
molecules

Communication

Evaluation of Volatile Metabolites Emitted In-Vivo
from Cold-Hardy Grapes during Ripening Using
SPME and GC-MS: A Proof-of-Concept

Somchai Rice 1,2,3 , Devin L. Maurer 3, Anne Fennell 4 , Murlidhar Dharmadhikari 1 and
Jacek A. Koziel 2,3,*

1 Midwest Grape and Wine Industry Institute, Iowa State University, Ames, IA 50011, USA;
somchai@iastate.edu (S.R.); murli@iastate.edu (M.D.)

2 Interdepartmental Toxicology Graduate Program, Iowa State University, Ames, IA 50011, USA
3 Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA;

dmaurer@iastate.edu
4 Department of Agronomy, Horticulture and Plant Science, BioSNTR, South Dakota State University,

Brookings, SD 57006, USA; anne.fennell@sdstate.edu
* Correspondence: koziel@iastate.edu; Tel.: +1-515-294-4206

Academic Editors: Constantinos K. Zacharis and Paraskevas D. Tzanavaras
Received: 1 January 2019; Accepted: 30 January 2019; Published: 1 February 2019

����������
�������

Abstract: In this research, we propose a novel concept for a non-destructive evaluation of volatiles
emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to
both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy
varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style
data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers
temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine
and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape
berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and
followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it
is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries
(39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace
from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were
observed for all four cultivars. However, these changes were not consistent by growing season,
by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as
principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma
compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry
in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.

Keywords: biogenic emissions; veraison; viticulture; nondestructive analysis; wine aroma; diffusion;
grape skin; vacuum-assisted extraction; solid-phase microextraction; VOCs

1. Introduction

Understanding the development of flavor and aroma compounds in wine grapes is crucial to
winemaking. Grape berry development is characterized by two sigmoidal growth periods. The first
growth period is berry formation from fruit set to lag phase. This is followed by berry-ripening from
veraison to harvest [1]. Veraison is characterized by a change in color of the berries. During the berry
ripening phase, sugar accumulates as measured in Brix. The rapid accumulation of sugar in the berry
ripening from veraison onto harvest is well understood [2]. This is contrasted by the relative lack of
research on aroma compound accumulation during ripening, especially for cold-hardy grapes. Further
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understanding of the accumulation of aroma compounds during the ripening phase can inform how
viticultural practices can be used to influence wine style.

Interest in research of aroma compounds in wine grapes is high. The prevailing share of published
research in wine grapes has been in V. vinifera (‘Old World’, well-established varieties). This is expected
since vinifera was cultivated as early as the seventh and fourth millennia BC [3]. For example, it
well-known that aroma compounds such as pyrazines contribute to the characteristic aroma in Cabernet
Sauvignon and Sauvignon Blanc [4,5]. These aromas can be described as ‘grassy,’ ‘herbaceous’, and
‘green bell pepper’ [6]. The decline in pyrazines in developing wine grapes has been linked to the
levels of sunlight reaching the cluster and can be reduced through canopy management if this aroma
is undesirable [7]. Terroir has been shown to affect wine aroma in Riesling grown in the Niagara
Peninsula [8] and Cabernet Sauvignon in China [4]. Aroma compounds have been characterized in
Japanese Shine muscat (V. labruscana Bailey and V. vinifera L.). Levels of linalool, hexanal, (E)-2-hexenal,
hexanol, and (Z)-3-hexene-1-ol, nerol in berry skins and pulp were influenced by storage temperatures
post-harvest [9]. Viticultural practices such as the timing of early defoliation have been investigated
to determine the effect on Tempranillo wine aroma [10], and enological practices such as effects of
pre-fermentation cold soaking on Cabernet Sauvignon grape and wine volatiles [11]. The bulk of the
research into the aroma of grapes and wine has been done for vinifera because vinifera has existed
longer than hybrid grapes. With the recent introduction of cold-hardy (hybrid) grapes, production of
quality wines is possible in cold-climate regions where vinifera cannot thrive.

Since the release of high-quality, cold-hardy, and disease-resistant cultivars from the University of
Minnesota, the winemaking industry has grown in cold climates such as the upper Midwest region of
the U.S. St. Croix, Frontenac, Marquette, and La Crescent cultivars were developed in 1983, 1996, 2006,
and 2002, respectively [12]. Current searches in the journal database Web of Science using keywords
and variations of ‘Marquette,’ ‘Frontenac,’ ‘St. Croix’, ‘La Crescent’, volatile, aroma, cold-hardy,
and maturity yield < 50 articles. Canopy management effects on fruit and wine aroma have been
investigated in Traminette, an interspecific hybrid of Gewürztraminer in the Eastern U.S. [13]. Volatile
compounds from Zuoshanyi, a native red grape variety in northeast China, were characterized with
135 VOCs identified and quantified [14]. Effects of pre-fermentation treatments on wine aroma profile
were explored in the cold-hardy cultivar Solaris in Denmark [15].

There is a gap in knowledge, especially in aroma research, with these interspecific, cold-hardy
hybrid grapes. Previous work showed a constant decrease in the ratio of alpha-linolenic acid
degradation products, cis-3-hexenol to trans-2-hexenal during ripening of Frontenac and Marquette
berries grown in Quebec, through the destructive blending of the berries [16]. Frontenac and Marquette
aromas reported at harvest were mainly hexanal, trans-2-hexenal, 1-hexanol, cis-3-hexenol, hexanoic
acid, acetic acid, beta-damascenone, and 1-phenylethanol. Marquette had significantly higher levels of
linalool, geraniol, and alpha-citral [17]. Continuing work in Canada has been done in profiling aroma
compounds in Frontenac, Marquette, Marechal Foch, Sabrevois, and St. Croix skin, juice and wine.
Terpenes were primarily located in the skin, and the highest concentration was in Marquette. Nonanal,
(E,Z)-2,6 nonadienal, beta-damascenone, ethyl octanoate, and isoamyl acetate were compounds
with the highest odor activity values (OAV) in wines [17]. The OAV for a compound is the ratio
between the concentration and the odor detection threshold (ODT) and it could be a useful metric for
aroma-imparting compounds. The ODT is the minimal concentration that can be detected by human
nose in 50% of the population [18–20]. Earlier research has also shown that the majority of aroma
compounds present in grape berries are bound to a sugar moiety within the berry [21].

Various methods of sample preparation have been used to characterize aromas from grapes
and wine. Thermal desorption was used to determine volatiles from Solaris wine [15]. Solid phase
extraction (SPE) has been used to isolate aroma precursors in Merlot, Gewürztraminer, and Tempranillo
grapes and wine [22]. Solid-phase microextraction (SPME) has emerged as one of the preferred
methods of sample and sample prep for analysis of volatiles in the grapes and wine. SPME offers the
advantages of portability, simplicity, and re-usability in field and laboratory settings. Applications



Molecules 2019, 24, 536 3 of 25

using SPME in the food and beverage industry can be found elsewhere [23]. Gas chromatography
(GC) has been extensively used to separate aroma compounds from the complex mix of aromas.
GC is often coupled with mass spectrometry (MS) to identify and quantify the separated aroma
compounds. These analytical methods have been used, sometimes in combination with other analytical
methods, in analysis of volatiles from grapefruit (Citrus paradise L.) [24], berry cactus (Myrtillocactus
geometrizans) [25], Shine Muscat [9], Cabernet Sauvignon [4,26], Zuoshanyi grapes [14], Muscat
cultivars [27], Nero d’Avola and Fiano grapes [28], Monastrell wines [29], and selected cold-hardy
grape cultivars and wine [16,17] and cold-hardy wines [17,30–34].

A review of SPME use for in-vivo and in-vitro in whole plant and plant organ analysis is found
elsewhere [35]. It is clear that there is little research in cold-hardy wine grape cultivars when compared
to V. vinifera. There is a need for a better understanding of these new cultivars in order to produce
quality cold-climate wines that can compete in the world market. To date, this research is the first
report of aroma compounds (1) emitted in-vivo from veraison to harvest using two novel sampling
methods and collected by SPME and analyzed by GC-MS from Frontenac, Marquette, St. Croix, and
La Crescent grape cultivars.

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted
from ripening grapes using SPME. This concept is novel to both the traditional vinifera grapes and the
cold-hardy cultivars. Our models are cold-hardy varieties in the upper Midwest for which many of the
basic multiyear grape flavor and wine style data is needed. Research into aroma compounds present
in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and
diversification of agriculture in the upper Midwestern area of the U.S. The need for data is confounded
by the small resources available to conduct long-term research.

If proven feasible, the concept of non-destructive analysis of ripening grapes presents a tantalizing
possibility to investigate the effects of different viticulture practices throughout the stages of berry
ripening on berry aroma. This, in turn, could be used to develop better quality wines. If volatile
compounds emitted in-vivo could be identified as developmental biomarkers, portable target VOC
detectors could then be developed. These detectors can give vineyards a real-time gauge to guide
them in harvesting for flavor.

The main objective was to develop the proof-of-concept for a non-destructive (in-vivo) sampling
of volatile compounds from growing and ripening grapes. Specific objectives (1–4) were to (1) develop
sampling devices to capture volatiles emitted from a whole cluster and single berry; (2) characterize
the volatile compounds emitted in-vivo from four cold-hardy grape cultivars using: (2i) whole cluster
analysis, (2ii) single berry analysis; (3) compare volatile compounds emitted in-vivo (objective 1) with
crushed berry (i.e., destructive analysis including skin, seeds, and pulp); (4) search for preliminary
links between volatile compounds detected (objectives 1 and 2) and selected: (4i) microclimates (Iowa
and South Dakota), (4ii) the individual cultivars (i.e., Frontenac, Marquette, St. Croix, and La Crescent),
and (4iii) time stages of berry ripening.

The working hypotheses were: (1) aroma compound development from veraison-to-harvest can
be detected in-vivo by sampling volatile emissions from ripening grapes (from both a single berry
and whole grape cluster) and (2) that the flavor accumulation (i.e., increasing concentration of VOCs)
can be correlated with berry ripening in all four cultivars. Testing these hypotheses can potentially
translate into improving viticulture practices that lead to timing the harvesting for flavor. This research
aims at addressing the gap in knowledge for cold-hardy grape cultivars by cataloging VOCs from
Frontenac, Marquette, St. Croix and La Crescent emitted in-vivo and whole crushed berries throughout
berry ripening.
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2. Results

2.1. Sampling Devices to Capture Volatiles Emitted from a Whole Cluster and Single Berry

In this research, non-destructive and destructive sampling methods for the detection of VOCs
emitted from cold-hardy grapes were explored. Non-destructive sampling included (1) a use of
polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a
whole cluster of grapes on a vine (Figure 1), and (2) a modified 2 mL glass vial for a vacuum-assisted
sampling of volatiles from a single berry (Figure 2).
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Figure 1. Non-destructive sampling of biogenic volatiles emitted by the whole cluster of grapes
on a vine. Schematic of polyvinyl fluoride (PVF) film chambers used for short-term enclosing of
growing clusters of cold-hardy grapes during in-vivo sampling of volatile emissions using solid-phase
microextraction (SPME). An aluminum wire cage was constructed to hold the PVF chamber spread
around and to be secured to the grape vine’s training system. The PVF chamber was modified with
a custom polytetrafluoroethylene (PTFE) port fitted with 11 mm PTFE lined silicone septa (SPME
sampling port).
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Figure 2. Non-destructive sampling of biogenic volatiles emitted by a modified 2 mL glass vial for a
vacuum-assisted sampling of volatiles from a single grape berry. Schematic of a modified screw top 2
mL glass vial with PTFE lined septa used for characterizing in-vivo metabolite emissions from selected
cold-hardy grapes. Negative pressure was created with a syringe to hold the sampling device with
SPME sealed onto the grape berry surface.

A total of 124 VOCs were identified across all sampling methods, 79 of these VOCs were verified
with analytical standards matching retention times and mass spectral data (i.e., using the identification
of compounds with Automated Mass Spectral Deconvolution and Identification System (AMDIS)
target library search with at least 80% mass spectral match. Target libraries included (a) the 6 libraries
that are included with the AMDIS program, (b) an onsite (our laboratory) library created from analysis
of pure standards (200+ compounds), (c) NIST11 mass spectral library described in Materials and
Methods section on data analysis). A full summary of VOCs identified in Frontenac, Marquette,
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St. Croix, and La Crescent berries from South Dakota and Iowa by each sampling method is provided
in data paper [36] with known aroma descriptors for pure compounds [37,38]. All PCA biplots are
given in Appendix A (Figures A1 and A2). It should be noted that significant changes in volatiles
emitted were only observed in Frontenac grapes grown in South Dakota in 2013 as indicated by the
variance accounted for in component 1 and 2 in PCA (i.e., greater than 70%). However, due to the
exploratory nature of this research, all PCA data is presented is subsequent sections.

2.2. Volatiles Emitted In-Vivo from Four Cold-Hardy Grape Cultivars

PVF chambers were used in 2012 on Frontenac and Marquette in Iowa and South Dakota. Modified
glass vials were used in 2013 on Frontenac, Marquette, St. Croix, and La Crescent in South Dakota.
Only St. Croix and La Crescent were sampled by modified glass vials in Iowa, limited by funding.

2.2.1. Emissions from Whole Grape Cluster

Forty-four of the total 124 grape VOCs emitted in-vivo were detected by whole grape cluster
sampling chambers in Frontenac and Marquette cultivars grown in Iowa and South Dakota, monitored
from veraison to harvest. Table 1 presents the VOCs that are characteristic of biogenic emissions from
Frontenac and Marquette clusters during the 2012 growing season from Iowa and South Dakota. These
volatiles were detected in-vivo from whole grape clusters and determined through interpretation of
principal component analysis (PCA) and hierarchical clustering analysis (HCA). A detailed summary
of all 124 VOC can be found elsewhere [36]. However, only key representative volatiles from the
hierarchical cluster analysis (HCA) are labeled with numbers on PCA biplot figures presented in Results.

Table 1. Whole cluster analysis. Volatiles emitted from Frontenac and Marquette clusters, grown in
Iowa (IA) and South Dakota (SD). These VOCs were indicated to be the most representative variable
from hierarchical clustering analysis (HCA) after the PCA (JMP Pro 12.0.1, SAS Institute Inc., Cary,
NC, USA).

Sample Cluster No. of
Members 2 Most Representative Variable 3 Cluster Proportion of

Variation Explained 4

Total Proportion
of Variation
Explained 5

IA Frontenac
(0.709) 1

1 5 Heptanal 0.937 0.173
3 5 4-Methyl-3-penten-2-one 0.745 0.138
5 6 Nonanal 0.512 0.114
2 3 3-Methyl-1-butanol 0.845 0.094
4 4 1,4-Butanolide 0.576 0.085
6 2 5-(Hydroxymethyl)-2-furancarboxaldehyde 0.858 0.064
7 2 Benzophenone 0.548 0.041

SD Frontenac
(0.686) 1

1 7 Toluene 0.712 0.208
2 5 Nonanal 0.820 0.171
5 3 3-Phenyl-2-propenal 0.810 0.101
3 4 4-Methyl-3-penten-2-one 0.592 0.099
4 3 Acetic acid 0.502 0.063
6 2 Benzyl alcohol 0.536 0.045

IA Marquette
(0.739) 1

1 10 1-Octanol 0.805 0.310
2 5 Acetaldehyde 0.814 0.156
3 3 Methyl ethyl ketone 0.616 0.071
4 3 1-Hexadecanol 0.505 0.063
5 3 Acetophenone 0.536 0.062
6 1 Acetic acid 1.000 0.038
7 1 2-Ethyl-1-hexanol 1.000 0.038

SD Marquette
(0.783) 1

1 7 Acetone 0.817 0.249
2 4 4-Methyl-3-penten-2-one 0.799 0.139
6 4 Decane 0.797 0.139
3 2 1-Pentanol 1.000 0.087
4 3 2-Ethyl-1-hexanol 0.532 0.069
7 2 1-Hexadecanol 0.654 0.057
5 1 Indene 1.000 0.043

1 The total proportion of variation explained by all the cluster components. 2 The number of variables in the cluster.
3 The cluster variable that has the largest squared correlation with its cluster component. 4 The cluster’s proportion
of variance explained by the first principal component amount the variables in the cluster, based only on variables
within the cluster. 5 The overall proportion of variance explained by the cluster component, using only the variables
within each cluster to calculate the first principal component.
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Frontenac

3-Methyl-1-butanol and heptanal were emitted and detected in 2012 Iowa Frontenac grapes at veraison.
At harvest, 1,4-butanolide was detected (Figure A1). Nonanal, benzyl alcohol, and toluene were emitted
and detected in 2012 South Dakota Frontenac grapes (Figure 3) at veraison. Only one compound, i.e., acetic
acid, was associated with harvest time. Other compounds were detected (e.g., 2-methyl-3-penten-2-one
and 3-phenyl-2-propenal) but were not indicated to be the most representative compounds from HCA.
Results are also presented in this manner throughout the manuscript.
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Figure 3. Evolution of VOCs emitted from whole clusters of 2012 Frontenac grapes grown in South
Dakota from veraison to harvest. Key to most representative volatiles from HCA, shown as vectors
from the origin and read clockwise: 1 = 2-Methyl-3-penten-2-one, 2 = Nonanal, 3 = Benzyl alcohol,
4 = Toluene, 5 = Acetic acid, 6 = 3-Phenyl-2-propenal.

Marquette

2012 Iowa Marquette did not have a ‘representative’ VOC at veraison, as indicated by HCA, and
replicate samples had high variability (i.e., unevenly distributed between 2 quadrants of the PCA
biplot). By harvest, 1-hexadecanol and methyl ethyl ketone had developed. Similarly, 2012 South
Dakota Marquette VOCs emitted at veraison (Figure 4) did not have ‘representative’ VOC at veraison.
At harvest, indene was the representative VOC emitted.
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Dakota from veraison to harvest. Key to most representative volatiles from HCA, shown as vectors
from the origin and read clockwise: 1 = 1-Hexadecanol, 2 = 2-Ethyl-1-hexanol, 3 = 1-Pentanol, 4 =
Acetone, 5 = Indene, 6 = Decane, 7 = 4-Methyl-3-penten-2-one.
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2.2.2. Emissions from Single Berries

Thirty-nine VOCs emitted in-vivo were also detected by modified glass vial (vacuum assisted)
method in Frontenac, Marquette, St. Croix, and La Crescent cultivars grown in Iowa and South
Dakota. Table 2 presents the VOCs that are characteristic of these 4 cold-hardy cultivars during the
2013 growing season in Iowa and South Dakota, detected in-vivo from single berries, and determined
through multivariate statistical analysis previously discussed.

Table 2. ‘Characteristic’ VOCs emitted from single berries of Frontenac, Marquette, St. Croix, and
La Crescent grapes grown in Iowa and South Dakota. These VOCs were indicated to be the most
representative variable from hierarchical clustering analysis after the PCA (JMP Pro 12.0.1, SAS Institute
Inc., Cary, NC, USA).

Sample Cluster No. of
Members 2 Most Representative Variable 3

Cluster
Proportion of

Variation
Explained 4

Total
Proportion of

Variation
Explained 5

SD Frontenac
(0.750) 1

1 2 Palmitic acid 0.830 0.415
2 2 Acetic acid 0.669 0.334

SD Marquette
(0.870) 1

1 7 1,4-Butanolide 0.878 0.473
2 4 Ethyl octanoate 0.883 0.272
3 2 2-Ethyl-1-hexanol 0.819 0.126

IA St. Croix
(0.896) 1

1 4 3-Methyl indole 1.000 0.500
2 3 Acetic acid 0.722 0.271
3 1 Benzyl alcohol 1.000 0.125

SD St. Croix
(0.855) 1

1 3 Nonanal 0.802 0.241
3 3 Diacetone alcohol 0.713 0.214
2 2 1,4-Butanolide 1.000 0.200
4 1 5-(Hydroxymethyl)-2-furancarboxaldehyde 1.000 0.100
5 1 Ethyl acetate 1.000 0.100

IA La Crescent
(0.909) 1

1 28 2-Ethyl-1-hexanol 0.973 0.757
2 4 3-Methyl indole 0.772 0.086
4 2 Ethanol 0.636 0.035
3 2 2-Phenylethanol 0.556 0.031

SD La Crescent
(0.936) 1

1 3 2-Phenylethanol 1.000 0.300
3 3 Diacetone alcohol 0.853 0.256
4 2 Acetic acid 0.976 0.195
2 2 6-Methyl-5-hepten-2-one 0.926 0.185

1 The total proportion of variation explained by all the cluster components. 2 The number of variables in the cluster.
3 The cluster variable that has the largest squared correlation with its cluster component. 4 The cluster’s proportion
of variance explained by the first principal component amount the variables in the cluster, based only on variables
within the cluster. 5 The overall proportion of variance explained by the cluster component, using only the variables
within each cluster to calculate the first principal component.

Frontenac

In-vivo detection of VOCs by modified glass vial did not identify a key representative compound
in 2013 South Dakota Frontenac grapes at veraison (Figure 5). At harvest, palmitic acid was emitted
and detected in these berries.
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from the origin and read clockwise: 1 = Palmitic acid, 2 = Acetic acid. 

2.2.2.2. Marquette 

Figure 5. Evolution of VOCs emitted from single berry from veraison to harvest of 2013 Frontenac
grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as vectors from
the origin and read clockwise: 1 = Palmitic acid, 2 = Acetic acid.

Marquette

VOCs detected by modified glass vial emitted from 2013 Marquette grown in South Dakota
generally did not vary during berry development. The variability decreased between the replicate
samples, indicated by less spread between the data points as the berries developed. Aromas from
berries grown in South Dakota during the 2013 growing season (Figure 6) can be characterized from
3 VOCs. These compounds were 2-ethyl-1-hexanol, ethyl octanoate and 1,4-butanolide.
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Figure 6. Evolution of VOCs emitted from single berry from veraison to harvest of 2013 Marquette
grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as vectors from
the origin and read clockwise: 1 = Ethyl octanoate, 2 = 2-Ethyl-1-hexanol, 3 = 1,4-Butanolide.

St. Croix

Statistical analysis of VOCs detected from 2013 St. Croix grown in Iowa at veraison and harvest
determined 3 important compounds. These compounds were 3-methyl indole, benzyl alcohol, and
acetic acid. Decreased variability between replicate samples was observed as the berries ripened,
although no strong associations were noticed between these compounds and berry development.
Compounds emitted and detected in 2013 St. Croix from South Dakota (Figure 7) were 1,4-butanolide,
5-(hydroxymethyl)-2-furancarboxaldehyde, ethyl acetate, and nonanal. Of the 5 key VOCs detected in
2013 South Dakota St. Croix at veraison, nonanal was most associated with development at harvest.
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Figure 7. Evolution of VOCs emitted from single berry from veraison to harvest of 2013 St. Croix
grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as vectors
from the origin and read clockwise: 1 = Nonanal, 2 = Diacetone alcohol, 3 = 1,4-Butanolide, 4 =
5-(Hydroxymethyl)-1-furancarboxaldehyde, 5 = Ethyl acetate.

La Crescent

VOCs detected by modified glass vial emitted from 2013 La Crescent grown in Iowa were highly
variable at veraison. A characteristic compound (i.e., 3-methyl-indole) was determined to be present at
veraison. By harvest, octanal was present but not statistically representative. La Crescent berries from
2013 grown in South Dakota (Figure 8) were highly variable between replicate samples. Compounds
emitted included 2-phenylethanol, 6-methyl-5-hepten-2-one, and acetic acid. By harvest, 1,4-butanolide
was present but not statistically representative.
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Figure 8. Evolution of VOCs emitted from single berry from veraison to harvest of 2013 St. Croix
grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as vectors
from the origin and read clockwise: 1 = 2-Phenylethanol, 3 = Diacetone alcohol, 4 = Acetic acid,
2 = 6-Methyl-5-hepten-2-one.

2.3. Destructive Sampling

117 grape VOCs were detected by destructive analysis (i.e., crushed berries) in Frontenac, Marquette,
St. Croix, and La Crescent cultivars grown in Iowa and South Dakota. The sample matrix included skins,
pulp, and seeds. Crushed berry analysis was used in 2012 on Frontenac and Marquette cultivars grown
in South Dakota, and all 4 cultivars in 2013. A freezer malfunction in resulted in the loss of Iowa 2012
berries stored for crushed berry analysis. Table 3 presents the VOCs that are characteristic of these 4
cold-hardy cultivars during the 2012 and 2013 growing seasons in Iowa and South Dakota, detected in
whole, crushed berries and determined through multivariate statistical analysis previously discussed.
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Table 3. ‘Characteristic’ VOCs emitted from crushed berries of Frontenac, Marquette, St. Croix, and
La Crescent grapes grown in Iowa and South Dakota. These VOCs were indicated to be the most
representative variable from hierarchical clustering analysis after the PCA (JMP Pro 12.0.1, SAS Institute
Inc., Cary, NC, USA).

Sample Cluster No. of
Members B Most Representative Variable C

Cluster Proportion
of Variation
Explained D

Total Proportion
of Variation
Explained E

IA Frontenac
(0.803) A

1 7 3-Methyl-1-butanol 0.993 0.257
2 9 Cyclohexanol 0.770 0.257
4 4 Isoamyl acetate 0.745 0.110
3 4 Isovaleraldehyde 0.622 0.092
5 3 Toluene 0.774 0.086

SD Frontenac
(0.627) A

2 8 Styrene 0.636 0.083
10 7 Acetaldehyde 0.546 0.063
5 6 2-Octanone 0.608 0.060
1 6 Acetone 0.602 0.059
6 5 1-Hexanol 0.645 0.053
4 5 Nonane 0.624 0.051
8 4 Ethyl hexanoate 0.732 0.048
3 4 Ethyl palmitate 0.694 0.045
7 3 Hexanoic acid 0.740 0.036
9 4 N-benzyl-2-phenethylamine 0.509 0.033

12 2 2-Methyl-1-propanol 0.953 0.031
11 3 Benzoic acid, methyl ester 0.560 0.028
14 2 Isophorone 0.569 0.019
13 2 Octanal 0.524 0.017

IA Marquette
(0.863) A

1 9 Hexanal 0.925 0.347
3 5 Isoamyl acetate 0.878 0.183
2 4 Styrene 0.776 0.129
5 2 Ethanol 0.933 0.078
6 2 Benzophenone 0.813 0.068
4 2 Allyl alcohol 0.703 0.059

SD Marquette
(0.654) A

7 7 Acetaldehyde 0.617 0.062
6 6 Methyl ethyl ketone 0.639 0.055
3 5 Decane 0.760 0.054

19 5 Nonanal 0.667 0.048
1 4 Styrene 0.777 0.044
5 5 Amyl acetate 0.621 0.044
4 4 (E)-2-Hexenoic acid 0.704 0.040

10 4 Cyclohexanol 0.692 0.040
9 5 Octanal 0.480 0.034
2 3 1-Pentanol 0.673 0.029
8 2 Nonane 0.966 0.028

18 3 Valeraldehyde 0.630 0.027
11 3 1-Heptanol 0.629 0.027
14 4 beta-Damascenone 0.470 0.027
12 4 Allyl alcohol 0.435 0.025
13 2 p-Cymene 0.835 0.024
16 2 Methyl disulfide 0.635 0.018
15 1 beta-Cyclocitral 1.000 0.014
17 1 Nerol acetate 1.000 0.014

IA St. Croix
(0.772) A

1 9 Formic acid, octyl ester 0.832 0.150
4 8 Ethyl decanoate 0.901 0.144
2 7 Isobutyraldehyde 0.674 0.094
3 5 Aspirin methyl ester 0.813 0.081
5 3 Benzeneacetaldehyde 0.858 0.052

10 3 Ethanol 0.771 0.046
8 3 Methacrolein 0.682 0.041

12 2 Isoamyl acetate 0.841 0.034
6 2 1-Butanol 0.790 0.032
7 3 Ethyl butyrate 0.493 0.030
9 2 1-Hexanol 0.649 0.026

11 2 beta-Damascenone 0.576 0.023
13 1 Valeraldehyde 1.000 0.020
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Table 3. Cont.

Sample Cluster No. of
Members B Most Representative Variable C

Cluster Proportion
of Variation
Explained D

Total Proportion
of Variation
Explained E

SD St. Croix
(0.692) A

2 8 Acetophenone 0.685 0.081
3 6 Linalool 0.786 0.069
6 6 Benzaldehyde 0.727 0.064
7 6 Methyl salicylate 0.681 0.060
5 6 Cyclohexanol 0.662 0.058
4 6 2-Heptanone 0.627 0.055
1 5 2-Phenylethanol 0.728 0.054

10 5 1-Pentanol 0.581 0.043
8 5 Benzyl alcohol 0.557 0.041

11 3 Safrol 0.855 0.038
9 3 Benzoic acid, methyl ester 0.797 0.035

12 3 Ethyl acetate 0.622 0.027
14 2 Aspirin methyl ester 0.840 0.025
13 2 Propionaldehyde 0.797 0.023
15 2 N-Benzyl-2-phenethylamine 0.628 0.018

IA La Crescent
(0.699) A

1 11 beta-Cyclocitral 0.682 0.121
2 8 beta-Pinene 0.836 0.108
3 9 Ethyl butyrate 0.710 0.103
8 4 p-Cymene 0.663 0.043
9 4 Propanoic acid 0.648 0.042

12 3 1-Hexanol 0.792 0.038
6 3 Nerol acetate 0.776 0.038
4 4 Methacrolein 0.565 0.036
5 4 Beta-damascenone 0.521 0.034
7 3 (+)-4-Carene 0.650 0.031

11 3 Valeric acid 0.641 0.031
13 3 3-Methyl-1-butanol 0.638 0.031
10 2 Acetic acid 0.845 0.027
14 1 Propyl-benzene 1.000 0.016

SD La Crescent
(0.741) A

3 8 Allyl alcohol 0.845 0.086
2 8 beta-Pinene 0.837 0.085
1 7 Toluene 0.691 0.061

11 5 Isoamyl acetate 0.915 0.058
6 6 Isophorone 0.637 0.048
7 6 Ethyl butyrate 0.567 0.043
8 5 Hexanal 0.669 0.042
4 5 Benzaldehyde 0.657 0.042

13 5 Styrene 0.618 0.039
15 4 Carbon disulfide 0.771 0.039
9 3 Ethyl vinyl ketone 1.000 0.038
5 3 Camphene 0.900 0.034

18 3 Linalyl acetate 0.806 0.031
17 3 Geraniol 0.730 0.028
10 2 Furfural 0.908 0.023
12 3 Isobutyraldehyde 0.499 0.019
16 2 2-Ethyl-1-hexanol 0.500 0.013
14 1 Propyl-benzene 1.000 0.013

A The total proportion of variation explained by all the cluster components. B The number of variables in the cluster.
C The cluster variable that has the largest squared correlation with its cluster component. D The cluster’s proportion
of variance explained by the first principal component amount the variables in the cluster, based only on variables
within the cluster. E The overall proportion of variance explained by the cluster component, using only the variables
within each cluster to calculate the first principal component.

2.3.1. Frontenac

VOCs detected after crushing the berries of Frontenac grapes from the 2013 growing season in
Iowa were isovaleraldehyde and isoamyl acetate at veraison. At harvest, VOCs were cyclohexanol and)
and 3-methyl-1-butanol, as shown in Figure A1. VOCs detected after crushing berries of Frontenac
grapes from the 2012 growing season in South Dakota were acetaldehyde and 1-hexanol at veraison
in 2012. Frontenac grapes from the 2013 growing season in South Dakota was associated with ethyl
hexanoate. VOCs detected after crushing berries of Frontenac grapes from the 2012 growing season
at harvest in South Dakota were associated with alkane and styrene. In 2013 at harvest, however,
compounds emitted were acetone, ethyl palmitate, hexanoic acid, 2-methyl-1-propanol, and 2-octanone
in Frontenac grapes in South Dakota, Figure 9.
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Figure 9. Evolution of VOCs emitted from crushed berries from veraison to harvest of 2012 and
2013 Frontenac grapes grown in South Dakota. Key to most representative volatiles from HCA,
shown as vectors from the origin and read clockwise: 1 = Nonane, 2 = Styrene, 3 = Octanal,
4 = Acetaldehyde, 5 = 1-Hexanol, 6 = Benzoic acid, methyl ester, 7 = Isophorone, 8 = Ethyl
hexanoate, 9 = N-benzyl-2-phenethylamine, 10 = Acetone, 11 = Ethyl palmitate, 12 = Hexanoic acid,
13 = 2-Methyl-1-propanol, 14 = 2-Octanone.

2.3.2. Marquette

Compounds emitted from Marquette grapes from the 2013 growing season in Iowa were formic
acid, octyl ester at veraison. By harvest, 2013 Marquette grapes emitted benzophenone, hexanal, and
isoamyl acetate, Figure A1. In the 2012 South Dakota growing season, compounds such as cyclohexanol
and (E)-2-hexenoic acid were most associated with Marquette berries at veraison. By harvest, these
compounds shifted to styrene, beta-cyclocitral, and nonanal (Figure 10).
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Figure 10. Evolution of VOCs emitted from crushed berries from veraison to harvest of 2012 and 2013
Marquette grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as
vectors from the origin and read clockwise: 1 = 1-Heptanol, 2 = Amyl acetate, 3 = Methyl ethyl ketone,
4 = Decane, 5 = Styrene, 6 = beta-Cyclocitral, 7 = Nonanal, 8 = Acetaldehyde, 9 = Valeraldehyde,
10 = Octanal, 11 = Cyclohexanol, 12 = (E)-2-hexenoic acid, 13 = Methyl disulfide, 14 = Nonane,
15 = Allyl alcohol, 16 = beta-Damascenone, 17 = Nerol acetate, 18 = p-cymene, 19 = 1-Pentanol.

2.3.3. St. Croix

VOCs from crushed St. Croix grapes from the 2013 Iowa growing season changed from benzene
acetaldehyde, isobutyraldehyde, ethyl butyrate, 1-Hexanol, beta-Damascenone, valeraldehyde, ethyl
decanoate, methacrolein, 1-butanol, aspirin methyl ester at veraison to formic acid, and octyl ester and
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isoamyl acetate at harvest (Figure A1). VOCs from crushed St. Croix grapes from the 2013 growing
season in South Dakota changed from benzyl alcohol, benzaldehyde, and N-benzyl-2-phenethylamine
at veraison to ethyl acetate, methyl salicylate, safrol, propionaldehyde, 2-phenylethanol, 1-Pentanol,
2-heptanone, benzoic acid, and methyl ester at harvest (Figure 11).
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Figure 11. Evolution of VOCs emitted from crushed berries from veraison to harvest of 2013 St.
Croix grapes grown in South Dakota. Key to most representative volatiles from HCA, shown as
vectors from the origin and read clockwise: 1 = Benzyl alcohol, 2 = Benzaldehyde, 3 = Octanal,
4 = Acetophenone, 5 = Linalool, 6 = Ethyl acetate, 7 = Methyl salicylate, 8 = Safrol, 9 = Propionaldehyde,
10 = 2-Phenylethanol, 11 = 1-Pentanol, 12 = 2-Heptanone, 13 = Benzoic acid, methyl ester, 14 = Aspirin
methyl ester, 15 = N-benzyl-2-phenethylamine.

2.3.4. La Crescent

VOCs from La Crescent berries from the 2013 Iowa growing season changed from propanoic
acid, ethyl butyrate, 3-methyl-1-butanol, beta-cyclocitral at veraison to p-cymene, beta-damascenone,
1-hexanol, and beta-pinene at harvest (Figure A1). In the 2013 South Dakota growing season, La
Crescent VOCs from crushed berries changed from isoamyl acetate, linalyl acetate, 2-ethyl-1-hexanol,
geraniol, isophorone, and allyl alcohol at veraison to ethyl butyrate, propyl-benzene, and styrene at
harvest (Figure 12).Molecules 2018, 23, x FOR PEER REVIEW  16 of 28 
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Figure 12. Evolution of VOCs emitted from crushed berries from veraison to harvest of 2012 and 2013
La Crescent grapes grown in South Dakota. Key to most representative volatiles from HCA, shown
as vectors from the origin and read clockwise: 1 = Furfural, 2 = Isobutyraldehyde, 3 = Benzaldehyde,
4 = Ethyl vinyl ketone, 5 = Toluene, 6 = Camphene, 7 = Ethyl butyrate, 8 = Propyl-Benzene, 9 = Styrene,
10 = Hexanal, 11 = beta-Pinene, 12 = Isoamyl acetate, 13 = Carbon disulfide, 14 = Linalyl acetate,
15 = 2-Ethyl-1-hexanol, 16 = Geraniol, 17 = Isophorone, 18 = Allyl alcohol.
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3. Discussion

The effect of vineyard practices on grape and wine aroma merit study. The claims to a regions’
wines by sensory attributes need to be scientifically correlated to bolster the local economies. Otherwise
consumers are inundated with marketing claims. This study attempted to compare microclimates
of Iowa and South Dakota during 3 months of the growing season, over 2 years. The Iowa plot is in
USDA plant hardiness zone 5a [39]. In comparison, the South Dakota plot is in USDA plant hardiness
zone 4b [39]. These metrics were obtained from the National Oceanic and Atmospheric Administration,
formerly the National Climatic Data Center [40].

Preliminary analyses using ANOVA were also completed (shown in ‘ANOVA in-vivo’ spreadsheet,
Supplementary Materials). Type 1 sum of squares analysis indicated statistical significance of method,
cultivar, date and time, method and cultivar interaction, and method and site and cultivar interactions
(shown in Table A1). Post-hoc Tukey HSD test is (Table A2) shows differences within a method, cultivar,
date and time, method and cultivar interaction, and method and site and cultivar interactions. PCA
analyses were used to determine key volatile compounds emitted. Although significant differences
were noted using ANOVA and Tukey HSD for total VOCs emitted, the more detailed analysis with PCA
(focused on individual VOCs) accounted for less than 70% variance. This was the case for all but one
case (Figure 5) of Frontenac grown in South Dakota in 2013. Statistical analysis using PCA indicated
that Frontenac and Marquette were most similar in total VOC emission profile (i.e., clustered around
the origin). St. Croix cultivars had a higher positive correlation with the first principal component.
Seventeen VOCs with correlation ≥0.300 are listed in a section on statistical analysis. Any differences
in the soil and microclimate of these two sites affected overall VOCs emitted from La Crescent and St.
Croix cultivars during this research. It is cautioned that these differences could also be affected by the
genetics of the cold-hardy hybrids. Frontenac and Marquette share similar parentage [41].

The advantages of the modified glass vials over PVF film chambers are its compact design for field
sampling, reusability, reduced background contamination from glass, and isolation of VOCs emitted
from a single berry. Vacuum-assisted headspace SPME sampling has been used in carefully controlled
laboratory settings, to successfully achieve shorter sampling times at lower sampling temperature
with good sensitivity and precision to extract polychlorinated biphenyls (PCB) from water [42]. This
novel sampling device was the logical next step to isolate VOCs emitted from grape berries during
development. This sampling technique is comparable to a viticulturalist ‘smelling’ a grape, and
detecting only the volatile compounds emitted through the grape skin. These VOCs are recognized
as “free” aroma compounds not bound to a sugar moiety within the berry [43]. This could allow for
monitoring of VOCs to measure berry ripeness by instrumental methods. Grapes get softer as they
develop, and some cultivars are prone to slip skin (i.e., the grape skin slips easily from the fruit pulp).
A disadvantage in using modified glass vials for grape sampling in this research is that increased
vacuum was needed as the grapes developed and softened, and sometimes broke the grape skin, more
often in the St. Croix cultivar. Another confounding element could be the presence and interference of
volatile compounds on the grape skin but not produced by the grape (i.e., pesticide residues, naturally
occurring yeasts and molds).

Non-destructive, sampling of VOCs emitted in-vivo from cold-hardy grapes was conducted using
2 methods. PVF film sampling chambers with custom SPME sampling port was used to monitor
whole cluster VOC emissions. Modified glass vials supported SPME sampling of individual berries.
For comparison to both non-destructive methods, a random 5 berry sample was collected, crushed,
and analyzed under controlled laboratory conditions. Statistical analysis using PCA indicated that
sampling by PVF chambers and modified glass vials detected similar VOC emission profiles across
all 4 cultivars. There was 1 outlier from the glass vial method, indicating a higher than average
concentration of styrene in La Crescent grapes. This data could provide evidence of styrene as a
product of 2-phenylethanol synthesis from yeast cells [44] (p. 309) present during sampling. It should
be noted that 2-phenylethanol variable is positively correlated with principal component 2, orthogonal
to styrene. It is expected to have more VOCs detected at higher relative concentrations in crushed
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berry analysis because of the release of juices and volatiles bound within the berry skin and pulp.
Research is warranted to compare headspace SPME analyses of crushed berries with conventional
analytical methods such as liquid-liquid extraction [45].

Berry VOCs were sampled within a 3-month growing period each year for 2 years. VOC profile
in 2012, sampled by PVF chambers and crushed berries were similar in profile. Data points from the
PCA fall close to the origin throughout the year in 2012, not shown. This indicated that VOCs collected
via PVF chambers did not show noticeable changes from veraison to harvest. VOC profile in 2013,
sampled by modified glass vials and crushed berries were similar in profile (points near the origin)
until the end of August, with the exception of the outlier on 14 August 2013, Figure 3. In La Crescent
and St. Croix cultivars grown in Iowa, there is a movement towards higher than average VOC emission
on 24 August 2016, Figure 4. In Iowa, VOC development was still trending above average at harvest on
3 August 2016 for St. Croix and on 29 September 2016 for La Crescent, not shown. VOCs emitted from
Frontenac, Marquette, and St Croix cultivars grown in South Dakota started to develop and deviate
from average later than Iowa on 29 August 2016, Figure 5. VOCs emitted from La Crescent grown in
South Dakota start to trend above average on 3 September 2016, Figure 6. VOC emissions returned
to average levels between 29 August and 5 September (harvest) in South Dakota Frontenac berries,
Figure 7. The same decreasing trend was observed in South Dakota Marquette between 5 September
and 8 September 2016, not shown. Similar to Iowa, the increased VOCs emitted from South Dakota St.
Croix and La Crescent do not decline by harvest, not shown.

Differences in microclimate of Iowa and South Dakota plots did not affect VOC emissions from
4 cold-hardy grape cultivars. Little difference in VOC emissions is expected from Marquette and
Frontenac because of a shared pedigree. Greater changes in VOC emissions was observed between
destructive crushed berry analysis and non-destructive in-vivo analysis methods, but not within the
non-destructive methods. In Iowa and South Dakota plots, VOCs emitted from St. Croix and La
Crescent cultivars continued to change from veraison through harvest. VOCs emitted in-vivo from
Frontenac and Marquette cultivars in South Dakota started to decline 8 days and 3 days before harvest,
respectively. More research is warranted in order to make recommendations to viticulturists regarding
ideal harvest time for maximum aromas in the cold-hardy grapes. Linking correlations between
viticultural practices can enhance the quality of wines for new cold-climate cultivars.

Several improvements to the proposed in-vivo sampling are warranted. Addition of internal
standard (IS) [46], for example a small vial with a membrane for controlled emission of IS during
sampling (e.g., inside a PVF bag) would to ensure that sampling temperature and SPME fiber variables
are controlled. This information would help to normalize sampling variables in field conditions and
potentially help with data quality. Secondly, IS addition would enable quantification of volatiles.

4. Materials and Methods

4.1. Overview

A detailed description of Materials and Methods is provided elsewhere [36]. Briefly, below are
the summaries of particular approaches used. Research vineyards were located at South Dakota State
University (SDSU, Brookings, SD, USA) and Iowa State University (ISU, Ames, IA, USA). Grape
clusters were randomly selected, and volatiles from the same clusters were sampled from veraison
to harvest. Veraison is defined as when half of the clusters have changed to their ripe color and is
shown as the first time point in Results. Collection of volatiles from whole clusters and single berries
was completed in 2012 and 2013 seasons, respectively. Berry chemistry data (i.e., Brix, pH, ambient
temperatures, and titratable acidity (IA only)) is provided in Supplementary Material. Volatiles from
crushed berries were collected at the same time as in-vivo sampling for both growing seasons. A SPME
(65 µm polydimethylsiloxane (PDMS)/divinylbenzene (DVB)) fibers were used for on-site sampling
at vineyards and for headspace extraction from crushed berries. No internal standard was used.
However, trip blanks (i.e., ambient air samples collected at each vineyard) and sampling vial blanks
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(for destructive sampling) were used to account for potential interfering volatiles. Four replicates
(vines) were sampled per site and cultivar at each time point.

4.2. In-Vivo Sampling of Volatiles from a Whole Cluster of Grapes

Sampling chambers (~5 L volume) for the non-destructive collection of in-vivo volatiles were
made from a PVF film and held firm with clean aluminum wire cage framing. Preconditioned (cleaned)
PVF chambers were fitted with custom sampling ports for insertion of SPME needles. Typical sampling
time was 30 min.

4.3. In-Vivo Sampling of Volatiles from a Single Grape

A standard 2 mL glass vials were modified by removing flat bottoms (Fisher Scientific, Waltham,
MA, USA) at a glass shop. The edges of were flared and rounded. A half hole septa was added to
the screw top to support the SPME needle. The SPME fiber was placed through the septa prior to
sampling. After assembly and placement of the vial apparatus on the individual berry (Figure S2),
5 mL of air was pulled from the vial using a syringe. Care was taken not to disturb the SPME fiber
with the syringe needle. The resultant vacuum held the apparatus in place (i.e., sealed by suction into
berry surface) while the SPME fiber was exposed for vacuum-assisted VOC sampling. The single berry
sampling vials were cleaned prior to each sampling by rinsing in deionized water and oven baked
overnight at 107 ◦C. Cleaned vials were transported in an aluminum lined box. PTFE screw tops were
replaced after each sampling.

4.4. Destructive Sampling

Berries were collected from each cultivar on the same day and time of in-vivo sampling. Five
berries were collected from clusters adjacent to the cluster tagged for in-vivo sampling (i.e., from the
same vine but a different cluster than in-vivo sampled berries). Collected berries were frozen prior
to analysis and stored in a −20 ◦C freezer. Berries collected in South Dakota were also frozen and
shipped on ice overnight for analysis in Iowa. Frozen berries were hand-crushed in the lab, placed
into 20 mL amber screw top vials (Wheaton, Millville, NJ) with PTFE/silicone septa. A CTC CombiPal
(LEAP Technologies, Carrboro, NC, USA) was used for automated SPME sampling. Briefly, the vials
were agitated and heated to 50 ◦C for 10 min, followed by 30 min agitated headspace sampling using
65 µm PDMS/DVB SPME fiber. The fiber was thermally desorbed under a flow of helium prior to each
sample exposure. These sampling parameters were determined, not shown.

4.5. Data Acquisition and Analysis

A custom multidimensional GC was used (Microanalytics, a part of Volatile Analysis Corporation,
Round Rock, TX, USA), built on a standard Agilent 6890 platform (Agilent Technologies, Santa Clara,
CA, USA). System automation and data acquisition software were MultiTrax (Microanalytics, Round
Rock, TX, USA) and ChemStation (Agilent Technologies, Santa Clara, CA, USA). Chromatography
was performed on two capillary columns connected in series. The first column was 5% phenyl
polysilphenylene-siloxane (30 m× 0.53 mm inner diameter× 0.5 µm thickness, Trajan Scientific, Austin,
TX, USA) with a fixed restrictor pre-column. The second polar column was bonded polyethylene
glycol in a Sol-Gel matrix (30 m× 0.53 mm inner diameter× 0.5 µm thickness, Trajan Scientific, Austin,
TX, USA). The midpoint between the two columns was maintained at a constant pressure of 0.39 atm
by a pneumatic switch. In this research, all effluent from the first column was directed into the 2nd
analytical column, i.e., no heartcutting was performed. The instrument was also equipped with a
flame ionization detector (FID). Flow to the FID can also directed at the midpoint, but FID was not
utilized in this research. True multidimensional analyses were not performed, i.e., the system was used
in full heartcut mode, meaning separation was performed on both columns in series. Effluent from the
second polar column was simultaneously directed to a single quadrupole MS (Model 5973N, Agilent
Technologies, Santa Clara, CA, USA) and an olfactometry (sniff) port (Microanalytics, Round Rock, TX,
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USA) via an open spit interface at atmospheric pressure. The sniff port is equipped with a purge flow
controller and supplied with humidified air at 0.54 atm. Flow to the MS and sniff port is determined by
fixed restrictor columns, 1 part to MS and 3 to sniff port. Olfactometry was not utilized in the research.
The GC inlet was operated in splitless mode at 250 ◦C. GC oven parameters start with an initial
temperature of 40 ◦C, held for 3.0 min, followed by a 7 ◦C per min ramp to 240 ◦C, held for 8.43 min.
Total run time was 40 min. Carrier gas is ultra-high purity (UHP) helium (99.999%, Airgas, Des Moines,
IA, USA). Temperature of the sniff port and MS transfer lines were 240 ◦C and 280 ◦C, respectively.
MS full scan range was set from 34 m/z to 350 m/z. Scans were collected in electron ionization (EI)
mode with an ionization energy of 70 eV. MS heated zones for quadrupole and source were 150 ◦C
and 230 ◦C, respectively. Daily tuning of the MS was performed with perfluorotributylamine (PFTBA)
before each analysis.

Identification of compounds was performed using Automated Mass Spectral Deconvolution and
Identification System (AMDIS) target library search with at least 80% mass spectral match. Target
libraries included (a) the 6 libraries that are included with the AMDIS program, (b) an onsite library
created from analysis of pure standards (200+ compounds), (c) NIST11 mass spectral library. Analysis
of variance (ANOVA) was performed using XLSTAT 2016.04.33113 (Addinsoft, New York, NY, USA).
The effects of cultivar, site, sampling time, and sampling methods and their interactions on volatiles
emitted were analyzed using ANOVA (with confidence interval of 95% and the tolerance of 0.0001)
followed by post-hoc (Tukey honestly significant difference, HSD) test. Multivariate analysis was
performed using JMP Pro 12.0.1 (SAS Institute Inc., Cary, NC, USA).

5. Conclusions

We have shown that is feasible to detect VOCs emitted in-vivo from single grape berries (39
compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from
crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed
for all four cultivars. However, these changes were not consistent by growing season, by location,
within cultivars, by ripening stage when analyzed by multivariate analyses such principal component
analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in
cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and
diversification of agriculture in the upper Midwestern area of the U.S.

Supplementary Materials: The full list of biogenic volatiles emitted from four cold-hardy grape cultivars during
ripening is available online at [36]. In addition, analysis of variance (ANOVA) is provided in ‘ANOVA in vivo’
spreadsheet. Berry chemistry data is provided in ‘Berry Chemistry 2012 and 2013 data’ spreadsheet.
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Figure A1. Results of a PCA on VOCs emitted from Iowa cold-hardy grapes by sampling methods (1) whole cluster, (2) single berry, (3) crushed berries, and cultivars
(A) Frontenac, (B) Marquette, (C) St. Croix, (D) La Crescent. These plots show the relationships of grape maturity during ripening (Date) to each other and the
associations among the most representative variable from cluster analysis. Key: 1A: 1 = 3-Methyl-1-butanol, 2 = 5-(Hydroxymethyl)-2-furancarboxaldehyde, 3 = Nonanal,
4 = 4-Methyl-3-penten-2-one, 5 = 1,4-Butanolide, 6 = Benzophenone, 7 = Heptanal; 1B: 1 = 1-Octanol, 5 = Acetaldehyde, 3 = Methyl ethyl ketone, 2 = 1-Hexadecanol,
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6 = Acetophenone, 4 = Acetic acid, 7 = 2-Ethyl-1-hexanol; 2C: 1 = 3-Methyl indole, 2 = Benzyl alcohol, 3 = Acetic Acid; 2D: 1 = 3-methyl indole, 2 = Ethanol,
3 = 2-Phenylethanol, 4 = 2-ethyl-1-hexanol; 3A: 1 = Isovaleraldehyde, 2 = Isoamyl acetate, 3 = Toluene, 4 = Cyclohexanol, 5 = 3-Methyl-1-butanol; 3B: 1 = Benzophenone,
2 = Ethanol, 3 = Hexanal, 4 = Isoamyl acetate, 5 = Styrene, 6 = Allyl alcohol; 3C: 1 = Benzene acetaldehyde, 2 = Isobutyraldehyde, 3 = Ethanol, 4 = Ethyl butyrate,
5 = 1-Hexanol, 6 = Formic acid, octyl ester, 7 = beta-Damascenone, 8 = Isoamyl acetate, 9 = Valeraldehyde, 10 = Ethyl decanoate, 11 = Methacrolein, 12 = 1-Butanol,
13 = Aspirin methyl ester; 3D: 1 = Propanoic acid, 2 = Ethyl butyrate, 3 = 3-Methyl-1-butanol, 4 = beta-Cyclocitral, 5 = p-Cymene, 6 = beta-Damascenone, 7 = 1-Hexanol,
8 = beta-Pinene, 9 = Nerol acetate, 10 = Propyl-benzene, 11 = Acetic acid, 12 = (+)-4-Carene, 13 = Valeric acid, 14 = Methacrolein.
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acid, 6 = 3-Phenyl-2-propenal; 1B: 1 = 1-Hexadecanol, 2 = 2-Ethyl-1-Hexanol, 3 = 1-Pentanol, 4 = 

Acetone, 5 = Indene, 6 = Decane, 7 = 4-methyl-3-penten-2-one; 2A: 1 = Palmitic acid, 2 = Acetic acid; 

2B: 1 = Ethyl octanoate, 2 = 2-Ethyl-1-hexanol, 3 = 1,4-Butanolide; 2C: 1 = Nonanal, 2 = Diacetone 

alcohol, 3 = 1,4-Butanolide, 4 = 5-(Hydroxymethyl)-1-furancarboxaldehyde, 5 = Ethyl acetate; 2D: 1 = 

2-Phenylethanol, 3 = Diacetone alcohol, 4 = Acetic acid, 2 = 6-Methyl-5-hepten-2-one; 3A: 1 = Nonane, 

2 = Styrene, 3 = Octanal, 4 = Acetaldehyde, 5 = 1-Hexanol, 6 = Benzoic acid, methyl ester, 7 = 

Isophorone, 8 = Ethyl hexanoate, 9 = N-benzyl-2-phenethylamine, 10 = Acetone, 11 = Ethyl palmitate, 

12 = Hexanoic acid, 13 = 2-Methyl-1-propanol, 14 = 2-Octanone; 3B: 1 = 1-Heptanol, 2 = Amyl acetate, 
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Figure A2. Results of a PCA on VOCs emitted from South Dakota cold-hardy grapes by sampling methods (1) whole cluster, (2) single berry, (3) crushed berries, and
cultivars (A) Frontenac, (B) Marquette, (C) St. Croix, (D) La Crescent. These plots show the relationships of grape maturity during ripening (Date) to each other and
the associations among the most representative variable from cluster analysis. Key: 1A: 1 = 2-Methyl-3-penten-2-one, 2 = Nonanal, 3 = Benzyl alcohol, 4 = Toluene,
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5 = Acetic acid, 6 = 3-Phenyl-2-propenal; 1B: 1 = 1-Hexadecanol, 2 = 2-Ethyl-1-Hexanol, 3 = 1-Pentanol, 4 = Acetone, 5 = Indene, 6 = Decane, 7 = 4-methyl-3-
penten-2-one; 2A: 1 = Palmitic acid, 2 = Acetic acid; 2B: 1 = Ethyl octanoate, 2 = 2-Ethyl-1-hexanol, 3 = 1,4-Butanolide; 2C: 1 = Nonanal, 2 = Diacetone
alcohol, 3 = 1,4-Butanolide, 4 = 5-(Hydroxymethyl)-1-furancarboxaldehyde, 5 = Ethyl acetate; 2D: 1 = 2-Phenylethanol, 3 = Diacetone alcohol, 4 = Acetic acid,
2 = 6-Methyl-5-hepten-2-one; 3A: 1 = Nonane, 2 = Styrene, 3 = Octanal, 4 = Acetaldehyde, 5 = 1-Hexanol, 6 = Benzoic acid, methyl ester, 7 = Isophorone,
8 = Ethyl hexanoate, 9 = N-benzyl-2-phenethylamine, 10 = Acetone, 11 = Ethyl palmitate, 12 = Hexanoic acid, 13 = 2-Methyl-1-propanol, 14 = 2-Octanone; 3B:
1 = 1-Heptanol, 2 = Amyl acetate, 3 = Methyl ethyl ketone, 4 = Decane, 5 = Styrene, 6 = beta-Cyclocitral, 7 = Nonanal, 8 = Acetaldehyde, 9 = Valeraldehyde,
10 = Octanal, 11 = Cyclohexanol, 12 = (E)-2-hexenoic acid, 13 = Methyl disulfide, 14 = Nonane, 15 = Allyl alcohol, 16 = beta-Damascenone, 17 = Nerol acetate,
18 = p-Cymene, 19 = 1-Pentanol; 3C: 1 = Benzyl alcohol, 2 = Benzaldehyde, 3 = Octanal, 4 = Acetophenone, 5 = Linalool, 6 = Ethyl acetate, 7 = Methyl
salicylate, 8 = Safrol, 9 = Propionaldehyde, 10 = 2-Phenylethanol, 11 = 1-Pentanol, 12 = 2-Heptanone, 13 = Benzoic acid, methyl ester, 14 = Aspirin methyl
ester, 15 = N-benzyl-2-phenethylamine; 3D: 1 = Furfural, 2 = Isobutyraldehyde, 3 = Benzaldehyde, 4 = Ethyl vinyl ketone, 5 = Toluene, 6 = Camphene, 7 = Ethyl
butyrate, 8 = Propyl-benzene, 9 = Styrene, 10 = Hexanal, 11 = beta-Pinene, 12 = Isoamyl acetate, 13 = Carbon disulfide, 14 = Linalyl acetate, 15 = 2-Ethyl-1-hexanol,
16 = Geraniol, 17 = Isophorone, 18 = Allyl alcohol.
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Table A1. Type I sum of squares analyses.

Source DF Sum of Squares Mean Squares F Pr > F

Method 3 1.88 × 1016 6.26 × 1015 122.794 <0.0001
Site 1 6.92 × 1010 6.92 × 1010 0.001 0.971

Cultivar 3 1.91 × 1016 6.37 × 1015 124.900 <0.0001
Date/Time 31 1.14 × 1016 3.67 × 1014 7.204 <0.0001

Method*Site 2 6.54 × 1014 3.27 × 1014 6.416 0.002
Method*Cultivar 4 6.43 × 1015 1.61 × 1015 31.532 <0.0001

Method*Date/Time 14 1.45 × 1015 1.04 × 1014 2.035 0.016
Site*Cultivar 3 7.36 × 1014 2.45 × 1014 4.815 0.003

Site*Date/Time 2 2.24 × 1014 1.12 × 1014 2.202 0.113
Cultivar*Date/Time 24 2.37 × 1015 9.87 × 1013 1.937 0.007

Method*Site*Cultivar 1 8.96 × 1014 8.96 × 1014 17.588 <0.0001
Method*Site*Date/Time 0 0.00 × 1000

Method*Cultivar*Date/Time 7 6.53 × 1013 9.33 × 1012 0.183 0.989

Table A2. Results of Tukey HSD test.

Category Groups

Method-GV*Cultivar-La Crescent*Date/Time-9/8/2013 A
Method-GV*Cultivar-La Crescent*Date/Time-9/15/2013 A
Method-GV*Cultivar-La Crescent*Date/Time-8/30/2013 A B
Method-GV*Cultivar-St. Croix*Date/Time-9/15/2013 A B C
Method-GV*Cultivar-St. Croix*Date/Time-9/8/2013 A B C
Method-GV*Cultivar-St. Croix*Date/Time-8/30/2013 A B C D
Method-GV*Cultivar-St. Croix*Date/Time-9/25/2013 A B C D E
Method-CB*Cultivar-Frontenac*Date/Time-8/13/2013 A B C D E F
Method-CB*Cultivar-Marquette*Date/Time-8/13/2013 A B C D E F
Method-CB*Cultivar-La Crescent*Date/Time-8/13/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-9/9/2013 A B C D E F
Method-GV*Cultivar-St. Croix*Date/Time-8/29/2013 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-8/10/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-8/27/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-8/13/2012 A B C D E F
Method-*PVF*Cultivar-Marquette*Date/Time-7/31/2012 A B C D E F
Method-*PVF*Cultivar-Marquette*Date/Time-8/06/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-9/5/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-9/5/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-9/11/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-8/6/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-8/6/2012 A B C D E F
Method-*PVF*Cultivar-Marquette*Date/Time-8/6/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-8/13/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-8/10/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-8/20/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-8/27/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-7/31/2012 A B C D E F
Method-CB*Cultivar-Marquette*Date/Time-9/9/2013 A B C D E F
Method-*PVF*Cultivar-Marquette*Date/Time-8/6/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-8/20/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-7/18/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-7/12/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-7/31/2012 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-7/30/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-7/18/2012 A B C D E F
Method-PVF*Cultivar-Frontenac*Date/Time-7/30/2012 A B C D E F
Method-CB*Cultivar-La Crescent*Date/Time-8/31/2013 A B C D E F
Method-PVF*Cultivar-Marquette*Date/Time-7/12/2012 A B C D E F
Method-GV*Cultivar-La Crescent*Date/Time-8/29/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-8/21/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-9/22/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-8/28/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-9/5/2013 A B C D E F
Method-CB*Cultivar-Frontenac*Date/Time-9/13/2013 A B C D E F
Method-CB*Cultivar-Marquette*Date/Time-8/21/2013 A B C D E F
Method-GV*Cultivar-Frontenac*Date/Time-9/5/2013 A B C D E F G
Method-GV*Cultivar-Frontenac*Date/Time-8/21/2013 A B C D E F G
Method-GV*Cultivar-Frontenac*Date/Time-9/13/2013 A B C D E F G
Method-GV*Cultivar-Marquette*Date/Time-9/13/2013 A B C D E F G
Method-GV*Cultivar-Marquette*Date/Time-9/8/2013 A B C D E F G
Method-GV*Cultivar-Marquette*Date/Time-9/5/2013 A B C D E F G
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Table A2. Cont.

Category Groups

Method-GV*Cultivar-Marquette*Date/Time-8/21/2013 A B C D E F G
Method-CB*Cultivar-Frontenac*Date/Time-9/5/2012 A B C D E F G
Method-CB*Cultivar-Frontenac*Date/Time-8/6/2012 A B C D E F G H
Method-CB*Cultivar-Marquette*Date/Time-9/22/2013 A B C D E F G H
Method-CB*Cultivar-Frontenac*Date/Time-8/27/2012 A B C D E F G H
Method-CB*Cultivar-Marquette*Date/Time-9/5/2013 A B C D E F G H
Method-GV*Cultivar-St. Croix*Date/Time-9/3/2013 A B C D E F G H
Method-GV*Cultivar-St. Croix*Date/Time-8/24/2013 A B C D E F G H
Method-CB*Cultivar-Marquette*Date/Time-8/28/2013 A B C D E F G H
Method-CB*Cultivar-Frontenac*Date/Time-8/10/2012 A B C D E F G H I
Method-CB*Cultivar-Marquette*Date/Time-9/13/2013 A B C D E F G H I
Method-CB*Cultivar-Frontenac*Date/Time-8/20/2012 A B C D E F G H I
Method-CB*Cultivar-St. Croix*Date/Time-8/29/2013 B C D E F G H I J
Method-CB*Cultivar-Marquette*Date/Time-8/6/2012 C D E F G H I J
Method-CB*Cultivar-Frontenac*Date/Time-9/11/2012 C D E F G H I J
Method-CB*Cultivar-Marquette*Date/Time-8/10/2012 C D E F G H I J
Method-CB*Cultivar-St. Croix*Date/Time-8/31/2013 C D E F G H I J
Method-GV*Cultivar-La Crescent*Date/Time-8/24/2013 C D E F G H I J K
Method-GV*Cultivar-La Crescent*Date/Time-8/10/2013 C D E F G H I J K
Method-CB*Cultivar-La Crescent*Date/Time-8/10/2013 C D E F G H I J K
Method-CB*Cultivar-St. Croix*Date/Time-9/8/2013 C D E F G H I J K L
Method-GV*Cultivar-Frontenac*Date/Time-8/29/2013 C D E F G H I J K L
Method-GV*Cultivar-Marquette*Date/Time-8/29/2013 C D E F G H I J K L
Method-CB*Cultivar-St. Croix*Date/Time-9/25/2013 D E F G H I J K L M
Method-CB*Cultivar-St. Croix*Date/Time-8/13/2013 E F G H I J K L M
Method-CB*Cultivar-Marquette*Date/Time-9/5/2012 F G H I J K L M
Method-CB*Cultivar-Marquette*Date/Time-8/20/2012 F G H I J K L M
Method-CB*Cultivar-Marquette*Date/Time-9/11/2012 F G H I J K L M
Method-CB*Cultivar-St. Croix*Date/Time-8/24/2013 F G H I J K L M N
Method-CB*Cultivar-Marquette*Date/Time-8/27/2012 F G H I J K L M N
Method-CB*Cultivar-La Crescent*Date/Time-8/29/2013 G H I J K L M N O
Method-CB*Cultivar-La Crescent*Date/Time-9/20/2013 H I J K L M N O
Method-CB*Cultivar-La Crescent*Date/Time-8/28/2013 I J K L M N O
Method-CB*Cultivar-St. Croix*Date/Time-9/3/2013 J K L M N O
Method-GV*Cultivar-La Crescent*Date/Time-8/14/2013 K L M N O
Method-CB*Cultivar-St. Croix*Date/Time-9/15/2013 L M N O
Method-CB*Cultivar-La Crescent*Date/Time-8/24/2013 M N O
Method-CB*Cultivar-La Crescent*Date/Time-9/3/2013 N O
Method-CB*Cultivar-La Crescent*Date/Time-9/15/2013 O

Note: Tukey’s d critical value: 6.125. Categories not sharing a group letter are significantly different (p value ≤ 0.05).
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