Supporting information

Selectivity of Terpyridine platinum anti-cancer drugs for G-quadruplex DNA

Elodie Morel ^{1,2,+}, Claire Beauvineau ^{1,2,+}, Delphine Naud-Martin^{1,2}, Corinne Landras-Guetta^{1,2}, Daniela Verga^{1,2}, Deepanjan Ghosh^{1,2}, Sylvain Achelle^{1,2,3}, Florence Mahuteau-Betzer^{1,2}, Sophie Bombard^{1,2*} and Marie-Paule Teulade-Fichou^{1,2*}

- ¹ Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405, Orsay, France.
- ² Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France
- ³ Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- * Correspondence marie-paule.teulade-fichou@curie.fr (M-P.T-F) and sophie.bombard@curie.fr (S.B); Tel.: 33169863086 and 33169863189
- + These authors contributed equally to this work.

Ι

Figure S1: ¹H NMR and ¹³C spectra, respectively, of compound **2** (A, B), compound **3** (C, D), **cpym** (E, F), **Pt-cpym** (G, H), **Pt-vpym** (I, J) and ¹H NMR spectrum of **Pt(PA)-tpy** (K).

PhenDC3 • Pt-ctpy • Pt-BisQ • Pt-ttpy • Pt-tpy • Pt-vpym • Pt-cpym • Pt(PA)-tpy

Figure S2. Fluorescence Intercalator Displacement (FID) assays, for compounds **Pt-BisQ**, **Pt-ctpy**, **Pt-ttpy**, **Pt-cpym**, **Pt-vpym**, **Pt(PA)-tpy** and **Pt-tpy** with G4 DNA (22AG, c-myc, 21CTA and 25CEBWT, 0,25 μ M) in presence of Thiazole Orange (TO), TO-PRO-3 (2 equivalents), and PhenDV (1.5 equivalents). Affinities of ligands are expressed by probe displacement as indicated in material and methods. Buffer used is K+100 (10 mM lithium cacodylate, 100 mM KCl and 1 % DMSO, pH = 7.3).

Figure S3. UV-Vis spectra of Pt-complexes, TO and TO-PRO-3 at 5 µM in water.

Figure S4: % of probe displacement at 1µM ligand (**Pt-BisQ**, **Pt-ctpy**, **Pt-ttpy**, **Pt-cpym**, **Pt-vpym**, **Pt(PA)-tpy** and **Pt-tpy** and PhenDC3 used as control) from G4-FID assay. Experiments are performed on the G-quadruplex structure of 22AG, c-myc, 21CTA, CEB25WT (as shown in Figure 1A) and on duplex ds26 DNA (0,25 µM), with thiazole orange (TO) (2 eq. for G4-DNA & 3eq. for ds26), TO-PRO-3 (2 eq. for G4-DNA & 3eq. for ds26) in K+100 buffer (100 mM KCl and 10 mM lithium cacodylate, pH = 7.3).

PLATINATION OF G-QUADRUPLEX DNA

UT A B C D E F

Figure S5. Denaturating gel electrophoresis (15 % acrylamide) of platination reactions induced by 2 equivalents of compounds **Pt-ttpy** (A), **Pt-tpy** (B), Pt-BisQ (C), **Pt-ctpy** (D), **Pt-cpym** (E), and **Pt-vpym** (F) on c-myc (100 µM) in the presence of K+100 buffer after 18h incubation at 32°C. Lane labelled with UT corresponds to untreated c-myc.

Figure S6. Denaturating gel electrophoresis (20% acrylamide) of 3'-exonuclease digestion of bands obtained by platination of c-myc with **Pt-ttpy**, **Pt-tpy** and **Pt-BisQ** from Figure 4. Lane labelled with T corresponds to the non-digested bands.

Figure S7. Denaturing gel electrophoresis (20% acrylamide) of the fragments of digestion from Figure S6 after deplatination using NaCN 0.2M at 32 °C for 18 hours. Lane c corresponds to the partial digestion of non-platinated DNA c-myc (0.008 unit enzyme/ μ M), and it gives the reference scale for the migration of the deplatinated digested fragments. Lane a corresponds to the non-digested oligonucleotide c-myc. The letter and number indicate the platinum binding site.

A	cmyc* + Pt-ttpy	B cmyc*+ ds26 + Pt-ttpy	
	0 1 2 3 4 5 6 7 8 9 10 20 40 60 120 min	0 2 3 4 5 6 7 8 9 10 20 40 60 120 1	80 min
	B1		
	t _{max} = 60 min B2 Pt _{max} = 50 %	$\begin{array}{c} & \\ & \\ & \\ t_{max} = 60 \text{ min} \\ & P t_{max} = 60 \% \end{array}$	-
С	ds26*+ Pt-ttpy	D ds26* +cmyc + Pt-ttpy	
	0 2 3 4 5 6 7 8 9 10 20 40 60 120 180 min	0 1 2 3 4 5 6 7 8 9 10 20 40 60 120	0 180 min
	D2 t _{max} = 20 min Pt _{max} = 30 %	t _{max} = 60 min C1 Pt = 30 %	4

Figure S8. Kinetics of formation of platinated adduct of ³²P radiolabeled c-myc* (0.2 μ M) (A) and cold duplex DNA ds26 (10 μ M) (B) or of ³²P radiolabeled ds26*(10 μ M) (C) and cold c-myc (0.2 μ M) (D) in the presence of **Pt-ttpy** (5 μ M) in K⁺10 buffer at 25°C followed by denaturing acrylamide gel electrophoresis.

	cmyc* + Pt-tpy	B	cmyc*+ ds26 + Pt-tpy
A	0 1 2 3 4 5 6 7 8 9 10 20 40 60 min		0 1 2 3 4 5 6 7 8 9 10 20 40 60 120 180 min
	01 02 03		A1 A2 A3
	t _{max} = 5 min Pt _{max} = 60 %		t _{max} = 10 min Pt _{max} = 60 %
С	ds26*+ Pt-tpy 0 1 2 3 4 5 6 7 8 9 10 20 40 60 120 180 min	D	1s26* +cmyc + Pt-tpy 0 1 2 3 4 5 6 7 8 9 10 20 40 60 120 180 min
	D2 D1		
	$r_{max} = 50 \text{ mm}$ Pt _{max} = 60 %		t _{max} = 50 min Pt _{max} = 50 %

Figure S9. Kinetics of formation of platinated adduct of ³²P radiolabeled c-myc* (0.2 μ M) (A) and cold duplex DNA ds26 (10 μ M) (B) or of ³²P radiolabeled ds26* (10 μ M) (C) and cold c-myc (0.2 μ M) (D) in the presence of **Pt-tpy** (5 μ M) in K*10 buffer at 25°C followed by denaturing acrylamide gel electrophoresis.

	∆ Tm (°C)								
Ligand	F-21-T		F-c-n	F-c- <u>myc</u> -T		F-21CTA-T		F-CEB25-WT-T	
	0 µM ds26	10 µM ds26	0 µM ds26	10 µM ds26	0 µM ds26	10 µM ds26	0 µM ds26	10 µM ds26	
Pt-ctpy	16.7±1.1	$7.4{\pm}1.0$	13.0±2.1	6.4±1.3	14.2 ± 0.9	4.7±0.6	17.0±1.9	3.9 ± 0.5	
Pt-BisQ	20.6±2.0	8.9±1.0	10.3±1.8	3.7±0.4	10.6±1.3	0.4±0.5	15.6 ± 4.1	3.9±0.6	
Pt-ttpy	12.8 ± 2.9	3.9±1.9	9.4±2.9	5.5±2.6	7.5±3.0	1.8 ± 1.2	10.0 ± 3.8	1.6 ± 0.6	
Pt-tpy	6.0±1.2	2.1±0.5	3.2±1.8	3.2±2.9	7.0±1.5	6.6±1.0	4.2±1.3	2.3±2.9	
Pt-vpym	7.9 ± 2.0	5.3±0.5	3.5±0.9	8.5±2.8	3.7±0.9	6.8±0.3	3.8 ± 0.5	1.8 ± 0.1	
Pt-cpym	10.3±2.1	1.1±0.1	1.7 ± 0.4	$1.6{\pm}1.4$	0.8±0.1	0.9±0.3	2.2±0.3	0.6±0.0	
Pt(PA)-tpy	5.2±1.4	-1.0 ± 0.4	0.4 ± 0.5	0.4±0.7	0.3±0.3	-0.5±0.3	0.8±0.3	0.1±0.1	
PhenDC3	24.3±1.4	24.4±1.0	21.3±1.2	21.7±0.7	18.4 ± 1.0	14.6 ± 1.2	22.0±1.3	19.8±1.7	

Table S1: ΔTm (°C) of F-21-T, F-c-myc-T, F-21CTA-T and F-CEB25-WT-T in the presence of **Pt-ctpy**, **Pt-BisQ**, **Pt-ttpy**, **Pt-tpy**, **Pt-ctpym**, **Pt-cpym**, **Pt(PA)-tpy**, and PhenDC3.

Table S2: % of TO displacement at 1 μM of ligand (**Pt-ctpy**, **Pt-BisQ**, **Pt-ttpy**, **Pt-cpym**, **Pt(PA)-tpy**, and PhenDC3) on 22AG, C-myc, 21CTA, CEB-25WT and ds26.

Licond	% of TO displacement at 1 µM of ligand						
Ligand -	22AG	c-myc	21CTA	CEB25-WT	ds26		
Pt-ctpy	88	76	93	82	17		
Pt-BisQ	93	89	95	90	12		
Pt-ttpy	80	64	87	66	nd		
Pt-tpy	21	41	24	14	nd		
Pt-cpym	67	33	82	43	2		
Pt(PA)-tpy	55	59	52	37	nd		
PhenDC3	95	96	95	90	nd		

Table S3: % of TO-PRO-3 displacement at 1 μM of ligand (**Pt-ctpy**, **Pt-BisQ**, **Pt-ttpy**, **Pt-tpy**, **Pt-vpym**, **Pt-cpym**, **Pt(PA)-tpy**, and PhenDC3) on 22AG, C-myc, 21CTA, CEB-25WT and ds26.

Tirrad	% of TOPRO3 displacement at 1 μ M of ligand							
Ligand –	22AG	c-myc	21CTA	CEB25-WT	ds26			
Pt-ctpy	78	58	83	76	24			
Pt-BisQ	62	44	57	69	5			
Pt-ttpy	65	76	62	62	13			
Pt-tpy	12	32	23	nd	nd			
Pt-vpym	28	32	32	23	nd			
Pt-cpym	25	nd	25	nd	nd			
Pt(PA)-tpy	nd	nd	3	nd	nd			
PhenDC3	85	73	83	88	nd			

Tirond	% of PhenDV displacement at 1 µM of ligand						
Ligand -	22AG	c-myc	21CTA	CEB25-WT			
Pt-ctpy	84	29	100	72			
Pt-BisQ	64	20	94	45			
Pt-ttpy	63	22	90	45			
Pt-tpy	24	5	35	13			
Pt-cpym	43	3	72	33			
Pt(PA)-tpy	20	2	34	13			
PhenDC3	92	85	100	99			

Table S4: % of PhenDV displacement at 1 μM of ligand (**Pt-ctpy**, **Pt-BisQ**, **Pt-ttpy**, **Pt-tpy**, **Pt-cpym**, **Pt(PA)-tpy**, and PhenDC3) on 22AG, C-myc, 21CTA and CEB25-WT.