Sclerin, a New Cytotoxic Cyclononapeptide from *Annona* scleroderma

Francisco Cen-Pacheco^{1,} *, Gerardo Valerio-Alfaro², Dalia Santos-Luna^{1,2} and José Javier Fernández³ *

- ¹ Faculty of Bioanalysis, Veracruz University, Iturbide s/n, 91700 Veracruz, Mexico
- ² Food Research and Development Unit, Tecnológico Nacional de México-I T Veracruz-UNIDA. M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. C.P. 91860 Mexico, Mexico; geval@itver.edu.mx (G.V.-A.); daliasantosluna@hotmail.com (D.S.-L.);
- ³ Institute of Bio-Organic Chemistry Antonio González, Department of Organic Chemistry, University of La Laguna, Astrofísico Francisco Sánchez 2, 38206 La Laguna, Tenerife, Spain
- * Correspondence: fcen@uv.mx (F.C.-P.); jjfercas@ull.edu.es (J.J.F.); Tel.: +52-229-9321707 (Ext. 26213) (F.C.-P.); +34-922-318586 (J.J.F.)

TABLE OF CONTENTS

Scheme S1. Isolation procedure followed for compounds 1-2.	S3
Table S1 . NMR data for sclerin (1) in D_2O .	S4
Figure S1 . ¹ H-NMR spectrum of sclerin (1) in D ₂ O at 298 K, 600 MHz.	S5
Figure S2. ¹³ C-NMR spectrum of sclerin (1) in D_2O at 298 K, 150 MHz.	S6
Figure S3. COSY spectrum of sclerin (1) in D_2O at 298 K, 600 MHz.	S7
Figure S4. TOCSY spectrum of sclerin (1) in D_2O at 298 K, 600 MHz.	S8
Figure S5. HSQC spectrum of sclerin (1) in D_2O at 298 K, 600 MHz.	S9
Figure S6 . HMBC spectrum of sclerin (1) in D_2O at 298 K, 600 MHz.	S10
Figure S7. HRMS spectrum of sclerin (1).	\$11
Table S2 . NMR data for cyclosenegalin A (2) in CD ₃ OD.	S12
Figure S8 . ¹ H-NMR spectrum of cyclosenegalin A (2) in CD ₃ OD at 298 K, 600 MHz.	S13
Figure S9 . ¹³ C-NMR spectrum of cyclosenegalin A (2) in CD ₃ OD at 298 K, 150 MHz.	S14
Figure S10. COSY spectrum of cyclosenegalin A (2) in CD ₃ OD at 298 K, 600 MHz.	S15
Figure S11. HSQC spectrum of cyclosenegalin A (2) in CD ₃ OD at 298 K, 600 MHz.	S16
Figure S12. HMBC spectrum of cyclosenegalin A (2) in CD ₃ OD at 298 K, 600 MHz.	S17
Figure S13. HMBC spectrum of cyclosenegalin A (2) in CD ₃ OH at 298 K, 600 MHz.	S18
Figure S14. HRMS spectrum of cyclosenegalin A (2).	S19

Amino	Position		Sclerin (1)						
acid		δ _C	$\delta_{\rm H}$, mult. (<i>J</i> in Hz)	¹ H- ¹ H COSY	HMBC				
Dab	CO	172.8							
	αCH	54.5	4.26, dd (3.1, 10.1)	β	Dab CO, Pro CO				
	βCH ₂	21.9	1.95, m	α, γ	,				
	, -		2.18, m	<i>,</i> ,					
	γCH ₂	49.6	2.70, m	β					
	, -		2.92, m	,					
Ser	CO	171.0							
	αCH	71.5	3.61, m	β	Dab CO, Ser CO				
	βCH ₂	60.4	3.70, m	ά					
Tyr	CO	173.6							
	αCH	52.3	5.08, m	β	Ser CO, Tyr CO				
	βCH ₂	35.1,	2.78, m	α	Tyr δCH, Tyr θCH				
			3.59, m		Tyr δCH, Tyr θCH				
	γC	127.9							
	δCH/θCH	129.3	7.08, d (7.7)	ε/η	Tyr γC, Tyr ζC				
	εCH/ηCH	115.6	6.79, d (7.7)	δ/θ	Tyr γC, Tyr ζC				
	ζC	155.2							
Gly	CO	171.6							
	αCH ₂	43.2,	3.84, d (17.3)		Tyr CO, Gly CO				
			4.15, d (17.3)						
Thr	CO	172.0							
	αCH	55.8	4.82, d (2.3)	β	Gly CO, Thr CO				
	βCH	68.9	4.53, dq (2.3, 6.2)	α, γ					
	γCH ₃	18.8	1.12, d (6.2)	β	Thr CO				
Val	CO	175.1		·					
	αCH	62.9	3.61, m	β	Thr CO, Val CO				
	βCH	28.8	1.95, m	α, γ, γ'					
	γCH ₃	19.4	1.02, d (6.5)	β					
	γ'CH ₃	18.1	0.91, d (6.8)	β					
Ala	CO	175.6		·					
	αCH	51.3	4.13, q (7.4)	β	Val CO, Ala CO				
	βCH ₃	16.5	1.39, d (7.4)	α	Ala CO				
Ile	CO	170.8							
	αCH	55.4	4.28, m	β	Ala CO, Ile CO				
	βCH	35.5	1.99, m	α, γ, ε					
	γCH ₂	23.4	0.94, m	β, δ					
			1.33, m	•					
	δCH ₃	10.5	0.86, t (7.3)	γ					
	εCH ₃	16.8	0.65, d (6.4)	β					
Pro	CO	177.7							
	αCH	63.1	4.48, t (8.8)	β	Ile CO, Pro CO				
	βCH ₂	29.0	1.91, m	α, γ					
			2.34, m	·					
	γCH ₂	24.6	1.97, m	β, δ					
			2.08, m						
	δCH_2	47.4	3.43, m	γ	Pro CHa				
			3.71, m						

Table S1. NMR data for sclerin (1) in CD₃OD.

S5

S7

S9

Figure S7. HRMS spectrum of of sclerin (1).

Amino acid	Position	Cyclosenegalin A (2)						
		δC	δ H, mult (<i>J</i> in Hz)	¹ H- ¹ H COSY	HMBC			
Pro	CO	174.4						
αCH		63.1	4.28, m	βH ₂	Pro CO, Pro δCH ₂			
	βCH ₂	30.5	1.99, m	αH, γH2	Pro CO			
			2.26, m					
	γCH ₂	26.0	2.00, m 2.16 m	βH2, δH2				
	δCH ₂	49.8	3.74, ddd (7.0, 9.7, 10.0) 4.02, ddd (2.9, 7.8, 10.0)	γH ₂				
Gly	СО	171.3						
	aCH2	43.9	3.48, dd (4.0, 17.0) 4.34, dd (8.5, 17.0)	NH	Gly CO			
	NH		8.89, dd (4.0, 8.5)	αH ₂	Pro CO, Gly αCH			
Leu	СО	174.0						
	αCH	54.4	4.74, dd (5.9, 10.4)	βH2, NH	Gly CO, Leu CO			
	βCH ₂	44.9	1.53, m	αΗ, γΗ	Leu CO			
	γCH	25.9	1.61, dt (6.7, 13.3)	βH2, δH3, δ'H3				
	δCH ₃	22.2	0.95, d (6.7)	γH				
	δ'CH ₃	23.3	0.95, d (6.7)	γH				
	NH		8.16, d (10.4)	αH	Gly CO, Leu αCH			
Ser	СО	171.6						
	αCH	55.6	4.70, ddd (1.5, 2.9, 7.2)	βH2, NH	Ser CO			
	βCH ₂	64.7	3.97, dd (1.5, 10.9) 4.29, dd (2.9, 10.9)	αH	Ser CO			
	NH		8.77, d (7.2)	αH	Leu CO, Ser aCH			
Ala CO		175.4						
	αCH	52.9	4.18, q (7.4)	βH₃, NH	Ser CO, Ala CO			
	βCH ₃	17.1	1.46, d (7.4)	αH	Ser CO			
	NH		8.76, m	αH	Ser CO, Ala αCH			
Val	20CO	173.3						
	αCH	60.5	4.34, d (6.5)	βΗ, ΝΗ	Ala CO, Val CO			
	βCH	32.1	2.14, m	αΗ, γΗ3, γ'Η3	Val CO			
	γCH ₃	18.6	0.92, d (6.8)	βH				
	γ'CH ₃	19.8	0.94, d (6.8)	βH				
	NH		7.60 d, (10.2)	αH	Ala CO, Val α CH			
Thr	25CO	170.5						
	αCH	57.9	4.78, dd (9.0, 9.4)	βΗ, ΝΗ	Ala CO, Thr CO			
	βCH	69.2	3.87, dq (6.3, 9.0)	αH, γH ₃	Thr CO			
	γCH ₃	20.6	1.22, d (6.3)	βH				
	NH		7.23, d (9.4)	αH	Val CO, Thr α CH			

Table S2. NMR data for cyclosenegalin A (2) in CD₃OD.

Figure S10. COSY spectrum of cyclosenegalin A (2) in CD₃OD at 298 K, 600 MHz.

Figure S11. HSQC spectrum of cyclosenegalin A (2) in CD₃OD at 298 K, 600 MHz.

Figure S12. HMBC spectrum of cyclosenegalin A (2) in CD₃OD at 298 K, 600 MHz.

Figure S13. HMBC spectrum of cyclosenegalin A (2) in CD₃OH at 298 K, 600 MHz.

100					648	3339							
%						649.3384							
0	610.983	³⁹ 619.4420	626.3476			650.3425	663.4583			68	5.4390) 691.	4194
0		620.0	630.0	640.0	1	650.0	660.0	670.0	68	0.0		690 () m/z
Mini Maxi	mum ։ mum ։	20.00 100.00		5.0	5.0	-1.5 120.0							
Mass		RA	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Form	ula		
648.	3339	100.00	648.3336	0.3	0.5	4.5	8.5	0.8		C30 Na2	H52	N	011
			648.3333	0.6	0.9	8.5	8.8	1.1		C28 Na	H47	N7	09
			648.3349	-1.0	-1.5	9.5	10.1	2.3		C31 Na2	H48	N5	07
			648.3357 648.3360	-1.8 -2.1	~2.8 -3.2	11.5 7.5	10.7 11.5	2.9 3.8		C30 C32 Na	H46 H51	N7 N	09 011
			648.3317 648.3309	2.2 3.0	3.4 4.6	7.5 5.5	12.6 13.0	4.9 5.3		C25 C26	H46 H48	N9 N7	011 09

Figure S14. HRMS spectrum of cyclosenegalin A (2).