21.00 (3.96)	24.06 (3.06)	
L5	0.167	288.15	10.52	19.92 (9.39)	23.57 (3.65)	-	
	0.166	298.15	10.82	20.43 (9.61)	24.01 (3.58)	-	
	0.141	298.15	11.20	20.46 (9.26)	23.67 (3.21)	-	
	0.151	298.15	11.07	20.46 (9.39)	23.67 (3.21)	-	
	0.478	298.15	9.98	19.16 (9.18)	22.44 (3.28)	-	
	0.735	298.15	9.78	18.85 (9.07)	22.00 (3.15)	-	
	1.030	298.15	10.30	19.30 (9.00)	23.35 (4.05)	-	
	0.151	310.15	10.56	16.52 (5.96)	19.52 (3.00)	-	

Table S2. Overall^{a)} and stepwise^{b)} protonation constants of *L2* and *L5* ligands at different temperatures and ionic strengths in NaCl_(aq) expressed in molal scale (mol (kg H₂O)⁻¹)

^{a)} $\log \beta_r^H$ refer to eq. (2); ^{b)} $\log K_r^H$ refer to eq. (1).

Species	$\delta_{\mathrm{CH}a}$	$\delta_{\operatorname{CH} b}$	$\delta_{\mathrm{CH}_3 c}$	$\delta_{\operatorname{CH}_2 d}$	$\delta_{\operatorname{CH}_2 e}$	$\delta_{\mathrm{CH}_2 fl}$	$\delta_{\mathrm{CH}_2 f^2}$	$\delta_{\mathrm{CH}_2 g}$
$(L2)^{2-}$	$6.24{\pm}0.01^{a)}$	$7.05{\pm}0.03^{a)}$	2.30±0.01 ^{a)}	4.08±0.01 ^{a)}	$3.52{\pm}0.02^{a)}$	$2.47{\pm}0.04^{a)}$	$2.64{\pm}0.01^{a)}$	$3.39{\pm}0.07^{a)}$
$H(L2)^{-}$	6.42±0.01	7.45 ± 0.03	$2.38{\pm}0.01$	4.15±0.01	3.52 ± 0.02	2.51 ± 0.04	2.58 ± 0.01	3.57 ± 0.07
$H_2(L2)^{0}_{(aq)}$	6.47±0.01	7.53 ± 0.03	2.41 ± 0.01	4.18±0.01	3.53±0.02	2.68 ± 0.04	2.79±0.01	3.88 ± 0.07
$\mathrm{H}_{3}(L2)^{+}$	6.50±0.01	7.54 ± 0.03	$2.42{\pm}0.01$	4.19±0.01	3.54 ± 0.02	2.66 ± 0.04	2.78 ± 0.01	3.86 ± 0.07
$H_4(L2)^{2+}$	$7.08{\pm}0.01$	7.91±0.03	2.58±0.01	4.43±0.01	3.62±0.02	2.83 ± 0.04	$2.82{\pm}0.01$	3.97±0.07
L5 ⁻	$6.260{\pm}0.005^{a)}$	$7.156{\pm}0.001^{a)}$	$2.2971{\pm}0.0006^{a)}$	$3.982{\pm}0.001^{a)}$	$1.783{\pm}0.007^{a)}$	2.535±0.002 ^{a)}	-	-
$H(L5)^{0}_{(aq)}$	6.360±0.005	$7.363 {\pm} 0.001$	$2.3358 {\pm} 0.0006$	4.046 ± 0.001	1.862 ± 0.007	2.652 ± 0.002	-	-
$H_2(L5)^+$	6.491±0.005	$7.636 {\pm} 0.001$	$2.3987 {\pm} 0.0006$	4.156±0.001	2.106 ± 0.007	3.026 ± 0.002	-	-
$H_3(L5)^{2+}$	7.128±0.005	8.052±0.001	2.5729±0.0006	4.416±0.001	2.200±0.007	3.087±0.002	-	-

Table S3. Calculated chemical shifts of L2 [8] and L5 species obtained by ¹H NMR titrations at I = 0.15 mol L⁻¹ in NaCl_(aq) and T = 298.15 K.

^{a)} Std. Dev.

· 1								
	288.15 K	5 K 298.15 K						
Species	0.15 mol L ⁻¹	0.15 mol L ⁻¹	0.50 mol L ⁻¹	0.75 mol L ⁻¹	1.00 mol L ⁻¹	0.15 mol L ⁻¹		
$Zn(OH)^+$	-9.68	-9.20	-9.08	-9.12	-9.16	-8.78		
$Zn(OH)_2^{0}_{(aq)}$	-17.92	-17.16	-17.07	-17.15	-17.22	-16.52		
Zn(OH)3 ⁻	-29.51	-28.41	-28.47	-28.47	-28.47	-27.54		
Zn(OH)4 ²⁻	-42.21	-40.66	-40.35	-40.36	-40.38	-39.47		
$Zn_2(OH)^{+3}$	-9.45	-8.77	-9.28	-9.38	-8.89	-8.54		
$Zn_2(OH)_6^{2-}$	-59.66	-57.52	-57.28	-57.30	-57.32	-55.90		

Table S4. Hydrolysis constants^{a)} of Zn^{2+} at different ionic strengths in $NaCl_{(aq)}$ and temperatures [6, 33, 34]

^{a)} log β_{pr} refer to the equilibrium $pZn^{2+} + rH_2O = Zn_p(OH)r^{(2p-r)} + rH^+$.

Table S5. Calculated chemical shifts of $Zn^{2+}/L2$ and L5 species obtained by ¹ H NN	NMR titrations at $I = 0.15 \text{ mol } L^{-1}$ in NaCl _(aq) and $T = 298.15 \text{ K}$.
---	---

Species	$\delta_{CH a}$	$\delta_{\mathrm{CH}b}$	δ _{CH3} <i>c</i>	$\delta_{\operatorname{CH}_2 d}$	δ _{CH2} e	$\delta_{\mathrm{CH}_2 f}$	$\delta_{\mathrm{CH}_2 f^2}$	$\delta_{\operatorname{CH}_2 g}$
	(<i>f1</i> for <i>L2</i> ligand)							
$Zn(L2)H^+$	6.68 ± 0.20^{a}	6.77 ± 0.02^{a}	$2.45{\pm}0.02^{a)}$	4.17 ± 0.02^{a}	$3.62{\pm}0.09^{a)}$	$2.91{\pm}0.09^{a)}$	$2.07{\pm}0.20^{a)}$	$4.07 \pm 0.20^{a)}$
$Zn(L2)^{0}_{(aq)}$	6.63±0.20	7.24±0.02	$2.44{\pm}0.02$	4.25±0.02	3.19±0.09	2.74±0.09	2.49±0.20	3.75±0.20
$Zn(L5)H^{2+}$	$6.651{\pm}0.007^{a)}$	$7.37{\pm}0.01^{a)}$	$2.450{\pm}0.008^{a)}$	4.21±0.01 ^{a)}	$2.144{\pm}0.007^{a)}$	$3.03{\pm}0.01^{a)}$	-	-
$\operatorname{Zn}(L5)^+$	6.624±0.007	7.40±0.01	2.293 ± 0.008	4.01±0.01	1.654 ± 0.007	2.53±0.01	-	-
^{a)} ±Std. Dev.								

Table S6. Literature stability constants of Al^{3+} /bifunctional 3,4-HPs [8] 1:1 stoichiometry species and pL_{0.5} values (pH = 7.0) reported at I = 0.15 mol L⁻¹ in NaCl_(aq) and T = 298.15 K and in molar concentration scale

Ligand	$\log \beta_{110}^{a)}$	pL _{0.5}
L1	12.57	6.3
<i>L2</i>	17.94	7.7
L3	17.50	6.4
<i>L4</i>	18.32	7.4
<i>L5</i>	15.08	3.9

^{a)} log β_{110} refer to equilibrium: Al³⁺ + L^{z-} = Al $L^{(3-z)}$

Figure S1. Molar absorbivity of the different L2 species vs. λ at T = 298.15 K in NaCl_(aq). At I = 0.506 mol L⁻¹, species: 1. H₄(L2)²⁺; 2. H₃(L2)⁺; 3. H₂(L2)⁰_(aq); 4. H(L2)⁻; 5. (L2)²⁻. At I = 1.012 mol L⁻¹, species: 1'. H₄(L2)²⁺; 2'. H₃(L2)⁺; 3'. H₂(L2)⁰_(aq); 4'. H(L2)⁻; 5'. (L2)²⁻.

Figure S2. Distribution diagram of L2 ($c_L = 5.3 \cdot 10^{-5} \text{ mol } L^{-1}$) species at $I = 0.15 \text{ mol } L^{-1}$ in NaCl_(aq), T = 283.15 K (a) and T = 310.15 K (b). Species: 1. H₄(L2)²⁺; 2. H₃(L2)⁺; 3. H₂(L2)⁰_(aq); 4. H(L2)⁻; 5. (L2)²⁻.

Figure S3. Observed (\Box) and calculated (\circ) values of chemical shifts of: a) a (1), b (2), c (3), d (4), e (5), f (6) nuclei of L5 vs. pH, at $c_{\rm L} = 1.0 \cdot 10^{-2}$ mol L⁻¹, I = 0.15 mol L⁻¹ in NaCl_(aq) and T = 298.15 K.

Figure S4. Trend of $\log K_1^{\text{H}}(1)$, $\log K_2^{\text{H}}(2)$ and $\log K_3^{\text{H}}(3)$ *L5* protonation constants *vs*. the ionic strength (in mol L⁻¹) in NaCl_(aq) and *T* = 298.15 K.

Figure S5. Distribution diagram of L5 ($c_L = 1.0 \cdot 10^{-3} \text{ mol } L^{-1}$) species at $I = 0.15 \text{ mol } L^{-1}$ in NaCl_(aq), T = 288.15 K (a) and T = 310.15 K (b). Species: 1. H₃(L5)²⁺; 2. H₂(L5)⁺; 3. H(L5)⁰_(aq); 4. (L5)⁻.

Figure S6. Distribution diagram of $Zn^{2+}/L3$ ($c_{Zn^{2+}} = 4.3 \cdot 10^{-4} \text{ mol } L^{-1}$, $c_L = 1.2 \cdot 10^{-3} \text{ mol } L^{-1}$) species at $I = 0.148 \text{ mol } L^{-1}$ in NaCl_(aq), T = 298.15 K. Species: 1. free Zn²⁺; 2. Zn(L3)H⁺; 3. Zn(L3)⁰_(aq); 4. Zn(L3)OH⁻.

Figure S7. UV-Vis spectrophotometric titration curves of $Zn^{2+}/L2$ complexes at $c_{Zn^{2+}} = 2.0 \cdot 10^{-5}$ mol L⁻¹, $c_L = 5.8 \cdot 10^{-5}$ mol L⁻¹ and different pH values.

At $I = 0.501 \text{ mol } \text{L}^{-1}$: 1. pH = 2.07, $\lambda_{\text{max}} = 278 \text{ nm}$; 2. pH = 3.52, $\lambda_{\text{max}} = 279 \text{ nm}$; 3. pH = 4.07, $\lambda_{\text{max}} = 281 \text{ nm}$; 4. pH = 5.51, $\lambda_{\text{max}} = 293 \text{ nm}$; 5. pH = 9.02, $\lambda_{\text{max}} = 303 \text{ nm}$; 6. pH = 10.51, $\lambda_{\text{max}} = 305 \text{ nm}$; 7. pH = 11.00, $\lambda_{\text{max}} = 306 \text{ nm}$.

At $I = 1.005 \text{ mol } \text{L}^{-1}$: 1'. pH = 2.07, $\lambda_{\text{max}} = 278 \text{ nm}$; 2'. pH = 3.46, $\lambda_{\text{max}} = 279 \text{ nm}$; 3'. pH = 4.15, $\lambda_{\text{max}} = 281 \text{ nm}$; 4'. pH = 5.24, $\lambda_{\text{max}} = 297 \text{ nm}$; 5'. pH = 8.61, $\lambda_{\text{max}} = 300 \text{ nm}$; 6'. pH = 10.65, $\lambda_{\text{max}} = 305 \text{ nm}$; 7'. pH = 11.00, $\lambda_{\text{max}} = 307 \text{ nm}$.

Figure S8. Distribution diagram of $Zn^{2+}/L2$ ($c_{Zn^{2+}} = 2.0 \cdot 10^{-5} \text{ mol } L^{-1}$, $c_L = 5.8 \cdot 10^{-5} \text{ mol } L^{-1}$) species in NaCl_(aq) at: I) T = 298.15 K and I = 0.501 (a) and 1.005 (b) mol L^{-1} ; II) I = 0.15 mol L^{-1} , T = 288.15 K and 310.15 K (b). Species: 1. free Zn^{2+} ; 2. $Zn(L2)H^+$; 3. $Zn(L2)^0_{(aq)}$; 4. $Zn(L2)OH^-$; 5. $Zn(OH)_2^0_{(aq)}$.

Figure S9. I) Trends of $Zn^{2+}/L5$ suggested $\log\beta_{110}$ values *vs.* the ionic strength (in mol L⁻¹) in NaCl_(aq) and T = 298.15 K (1) and *vs.* temperature (2) at I = 0.15 mol L⁻¹. II) Distribution diagram of $Zn^{2+}/L5$ ($c_{Zn}^{2+} = 7.0 \cdot 10^{-4}$ mol L⁻¹, $c_L = 2.1 \cdot 10^{-3}$ mol L⁻¹) species in NaCl_(aq) at: 3) I = 0.161 (a), 0.472 (b) and 0.951 mol L⁻¹ (c) and 298.15 K (b); 4) I = 0.15 mol L⁻¹, T = 288.15 K (a) and T = 310.15 K (b). Species: 1. free Zn²⁺; 2. Zn(L5)H²⁺; 3. Zn(L5)⁺; 4. Zn(OH)₂⁰_(aq); 5. Zn(OH)₃⁻.

Figure S10. Distribution diagram of Zn^{2+} ($c_{Zn^{2+}} = 2.0 \cdot 10^{-3} \text{ mol } L^{-1}$) species in absence of ionic medium and T = 298.15 K. Species: 1. free Zn^{2+} ; 2. $Zn(OH)^+$; 3. $Zn(OH)_2^0_{(aq)}$; 4. $Zn(OH)_3^-$.

Figure S11. Molecular structures of products with similar structures and functional groups than 3-hydroxy-4-pyridinone ligands.