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Abstract: Background: Inhibition of ribosome biogenesis has recently emerged as a promising
strategy for the treatment of metastatic tumors. The RNA polymerase I inhibitor CX-5461 has
shown efficacy in a panel of cancer types and is currently being tested in clinical trials. However,
further preclinical studies to unravel molecular mechanisms underlying the activity of this drug are
warranted. Methods: In this study, we have investigated the effects of CX-5461 on cell growth and
migration of pancreatic cancer cells by the sulforhodamine-B and wound healing assay, respectively.
Furthermore, we assessed the expression of epithelial-to-mesenchymal transition (EMT) genes
by qRT-PCR, while protein expression of DNA damage marker phospho-H2A.X was studied by
Western blot and immunofluorescence. Results: CX-5461 inhibits pancreatic cancer cell growth
in the nanomolar range and inhibits the migratory capability of the cells. Additionally, CX-5461
induced expression of EMT factor SNAI1 and caused DNA double-strand breaks as measured by
increased expression of phospho-H2A.X. Conclusion: This study demonstrated that CX-5461 is active
against pancreatic cancer cells and modulation of EMT factors, as well as increased expression of
phospho-H2A.X, support further pre-/clinical investigations, including the analyses of these markers.
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1. Introduction

Pancreatic cancer (PC) is a highly metastatic disease with a poor five-year survival of less than
10% [1]. Patients diagnosed with PC often present an advanced disease stage limiting their treatment
options to chemotherapy. However, patients frequently do not respond to the treatment or develop
resistance to the current regimens. Therefore, novel treatment options are warranted.

Ribosome biogenesis is a process that is upregulated in cancer, where it contributes to increased
protein production facilitating cell proliferation [2]. Exploiting the ribosome biogenesis pathway [3],
and more specifically, RNA polymerase I (pol I) inhibition for cancer treatment, has shown promising
results in recent years [4,5]. Notably, an enhanced ribosome biogenesis rate has been found in
pancreatic cells of patients with chronic pancreatitis [6], which suggests a possible therapeutic window.
Additionally, a computational analysis of 34 pancreatic ductal adenocarcinoma samples highlights the
important role of ribosome biogenesis genes in PDAC progression [7].

CX-5461, a small molecule synthesized by Cylene Pharmaceuticals [5], is the first Pol 1 inhibitor that
is being tested in a phase 1 dose-escalation clinical trial for hematological cancers [8]. CX-5461 blocks
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proliferation in various cancer types by inhibiting Pol I and is capable of inducing p53-independent
senescence and pro-death autophagy [5]. In neuroblastoma cells, CX-5461 activates p53 leading to cell
cycle arrest or apoptosis [9]. It also suppressed MycN expression in cells and led to decreased tumor
growth in xenograft nude mice. Moreover, CX-5461 can function as a G-quadruplex stabilizer with
increased toxicity in BRCA-deficient or PARP inhibition-resistant cancer cells [10]. Mechanistically,
CX-5461 blocks replication forks and induces DNA gaps or breaks. CX-5461 is a potential radiosensitizer,
since it increased the sensitivity of low dose single X-ray exposure in cervical CaSki cancer cells leading
to cell apoptosis, autophagy, and senescence [11]. Therefore, CX-5461 shows great potential as a future
treatment option.

In this study, we show the effect of CX-5461 on cell growth and the migration of PC cells and
primary cell culture. Moreover, we report its effect on epithelial-to-mesenchymal transition markers
and the induced DNA damage.

2. Results

2.1. CX-5461 Inhibits Pancreatic Cancer Cell Growth in Nanomolar Range

Growth inhibition studies were performed in order to determine the sensitivity to the small
molecule CX-5461 (Figure 1a) in different preclinical models of PC. Two PC cell lines, epithelial
SUIT-2-28 [12], mesenchymal PANC-1 [12], and the primary cell culture PDAC-3 were exposed to
CX-5461 and showed similar sensitivity, within the nanomolar range (Figure 1b). The concentrations
that caused inhibition of 50% of the cell growth (IC50) are listed in Table 1, together with the doubling
time of the cells. The doubling time is calculated based on the optical density (OD) of the untreated
control cells after 72 h divided by the OD after 24 h of cell attachment (D0), and by correcting for
the background and determining the number of doublings based on the exponential growth. Both
SUIT-2-28 and PDAC-3 have a doubling time of less than 20 h, whereas the PANC-1 cells divide slower
(28.4 ± 1.91 h). Previous data showing that inhibition of ribosome is higher in rapidly proliferating
cancer cells [5] seem, therefore, to reflect in a higher IC50 value for the PANC-1 cells.
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Figure 1. CX-5461 inhibits pancreatic cancer cell growth in the nanomolar range. (a) Chemical structure
of CX-5461 designed with ChemDraw. (b) Growth inhibition curves relative to untreated control of
pancreatic cancer cells SUIT-2-28 (connecting black line), PDAC-3 (grey line) and PANC-1 (dashed black
line) treated for 72 h with CX-5461. The dashed line (y = 50) indicates fifty percent growth inhibition.

Table 1. Sensitivity of pancreatic cancer cells to CX-5461. Each experiment was performed in triplicate
and repeated at least three times. IC50, concentration inhibiting 50% of cell growth. SEM, standard
error of the mean. Doubling time was measured in untreated cells in the exponential growth phase.

Cell Line Average IC50 (nM) ± SEM Average Doubling Time in Hours ± SEM

SUIT-2-28 77 ± 14 16.4 ± 0.20
PDAC-3 114 ± 30 18.8 ± 1.36
PANC-1 199 ± 26 28.4 ± 1.91
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2.2. CX-5461 Inhibits PANC-1 Cell Migration

PC has one of the highest rates of metastasis among solid cancers, and a better understanding
of the anti-migratory effects of new drugs is essential in order to provide more effective tools for
therapeutic purposes [13].

The high sensitivity of the tested PC cells to CX-5461 and previous findings suggesting that
ribosome biogenesis contributes to metastatic cancer progression [14] prompted us to investigate the
effect of this drug on cell migration, using the wound healing assay.

In order to eliminate the possible confounding effect of cell proliferation on the migration results,
the cells with the highest doubling time were used (PANC-1). A concentration of 1.5 µM (7.5 times
the IC50) of CX-5461 was tested, because of the shorter drug exposure time compared to the growth
inhibition studies, lasting 72 h. Of note, this concentration was also selected since it is within the
“therapeutic window” for effective exposure, considering the AUC and Cmax values reported in
clinical studies [8]. Since SUIT-2-28 and PDAC-3 cells did not produce reproducible confluent layers,
necessary to evaluate scratches and to perform a migration assay, we could not produce reliable data
with these two cell lines.

Interestingly, CX-5461 treatment inhibited cell migration significantly at 16, 20, and 22 h after
treatment, resulting in 40% cell migration in treated cells compared to 65% in untreated cells after 16 h
(Figure 2a,b). Notably, at the more advanced time points of 20 and 22 h, the cell migration of CX-5461
treated cells remained 40%, compared to increased migration of the untreated cells.
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Figure 2. CX-5461 inhibits PANC-1 cell migration. (a) Migratory inhibition by CX-5461 in PANC-1 cells
was shown as percent of migration calculated based on t = 0 time point, with control (untreated) cells
(black bars) and 1.5 µM CX-5461 (grey bars), significance * p < 0.05, t-test (b) Representative images of
the PANC-1 scratch areas in control (untreated cells) and in cells treated with CX-5461 over time.

2.3. CX-5461 Induces mRNA Expression of EMT Markers

The migratory capability of cells is often linked to an altered expression of epithelial to mesenchymal
transition (EMT) or mesenchymal to epithelial transition (MET) markers. Therefore, we investigated
the effect of CX-5461 on the mRNA expression levels of snail (SNAI1), slug (SNAI2), E-cadherin
(CDH1), N-Cadherin (CDH12), vimentin (VIM), and matrix metalloproteinase 9 (MMP9). The cells
were exposed to CX-5461 for 24 h.

Interestingly, we observed slightly different effects in the different cellular models. For instance,
SNAI1 and SNAI2 were increased in SUIT-2-28 and PDAC-3 (Figure 3a,b), whereas SNAI1 and MMP9
remained unaltered in PANC-1 after drug exposure (Figure 3c). Moreover, CX-5461 treatment increased
the expression of CDH1 in PDAC-3 and PANC-1 cells, whereas no alteration was observed in SUIT-2-28.
These results suggest that CX-5461 hampers the cells in the epithelial phenotype, but further studies
should investigate other aspects underlying the relative contributions of inhibition of Pol I in these
PDAC cells considering the effects on migration versus EMT.



Molecules 2019, 24, 4445 4 of 11

Molecules 2019, 24, x 4 of 11 

Molecules 2019, 24, x; doi: www.mdpi.com/journal/molecules 

further studies should investigate other aspects underlying the relative contributions of inhibition of 

Pol I in these PDAC cells considering the effects on migration versus EMT.  

S N A I1 S N A I2 C D H 1 V IM M M P 9

0

1

2

3

4

5

2
^

-D
D

C
t

C o n t r o l

2 4 h  1 .5 u M  C X -5 4 6 1

S U IT -2 -2 8

*

*

*

S N A I1 S N A I2 C D H 1 V IM M M P 9

0

1

2

3

4

5

2
^

-D
D

C
t

C o n t r o l

2 4 h  1 .5 u M  C X -5 4 6 1

P D A C -3

*

*

*

S N A I1 S N A I2 C D H 1 V IM M M P 9

0

2

4

6

8

1 0

2
^

-D
D

C
t

C o n t r o l

2 4 h  1 .5 u M  C X -5 4 6 1

P A N C -1

1

*

*
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PANC-1. Significance * p-value < 0.05. The experiments were conducted in duplicate or triplicate and 

repeated at least twice (unpaired t-test). 
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Figure 3. Effect of CX-5461 on the mRNA expression of EMT markers. (a) SUIT-2-28 (b) PDAC-3
(c) PANC-1. Significance * p-value < 0.05. The experiments were conducted in duplicate or triplicate
and repeated at least twice (unpaired t-test).

2.4. DNA Damage Induced by CX-5461

Previous studies showed that CX-5461 has selective lethality in tumors deficient in DNA damage
repair [10]. In the present study, induction of DNA double-strand breaks was demonstrated by
phosphorylation of histone H2A.X at serine residue 139. Moreover, actin was stained to visualize the
shape of the cells.

In both PDAC-3 and PANC-1 cells, we found an increased expression of phospho-H2A.X after drug
exposure by immunofluorescence, as shown in the representative images in Figure 4a. The increased
protein expression of phospho-H2A.X after CX-5461 treatment was further confirmed by Western blot
(Figure 4b). SUIT-2-28 cells showed a similar pattern as PANC-1 and PDAC-3 cells (data not shown).
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spheroids. These findings suggest that CX-5461 might be active in more representative 3D models of 

Figure 4. CX-5461 induces DNA damage. (a) Immunofluorescence staining of phospho-H2A.X (green),
nucleus (DAPI, blue), actin (TRITC conjugated phalloidin, magenta) of control (untreated) cells or cells
exposed to 1.5 µM CX-5461 for 24 h, with increased phospho-H2A.X staining in the CX-5461 treated
cells. Fluorescence intensities of phospho-H2A.X were scaled to the same range for all conditions. Scale
bar: 20 µm. (b) Increased phospho-H2A.X protein expression after 24 h treatment with 1.5 µM CX-5461.

2.5. The Effect of CX-5461 in 3D Spheroid Models

Monolayer cytotoxicity and migration assays provide important data to evaluate drug activity,
but three-dimensional (3D) spheroid models represent a useful platform for further identifying both
the biological characteristics of tumor cells, and the drug sensitivity. Moreover, they can be a bridge
between traditional 2D culture and animal experiments.

The spheroids were exposed to 1.5 or 3.0 µM CX-5461 for 96 h. Figure 5 shows that PDAC-3 cells
grown in the presence of CX-5461 were smaller and less dense compared to the untreated control
spheroids. These findings suggest that CX-5461 might be active in more representative 3D models of
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primary cell cultures. However, CX-5461 did not have an effect on the size nor density of the PANC-1
spheroids. This might be explained by the fact that the control spheroid of the PDAC-3 cells was not as
compact or dense as PANC-1. Previous studies showed that larger and denser spheroids have oxygen
and nutrient gradients that often result in the formation of a necrotic core which might explain their
resistance. Future studies should, therefore, evaluate if the spheroids resemble tumor cell physiology
and how they should be used to increase the mechanistic understanding of anti-tumor drug activity.
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2.6. Combination of CX-5461 and Gemcitabine Leads to An Antagonistic Effect

Gemcitabine is one of the treatment options for patients with PC. Therefore, we investigated this
drug at various concentrations in combination with the cell line specific IC50 of CX-5461. We observed
a curve shift at the lower concentrations of gemcitabine for PANC-1 cells, but an overlap of the
gemcitabine and gemcitabine with CX-5461 curves of PDAC-3 (Figure S1a,b). Based on the calculations
performed with Calcusyn, this combination resulted in a combination index (CI) greater than 1.2
(Figure S1c), classifying the gemcitabine and CX-5461 interaction as antagonistic. Initial data with
the SUIT-2-28 cells gave a similar pattern. Therefore, we did not proceed with this cell line. Further
investigation of this interaction led to the finding that cytidine deaminase (CDA) mRNA expression
was increased after CX-5461 treatment (Figure S1d), which may lead to increased degradation of
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gemcitabine. Moreover, in PDAC-3 cells exposed to CX-5461 we observed an increase of ribonucleotide
reductase 2, which is a resistance mechanism of gemcitabine [15].

3. Discussion

In this study, we show that PC cells are sensitive to the small molecule CX-5461, in a nanomolar
range, which is in line with previous studies [5]. Moreover, we showed that the migratory capability of
the PANC-1 cells was inhibited, but this could not be correlated with the expression of EMT markers.
The lack of vimentin modulation is in line with the results of Prakash and collaborators in NNuMG
cells treated with CX-5461 [14]. However, we found an upregulation of SNAIL1 mRNA expression
after CX-5461 exposure in PDAC-3 and SUIT-2-28 cells, whereas the previous study [14] shows only an
increase of SNAIL1 in transforming growth factor β (TGF-β) stimulated cells treated with CX-5461.
Furthermore, pro-mesenchymal marker SNAIL2 is the only marker upregulated in all three cell models,
warranting further investigation.

CX-5461 is capable of inducing DNA double-strand breaks as indicated by an increased formation
of phospho-H2A.X in PC cells and in the primary cell culture PDAC-3, as reported before in U2OS
cells and ovarian cancer cells [10,16].

The effect of CX-5461 on the spheroids was different in the two used cell lines but it could be
ascribed to the difference in cell type, i.e., primary cell culture PDAC-3 and immortalized PANC-1.
In vivo, CX-5461 had an antitumor effect against MIA PaCa-2 human PC, as well as neuroblastoma
and melanoma xenografts [5,9]. In taxane-resistant triple-negative breast cancer PDX tumors, CX-5461
reduced tumor growth and showed selective lethality in BRCA1/2-deficient tumors [10].

Of note, many clinical trials evaluated gemcitabine in combination with potentially synergistic
conventional chemotherapeutic agents, such as irinotecan, oxaliplatin, cisplatin, and 5-fluorouracil,
but most of the following trials on these combinations have failed to show statistically significant
results [17]. Moreover, combinations with tyrosine kinase inhibitors were negative, except for a
minor effect of erlotinib. These findings should further prompt to consider different second-line
therapies. Remarkably, recent studies showed positive results in maintenance studies, such as in the
case of a phase II trial with sunitinib [18] and in the seminal POLO III trial with PARP inhibitors
in BRCA-mutated patients treated in first-line with platinum-based therapies [19]. Considering our
preclinical data and the fact that gemcitabine causes a different type of DNA damage, we reckon that
CX-5461 should not be combined with gemcitabine. However, we speculate that CX-5461 might have
more clinical value when used after first-line treatment, particularly in patients with aberrant DNA
repair in combination with DNA damaging drugs, such as oxaliplatin or cisplatin, as was demonstrated
earlier by Xu et al. [10]. Nevertheless, we are in urgent need of biomarkers that allow molecular
monitoring to determine the proper therapy.

4. Materials and Methods

4.1. Cell Culture

The pancreatic cancer cell lines PANC-1 (ATCC® CRL-1469), SUIT-2-28 [20] and primary cell
culture PDAC-3 [21] were cultured in RPMI medium 1640 (catalog #21875034, Gibco, Waltham, MA
USA) supplemented with 10% newborn calf serum (catalog #S0750-500, Biowest, Nuaillé, France).
Cells were incubated at 37 °C, 5% CO2 and tested frequently for mycoplasma contamination with the
MycoAlert Mycoplasma Detection Kit (Cat no. LO LT07-705, Westburg, Leusden, The Netherlands).

4.2. Chemicals

CX-5461 (suppliers code HY-13323, MedChem Express, Monmouth Junction, NJ, USA) was
solubilized in DMSO containing 0.1N HCl.



Molecules 2019, 24, 4445 8 of 11

4.3. Sulforhodamine B (SRB) Assay

The SRB assay was conducted as reported previously [22]. Briefly, cells were seeded at a density of
3000 cells per well in a flat-bottomed 96 well plate (VWR, Leicestershire, UK), left 24 h for attachment
and subsequently treated with eight drug concentrations for 72 h. After cell fixation (5.6% TCA),
washing steps, SRB staining (0.4% w/v SRB in 1% acetic acid), and resuspension in 10 mM Tris buffer,
the optical density was measured at 490 and 540 nm on a BioTek plate reader (BioTek Instruments Inc.,
Winooski, VT, USA).

4.4. Migration Assay

PANC-1 cells were seeded in 96-well plates with a density of 30,000 cells per well to form a
confluent monolayer overnight. Subsequently, the cells were scraped with a 96-well pin tool scratcher
and detached cells were removed by washing steps of phosphate-buffered saline (PBS). Medium
only or medium containing 1.5 µM CX-5461 was added to the wells and brightfield images were
taken with software Universal Grab 6.3 digital (Digital Cell Imaging Labs, Keerbergen, Belgium) on a
Leica DMI300B microscope (Leica Microsystems, Eindhoven, The Netherlands) at various time points.
The obtained images were analyzed using the Scratch Assay 6.2 software (Digital Cell imaging Labs,
Keerbergen, Belgium).

4.5. qRT-PCR

Cells were treated with 1.5 µM CX-5461 or medium for 24 h and RNA was isolated according to
the TRIzol reagent protocol (15596-026, ThermoFisher Scientific, Waltham, MA, USA). One microgram
of RNA was then used for cDNA synthesis and subsequent PCR using the First-Strand cDNA synthesis
kit (K1612, ThermoFisher Scientific, (Waltham, MA, USA).

4.6. Immunofluoresent Staining and Imaging

Cells were seeded on VWR 18 × 18 mm cover glasses (thickness 1.5) and incubated for 24 h for
attachment. Subsequently, the cells were treated either with drug-free medium or medium containing
1.5 µM CX-5461 for 24 h. After three washing steps with PBS, cells were fixed with 200 µL 4%
paraformaldehyde (PFA) (15710, Electron Microscopy Sciences, Hatfield, PA, USA) diluted in PBS for
10 min at room temperature (RT). After three other washing steps, cells were permeabilized 10 min
at RT with 0.1% Triton x-100 (108643, Merck, Amsterdam, The Netherlands) diluted in PBS prior
to overnight incubation at 4 ◦C with primary antibody Phospho-H2A.X (#2577, cell signaling, 1:50).
Secondary antibody incubation was performed with Abberior STAR 488 (ST488, Abberior, Göttingen,
Germany) and actin (TRITC conjugated phalloidin, Sigma-Aldrich, Zwijndrecht, The Netherlands) for
2 h at RT, followed by 15 min DAPI incubation. The coverslips were mounted in PBS and images were
obtained on a widefield Zeiss Observer Z1 microscope (Zeiss, Jena, Germany) equipped with a CCD
camera (EXI Aqua, QImaging, Surrey, BC, Canada). Illumination of samples was performed by an
HXP 120 C lamp (Zeiss, Jena, Germany), and light was collected using a 63X oil immersion objective
(NA = 1.4, Zeiss, Jena, Germany). The following filters were used: FITC (475/40 and 530/50 nm for
excitation and emission filters, respectively), DAPI (365 and 445/50 nm for excitation and emission
filters, respectively), and TRITC (545/25 and 605/70 nm for excitation and emission filters, respectively).
Image processing was performed using ImageJ (NIH).

4.7. Western Blot

Whole-cell lysates were prepared from cells treated with 1.5 µM CX-5461 for 24 h or medium as
control, by addition of cell lysis buffer (#9803, Cell signaling, Leiden, The Netherlands) diluted
in demineralized water and supplemented with sodium orthovanadate (S6508, Sigma-Aldrich,
Zwijndrecht, The Netherlands) and protease inhibitor cocktail (11697498001, Sigma-Alrich, Zwijndrecht,
The Netherlands), followed by incubation on ice for 30 min. The samples were spun down at 16,000× g
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for 10 min at 4 ◦C and the supernatant was used to perform the Bio-rad protein estimation using the
protein assay dye reagent concentrate (#500-0006, Bio-Rad, Veenendaal, The Netherlands). Finally,
50 µg protein samples were separated on Mini-Protean TGXTM precast gels and transferred to PDVF
membranes prior to target detection on the Uvitec using ECLTM Prime Western blotting detection
reagent (lot#13601176, GE Healthcare Bio-Sciences, Pittsburgh, PA, USA).

Antibodies: Primary, Phospho-Histone H2A.X (#2577, Cell signaling, 1:1000), β-actin (#4967S, Cell
signaling, 1:2000). Secondary, Anti-rabbit IgG HRP linked (#7074, Cell signaling, 1:2000), Anti-mouse
IgG HRP linked (#7076, Cell signaling, 1:2000).

4.8. Spheroid Formation

Cells were seeded in ultra-repellent (7007, Costar, Washington, DC, USA) at a density of
30,000 cells/well and 10,000 cells/well for PDAC-3 and PANC-1 cells, respectively. After seeding,
the plates were spun down at 200× g for 5 min at room temperature, followed by three-day incubation
for solid spheroid formation. On day 3, either medium only or medium containing CX-5461 was
added to the wells and the spheroids were imaged using Universal Grab (Digital Cell imaging
Labs, Keerbergen, Belgium) on a Leica DMI300B microscope (Leica Microsystems, Eindhoven, The
Netherlands) over time.

4.9. Statistics

GraphPad Prism (8.2.1) was used for to perform the statistics (t-test, with significance * p < 0.05).

5. Conclusions

CX-5461 inhibits PC cell growth in the nanomolar range and, therefore, shows promise as a
PC-targeting agent. Further studies should investigate its combination with conventional DNA
damaging agents, such as oxaliplatin or cisplatin.
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culture PDAC-3 and pancreatic cancer cells SUIT-2-28.

Author Contributions: Conceptualization, B.E.H., G.J.P. and E.G.; methodology, B.E.H., E.G.; validation, B.E.H.,
B.I.; formal analysis, B.E.H., G.M., B.I., investigation, B.E.H., B.I.; resources, G.J.P., E.G.; data curation, B.E.H.;
writing-original draft preparation, B.E.H., E.G.; writing-review and editing, B.E.H., G.M., G.J.P., E.G.; visualization,
B.E.H., G.M.; supervision, G.J.P. and E.G.; project administration, B.E.H., G.J.P. and E.G.; funding acquisition,
G.J.P. and E.G.

Funding: This research was funded by KWF, grant numbers 2003857 and 2003887.

Acknowledgments: The authors would like to thank Johan van Meerloo for donating the Abberior STAR 488
antibody and Stefano Coppola for his help with the immunofluorescence imaging and processing.

Conflicts of Interest: The authors have no conflicts of interest.

References

1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019 (US statistics). CA Cancer J. Clin. 2019, 69, 7–34.
[CrossRef] [PubMed]

2. Orsolic, I.; Jurada, D.; Pullen, N.; Oren, M.; Eliopoulos, A.G.; Volarevic, S. The relationship between the
nucleolus and cancer: Current evidence and emerging paradigms. Semin. Cancer Biol. 2016, 37–38, 36–50.
[CrossRef] [PubMed]

3. El Hassouni, B.; Sarkisjan, D.; Vos, J.C.; Giovannetti, E.; Peters, G.J. Targeting the ribosome biogenesis key
molecule fibrillarin to avoid chemoresistance. Curr. Med. Chem. 2019, 26, 6020–6032. [CrossRef]

4. Bywater, M.J.; Poortinga, G.; Sanij, E.; Hein, N.; Peck, A.; Cullinane, C.; Wall, M.; Cluse, L.; Drygin, D.;
Anderes, K.; et al. Inhibition of RNA Polymerase I as a Therapeutic Strategy to Promote Cancer-Specific
Activation of p53. Cancer Cell 2012, 22, 51–65. [CrossRef] [PubMed]

http://www.mdpi.com/1420-3049/24/24/4445/s1
http://dx.doi.org/10.3322/caac.21551
http://www.ncbi.nlm.nih.gov/pubmed/30620402
http://dx.doi.org/10.1016/j.semcancer.2015.12.004
http://www.ncbi.nlm.nih.gov/pubmed/26721423
http://dx.doi.org/10.2174/0929867326666181203133332
http://dx.doi.org/10.1016/j.ccr.2012.05.019
http://www.ncbi.nlm.nih.gov/pubmed/22789538


Molecules 2019, 24, 4445 10 of 11

5. Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.;
Siddiqui-Jain, A.; et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal
RNA synthesis and solid tumor growth. Cancer Res. 2011, 71, 1418–1430. [CrossRef]

6. Penzo, M.; Montanaro, L.; Treré, D.; Derenzini, M. The Ribosome Biogenesis—Cancer Connection. Cells 2019,
8, 55. [CrossRef]

7. Shen, Q.; Yu, M.; Jia, J.K.; Li, W.X.; Tian, Y.W.; Xue, H.Z. Possible molecular markers for the diagnosis of
pancreatic ductal adenocarcinoma. Med. Sci. Monitor 2018, 24, 2368–2376. [CrossRef]

8. Khot, A.; Brajanovski, N.; Cameron, D.P.; Hein, N.; Maclachlan, K.H.; Sanij, E.; Lim, J.; Soong, J.; Link, E.;
Blombery, P.; et al. First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with
Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discov. 2019, 9, 1036–1049.
[CrossRef]

9. Hald, Ø.H.; Olsen, L.; Gallo-Oller, G.; Elfman, L.H.M.; Løkke, C.; Kogner, P.; Sveinbjörnsson, B.;
Flægstad, T.; Johnsen, J.I.; Einvik, C. Inhibitors of ribosome biogenesis repress the growth of MYCN-amplified
neuroblastoma. Oncogene 2019, 38, 2800–2813. [CrossRef]

10. Xu, H.; Di Antonio, M.; McKinney, S.; Mathew, V.; Ho, B.; O’Neil, N.J.; Dos Santos, N.; Silvester, J.; Wei, V.;
Garcia, J.; et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient
tumours. Nat. Commun. 2017, 8, 14432. [CrossRef]

11. Ismael, M.; Webb, R.; Ajaz, M.; Kirkby, K.J.; Coley, H.M. The Targeting of RNA Polymerase I Transcription
Using CX-5461 in Combination with Radiation Enhances Tumour Cell Killing Effects in Human Solid Cancers.
Cancers 2019, 11, 1429. [CrossRef]

12. Daemen, A.; Peterson, D.; Sahu, N.; McCord, R.; Du, X.; Liu, B.; Kowanetz, K.; Hong, R.; Moffat, J.; Gao, M.;
et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities
to metabolic inhibitors. Proc. Natl. Acad. Sci. USA 2015, 112, E4410–E4417. [CrossRef] [PubMed]

13. Giovannetti, E.; van der Borden, C.L.; Frampton, A.E.; Ali, A.; Firuzi, O.; Peters, G.J. Never let it go: Stopping
key mechanisms underlying metastasis to fight pancreatic cancer. Semin. Cancer Biol. 2017, 44, 43–59.
[CrossRef] [PubMed]

14. Prakash, V.; Carson, B.B.; Feenstra, J.M.; Dass, R.A.; Sekyrova, P.; Hoshino, A.; Petersen, J.; Guo, Y.;
Parks, M.M.; Kurylo, C.M.; et al. Ribosome biogenesis during cell cycle arrest fuels EMT in development
and disease. Nat. Commun. 2019, 10, 2110. [CrossRef] [PubMed]

15. Bergman, A.M.; Eijk, P.P.; Ruiz Van Haperen, V.W.T.; Smid, K.; Veerman, G.; Hubeek, I.; Van Den Ijssel, P.;
Ylstra, B.; Peters, G.J. In vivo induction of resistance to gemcitabine results in increased expression of
ribonucleotide reductase subunit M1 as the major determinant. Cancer Res. 2005, 65, 9510–9516. [CrossRef]
[PubMed]

16. Cornelison, R.; Dobbin, Z.C.; Katre, A.A.; Jeong, D.H.; Zhang, Y.; Chen, D.; Petrova, Y.; Llaneza, D.C.;
Steg, A.D.; Parsons, L.; et al. Targeting RNA-polymerase I in both chemosensitive and chemoresistant
populations in epithelial ovarian cancer. Clin. Cancer Res. 2017, 23, 6529–6540. [CrossRef] [PubMed]

17. Caparello, C.; Meijer, L.L.; Garajova, I.; Falcone, A.; Le Large, T.Y.; Funel, N.; Kazemier, G.; Peters, G.J.;
Vasile, E.; Giovannetti, E. FOLFIRINOX and translational studies: Towards personalized therapy in pancreatic
cancer. World J. Gastroenterol. 2016, 22, 6987. [CrossRef]

18. Reni, M.; Cereda, S.; Milella, M.; Novarino, A.; Passardi, A.; Mambrini, A.; Di Lucca, G.; Aprile, G.; Belli, C.;
Danova, M.; et al. Maintenance sunitinib or observation in metastatic pancreatic adenocarcinoma: A phase II
randomised trial. Eur. J. Cancer 2013, 49, 3609–3615. [CrossRef]

19. Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.;
Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA -Mutated Metastatic Pancreatic
Cancer. N. Engl. J. Med. 2019, 381, 317–327. [CrossRef]

20. Buchholz, M.; Biebl, A.; Neeße, A.; Wagner, M.; Iwamura, T.; Leder, G.; Adler, G.; Gress, T.M. SERPINE2
(protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo.
Cancer Res. 2003, 63, 4945–4951.

http://dx.doi.org/10.1158/0008-5472.CAN-10-1728
http://dx.doi.org/10.3390/cells8010055
http://dx.doi.org/10.12659/MSM.906313
http://dx.doi.org/10.1158/2159-8290.CD-18-1455
http://dx.doi.org/10.1038/s41388-018-0611-7
http://dx.doi.org/10.1038/ncomms14432
http://dx.doi.org/10.3390/cancers11101429
http://dx.doi.org/10.1073/pnas.1501605112
http://www.ncbi.nlm.nih.gov/pubmed/26216984
http://dx.doi.org/10.1016/j.semcancer.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28438662
http://dx.doi.org/10.1038/s41467-019-10100-8
http://www.ncbi.nlm.nih.gov/pubmed/31068593
http://dx.doi.org/10.1158/0008-5472.CAN-05-0989
http://www.ncbi.nlm.nih.gov/pubmed/16230416
http://dx.doi.org/10.1158/1078-0432.CCR-17-0282
http://www.ncbi.nlm.nih.gov/pubmed/28778862
http://dx.doi.org/10.3748/wjg.v22.i31.6987
http://dx.doi.org/10.1016/j.ejca.2013.06.041
http://dx.doi.org/10.1056/NEJMoa1903387


Molecules 2019, 24, 4445 11 of 11

21. Funel, N.; Giovannetti, E.; Del Chiaro, M.; Mey, V.; Pollina, L.E.; Nannizzi, S.; Boggi, U.; Ricciardi, S.;
Del Tacca, M.; Bevilacqua, G.; et al. Laser microdissection and primary cell cultures improve pharmacogenetic
analysis in pancreatic adenocarcinoma. Lab. Investig. 2008, 88, 773–784. [CrossRef] [PubMed]

22. Keepers, Y.P.; Pizao, P.E.; Peters, G.J.; van Ark-Otte, J.; Winograd, B.; Pinedo, H.M. Comparison of the
sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur. J. Cancer
Clin. Oncol. 1991, 27, 897–900. [CrossRef]

Sample Availability: Samples of the compounds are not available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/labinvest.2008.40
http://www.ncbi.nlm.nih.gov/pubmed/18490900
http://dx.doi.org/10.1016/0277-5379(91)90142-Z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	CX-5461 Inhibits Pancreatic Cancer Cell Growth in Nanomolar Range 
	CX-5461 Inhibits PANC-1 Cell Migration 
	CX-5461 Induces mRNA Expression of EMT Markers 
	DNA Damage Induced by CX-5461 
	The Effect of CX-5461 in 3D Spheroid Models 
	Combination of CX-5461 and Gemcitabine Leads to An Antagonistic Effect 

	Discussion 
	Materials and Methods 
	Cell Culture 
	Chemicals 
	Sulforhodamine B (SRB) Assay 
	Migration Assay 
	qRT-PCR 
	Immunofluoresent Staining and Imaging 
	Western Blot 
	Spheroid Formation 
	Statistics 

	Conclusions 
	References

