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Abstract: The centromere plays an essential role in accurate chromosome segregation, and the
chromosomal location of the centromere is determined by the presence of a histone H3 variant,
centromere protein A (CENP-A), in centromeric nucleosomes. However, the precise mechanisms of
deposition, maintenance, and inheritance of CENP-A at centromeres are unclear. We have reported
that CENP-A deposition requires ubiquitylation of CENP-A lysine 124 mediated by the E3 ligase
activity of Cullin 4A (CUL4A)—RING-box protein 1 (RBX1)—COP9 signalsome complex subunit 8
(COPS8). We have proposed a model of inheritance for CENP-A ubiquitylation, through dimerization
between rounds of cell divisions, that maintains the position of centromeres.
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Main Text

During cell division, proper chromosomal segregation must be achieved; otherwise chromosomes
may be unequally distributed among daughter cells. In most eukaryotes, the centromere is a highly
constricted single region of a chromosome where the spindle microtubules attach during cell division
(mitosis and meiosis). The major role of the centromere is to provide sites for the kinetochore,
the protein complexes that bind microtubules of the spindle bundle during cell division. The most
inner components of the kinetochore consist of the electron dense plate that is juxtaposed to the
centromeric chromatin as observed in electron microscope [1]. The temporal-spatial regulation and
structures of centromere and kinetochore proteins are important keys to understand chromosome
instability (CIN) that results in aneuploidy (i.e., an incorrect number of chromosomes). The causes
and the consequences of aneuploidy are poorly understood, although aneuploidy usually results in
tumorigenesis, birth defects, and developmental disorders such as Down syndrome.

Therefore, there are several fundamental questions to be solved: What mechanism determines the
specific chromosomal location of the functional centromere (i.e., centromere identity)? How are they
regulated during accurate chromosome segregation?

In most species except budding yeast [2], the centromere has no defined DNA sequence but
consists of large arrays of repetitive DNA, and centromeric DNA is not sufficient or necessary to define
centromere identity. Centromere identity is defined in an epigenetic manner by the presence of a special
nucleosome that contains a centromere-specific histone H3 variant, centromere protein A (CENP-A).
Proper deposition of CENP-A at the centromere is required for proper centromere inheritance and
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function, and this epigenetic mechanism is a fundamental biological process. Nucleosomes that contain
CENP-A (a.k.a., CENP-A nucleosomes) localize to the inner kinetochores. Such CENP-A nucleosomes
consist of the canonical histones H2A, H2B, and H4 at the active centromeres. CENP-A nucleosomes
and are required for active centromeres to recruit a constitutive centromere-associated network
(CCAN) and the other kinetochore proteins [2]. Therefore, although CENP-A is proposed as the
non-DNA indicator (epigenetic marker) of centromere identity, the key question remains how CENP-A
defines the position of the centromere in humans. We have reported that E3 ligase activity of
CUL4A (Cullin 4A)-RBX1 (Ring-box 1)-COPS8 (COP9 signalosome complex subunit 8) is required
for ubiquitylation of lysine 124 (K124) in CENP-A and centromere localization of CENP-A during
the M and G1 phases [3]. Recently, we suggested a model of inheritance of CENP-A ubiquitylation
to regulate CENP-A localization and maintenance at centromeres [4]. In this model, CENP-A K124
ubiquitylation is inherited in an epigenetic manner through dimerization between different rounds of
cell divisions.

We demonstrated that ubiquitylated CENP-A is required for ubiquitylation of nonubiquitylated
CENP-A in our in vivo and in vitro assays using constitutively ubiquitylated CENP-A. Therefore,
we suggest that the heterodimer (i.e., a dimer of old CENP-A and new CENP-A) is presumably
recognized by the CUL4A complex, and the new CENP-A is ubiquitylated and maintained at the
centromeres [3]. CENP-A—containing nucleosomes are formed with the canonical histones H2A, H2B,
and H4 at the active centromeres. However, it is still controversial whether the interconversion between
tetrameric and octameric CENP-A nucleosomes in the cell cycle is critical [2]. Therefore, here we adapt
a proposed octamer model of epigenetic inheritance of CENP-A ubiquitylation (Figure 1) as previously
discussed [5].
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Figure 1. Model of epigenetic inheritance of centromere protein A (CENP-A) ubiquitylation.

In this tentative octamer model, two CENP-A dimers in one nucleosome are distributed
separately between two daughter centromere-DNA sequences, and one CENP-A molecule either
is exchanged with one H3 molecule or leaves a molecule-free gap during the replication/S phase.
HJURP (Holliday junction recognition protein) preferentially binds to ubiquitylated, preassembled
“old” CENP-A, which is situated predominantly in nucleosomes. A new CENP-A monomer targets
ubiquitylated centromeric CENP-A via preassembled HJURP. New CENP-A is properly ubiquitylated
in a heterodimerization-dependent manner (i.e., dimers of old CENP-A with new CENP-A). In this
way, the ubiquitylation and the location of the centromere are inherited epigenetically. Note that
histone H4 is omitted for simplicity.
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Starting at DNA replication, this tentative octamer model proposes that two pre-assembled
“old” CENP-A molecules in one nucleosome are distributed separately between two daughter
centromere-DNA sequences (Figure 1, S phase). One CENP-A molecule is either replaced with
one histone H3.3 molecule or absent, leaving a molecule-free place (“gap”) during replication/S phase
(Figure 1, S phase). This idea is supported by the previous report that histone H3.3 is deposited at
centromeres during the S phase and occupied as a placeholder for CENP-A that is newly deposited
and/or replaced with histone H3.3 during the G1 phase [6] (Figure 1, S phase).

A protein called HJURP (Holliday junction recognition protein) is a specific chaperone protein
of CENP-A with nucleosome assembly activity specifically for newly synthesized CENP-A [7-9].
The evidence from our studies and others [4] supports our concept (Figure 1) that HJURP preferentially
binds to preassembled “old” CENP-A, which has a ubiquitin group and is situated predominantly
in nucleosomes to initiate the ubiquitylation of newly synthesized (“new”) CENP-A (Figure 1,
anaphase/telophase). Pre-assembled ubiquitylated centromeric CENP-A in nucleosomes is targeted
by newly synthesized, free CENP-A through its interaction to HJURP (Figure 1, telophase/early
G1). In a heterodimerization-dependent manner (through interaction of old CENP-A — new
CENP-A), new CENP-A is ubiquitylated near the nucleosome and/or inside the nucleosomes
(Figure 1, telophase/early G1). Our results showed that HJURP partly contributes to ubiquitylation,
because addition of purified HJURP protein enhanced the CENP-A ubiquitylation in vitro, and HJURP
siRNA led to a significant reduction of the CENP-A ubiquitylation in vivo. Thus, ubiquitylation and
the location of the centromere are inherited in an epigenetic manner through dimerization between
different rounds of mitosis (Figure 1).

Neocentromeres are ectopic sites on chromosomes where new functional kinetochores assemble
to specify and conduct chromosome segregation. Over 100 neocentromeres have been described
in clinical samples [10]. However, they form on very diverse DNA sequences not associated
with alpha-satellite DNA. These findings verified that the formation of human centromeres does
not depend on primary DNA sequences, and centromeres are inherited in an epigenetic manner.
However, the mechanism to create human neocentromeres is not yet clear; mere overexpression
of CENP-A results in mislocalization of CENP-A but not the successful formation of functional
neocentromeres [11]. Therefore, it is important to investigate factors required for generation of human
neocentromeres to elucidate the mechanism of epigenetic inheritance of centromeres. We constructed
an N-terminal Flag-tagged and C-terminal ubiquitin-fused K124R CENP-A mutant, and in this
construct, we also applied the monoubiquitin mutant Ub (K48R), which has lost a major site for
polyubiquitylation to prevent ubiquitin-fused CENP-A protein from potential polyubiquitylation.
We found that overexpression of the monoubiquitin fusion protein Flag-CENP-A K124R-Ub (K48R)
sufficiently recruited HJURP and central-outer kinetochore components to ectopic chromatin [4].
In particular, putative neocentromeres, where SKA1 was properly recruited, were replicated and
inherited epigenetically between cell division.

Many studies have proposed that CENP-A is the epigenetic marker of the centromere identity [2].
However, we have shown that overexpression of CENP-A itself is not sufficient to generate a
neocentromere (Figure 1) and that ubiquitylation of CENP-A is required for neocentromere formation
or epigenetic inheritance of the centromere location in humans [4]. We conclude that CENP-A
ubiquitylation is a candidate as an epigenetic marker of centromere location, (i.e., centromere
identity), considering that histone posttranslational modifications are traditionally defined as
“epigenetic markers”.

Our studies were performed using the HeLa cervical carcinoma cells in which the p53 and pRB
signaling pathways are disrupted due to Human papillomavirus (HPV) 18 E6 infection. Filipescu et
al. suggested the essential role of CENP-A and its specific chaperone HJURP following p53 loss in
tumor progression in both in vitro and in vivo experiments [12]. They demonstrated that functional
p53 elicits a cell cycle arrest response, whereas, in p53-null transformed cells, the absence of arrest
enables the loss of HJURP to induce severe aneuploidy and apoptotic cell death, discussing a model
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of “epigenetic addiction” in which the rapidly proliferating cells in p53-null tumors become highly
dependent on the HJURP [12]. To further establish the generality of our model it would be interesting
to study how transcriptional and/or post-transcriptional regulation of CENP-A and HJURP through
p53 is functionally involved in our model.

Overexpression of CENP-A and formation of neocentromere to a chromosome make the
chromosome very unstable, and this instability results in aneuploidy and possibly in cancer
generation [13-15]. Sun et al. demonstrated that elevated CENP-A expression can be used as a
prognostic and predictive cancer biomarker, especially for taxane-based chemotherapy and possibly
other treatments targeting cell division, using genomic, transcriptomic and patient information from
databases [16]. Lacoste et al. suggested that CENP-A overexpression in human cells leads to ectopic
localization at the CTCF binding sites with active histone turnover involving a heterotypic tetramer
containing CENP-A-H4 with H3.3-H4 [13]. Solving the composition and dynamics of centromeric
and non-centromeric nucleosomes is one of the intriguing directions of the future research. Thus, it is
essential to understand the mechanism that controls the amount of CENP-A, including stoichiometry
of CENP-A nucleosomes, to elucidate the mechanism of neocentromere formation.
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