Development of a potential gallium-68 labelled radiotracer based on DOTA-curcumin for colon-rectal carcinoma: from synthesis to in vivo studies.

- Giulia Orteca ¹, Federica Pisaneschi ², Sara Rubagotti ³, Tracy W. Liu ², Giacomo Biagiotti ², David Piwnica Worms ², Michele Iori ³, Pier C. Capponi ³, Erika Ferrari ^{1,*} and Mattia Asti ³
- ¹ Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
 ² Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125, Modena, Italy
- 8 ² Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054
 9 Houston, Texas, USA.
- ³ Radiopharmaceutical Chemistry Unit, Oncologic and High Technologies Department, Azienda Unità Sanitaria Locale IRCCS, via Amendola 2, 42122, Reggio Emilia, Italy.
- 12 ⁴ Department of Chemistry "Ugo Schiff", Università di Firenze, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Italy.
- 13
 14 * Correspondence: <u>erika.ferrari@unimore.it</u> Tel.: +39-059-2058631; fax. +39 059 205 8631
- 16 1. List of contents:

15

- 17 Chemical characterization of ligand and complexes
- 18 Quality controls on radioactive preparations
- 19 Figure S1: ESI-LC-MS analysis of DOTA-C21.
- Figure S2: ¹H NMR spectra of DOTA-C21 in D₂O and in MeOD-*d*₄ at 25 °C.
- 21 Figure S3: 13 C NMR spectra of DOTA-C21 in MeOD- d_4 at 25 °C.
- 22 Figure S4: ESI-LC/MS analysis of Ga-DOTA-C21.
- 23 Figure S5: Detailed ESI-LC/MS of one Ga-DOTA-C21 isomer.
- 24 Figure S6: ¹H NMR titration of DOTA-C21 with Ga³⁺.
- Figure S7: Aliphatic region of ¹H, ¹H COSY NMR spectrum of Ga-DOTA-C21 in MeOD-*d*⁴ at 25 °C ([DOTA-C21] = 0.63 mM).
- 27 Figure S8: LC/MS fragmentation experiments on curcumin.
- Figure S9: UV–vis absorption spectra of the system Ga³⁺/DOTA-C21.
- Figure S10: Fluorescence emission spectra of the system Ga³⁺/DOTA-C21.
- Figure S11: TLC analyses of ⁶⁸Ga-DOTA-C21 prepared by using the post processing method.
- Figure S12: Average biodistribution of ⁶⁸Ga-DOTA-C21 extracted from micro-PET data at various time
 points post *i.p.* and *i.v.* injection. Correlation between T/M ratio and tumour size.
- **33** Figure S13: In *vivo* stability of ⁶⁸Ga-DOTA-C21 in murine blood samples.

34

35 2. Chemical characterization of ligand and complexes

- 36 All chemicals were reagent grade and used without further purification unless otherwise specified.
- 37

38 2.1. ESI-LC-MS analyses

39 Liquid chromatography/mass spectrometry (LC/MS) was performed on Agilent 6300 Ion Trap LC/MS System 40 equipped with an electrospray ionisation (ESI) interface. The compounds were separated using Agilent Zorbax 41 SB C18 30x2.1mm, 3.5μ m; the blanks were MilliQ water. Eluent phase: A = H₂O (formic acid 0.1%), pump B = 42 CH₃CN (formic acid 0.1%), gradient: 10–100% of B in 5 min, 0.3 mL/min. Mass spectra were recorded in 43 alternate modality, using a scan range between 100 and 1500 m/z. High-purity nitrogen was used as nebuliser 44 and drying gas. The nitrogen drying gas was kept at a constant flow rate of 10 L/min and heated to 350 °C. 45 The nebuliser gas pressure was 32 psi and the capillary voltage was 3.5 kV. MS spectra of the ligand 46 (concentration of 11 ppm, m/z = 798.4 [M+H]⁺) and gallium metal complex (concentration of 12 ppm, M:L 1:1, $m/z = 864.3 [M^{-69}Ga+H]^+, 866.3 [M^{-71}Ga+H]^+)$ were recorded. 47

48

49 2.2. NMR Spectroscopy

- 50 NMR spectra were recorded by means of FT-NMR AVANCE III HD 600 MHz spectrometer (Bruker Biospin)
- 51 equipped with a CryoProbe BBO H&F 5mm. Nominal frequencies were 150.90 MHz for ¹³C, and 600.13 MHz
- 52 for ¹H. NMR sample was prepared dissolving 0.3 mg of free ligand in 0.6 mL of D₂O or MeOD-d4. Synthesis
- of Ga-DOTA-C21 complexes were obtained *in situ*, by adding to a 0.3 mg DOTA-C21 solution (0.6 mL) the
- 54 proper amount of Ga(NO₃)₃·9H₂O solution to reach a 1:1 metal to ligand molar ratio. Spectra were registered
- at room temperature after few minutes from addition.
- 56

57 2.3. *Fragmentation experiments*

58 The experiments were performed on the same Liquid chromatography/mass spectrometry (LC/MS) 59 instrument described here before. The LC measurements were performed using Agilent Zorbax SB C18 60 30x2.1mm, 3.5µm. The Eluent phases were H₂O (0.1% formic acid) and CH₃CN (0.1% formic acid), the gradient 61 used was 10-100% of CH₃CN (0.1% formic acid) in 6 minutes with a flow of 0.3 mL/min. Mass spectra were 62 obtained with a soft ionization method, recording in alternate modality, and using a scan range between 100 63 and 1500 m/z. High-purity nitrogen was used as nebulizer and drying gas. Drying gas was at a constant flow 64 rate of 10 L/min, heated to 150 °C. Nebulizer gas pressure was 32 psi and the capillary voltage was 1.5 kV. The 65 fragmentation experiments were carried out still with soft ionization procedure but in positive modality, 66 selecting the target mass to fragment in ionic trap until MS/MS³ spectra. Sample of cold complex was prepared 67 from a solution of 1000 ppm in 0.4 M Ammonium Acetate buffer (pH 4.4) and diluted in order to inject 5 µL 68 of 50 ppm complex solution. To validate the Ga-DOTA-C21 complex fragmentation, curcumin fragmentation 69 experiment was performed in same conditions, preparing the starting solution of 1000 ppm in methanol, then 70 diluting the solution in the same buffer to 50 ppm.

71

72 2.4. UV-visible experiments

UV-visible absorption measurements were performed using a Varian Cary 100 spectrophotometer in the
 range 200-600 nm. All measurements were performed at 25 °C. The titration was performed using 25 mL of
 3·10⁻⁶ M ligand solution in PBS buffer (pH 7.14), increasing amount of 1.25·10⁻³ M Ga(NO₃)₃·9H₂O solution were
 added up to the 1:1 molar ratio (from 5 µL to 60 µL). In these conditions volume variation was negligible.
 Spectra were acquired few minutes after each addition.

- 78
- 79 2.5. Fluorescence experiments

80 Fluorescence experiments were carried out on a Spex Jobin-Yvon Fluoromax-3 spectrofluorometer. Emission

81 spectra were obtained using as excitation λ 410 nm and recorded between 750 nm and 425 nm. All

- 82 measurements were performed at 25 °C. Titration was performed using the same procedure described for UV-
- 83 visible studies.84

85 3. Quality controls on radioactive preparations

86 Assessment of the completion of the radiolabeling reaction were performed by UHPLC (Waters, Milan, Italy)

- equipped with a Berthold radio-detector and an TUV Acquity UV-detector, and by Radio-TLC analysis (Elysia,
 Liege, Belgium). UHPLC were carried out on a BEH C-18 1.7 m 21x150 mm column at a flow rate of 0.35
- 89 mL/min using A: CH₃CN and B: 0.1% vol/vol TFA water solution as mobile phase with the following gradient:
- 90 0-1 min 10 % A, 1-8 min 10-95 % A. The wavelength of the UV detector was set to 254 nm and the column
- 91 temperature was fixed to 30 °C. In order to identify the chromatographic peaks during the analysis, free ⁶⁸Ga³⁺
- 92 and ⁶⁸Ga-hydrolyzed products were prepared as reference standard. TLC analyses were performed by using
- **93** two system: i) RP-TLC plates were developed in 0.1 M citrate buffer (pH 4) ii) ITLC-SG plates were developed
- 94 in ammonium acetate 1M / MeOH 1:1 v/v solution, using a flatbed-imaging scanner.
- 95

96

Figure S1. ESI-LC/MS analysis of DOTA-C21. HPLC chromatogram on UV 254 nm detector (A) HPLC chromatogram on
 MSD1 detector (B). MS spectrum of the 2.885 minute region (C). MS spectrum of the 3.412 minute (D).

Figure S2. ¹H NMR spectra of DOTA-C21 in D₂O at 25 °C obtained by three different pulse sequences according to Bruker
 library: water-suppression using pre-saturation pulses (*zgcppr*), selection of sharp signals by application of Carr-Purcell-

103 Meiboom-Gill (CPMG) pulse program (*cpmg1d*) and basic 90° pulse sequence (*zg*), (A). ¹H NMR spectrum of DOTA-C21

104 in MeOD- d_4 at 25 °C obtained by *zgcppr* pulse sequence (* = residual solvent peak) (B).

Figure S3. ¹³C NMR spectrum of DOTA-C21 in MeOD-*d*₄ at 25 °C (* residual solvent peak). Red ellipsis highlights the
 non-equivalence of enol- and keto- ¹³C chemical shift.

- . . .

114 Figure S4. ESI-LC/MS analysis of Ga-DOTA-C21. HPLC chromatogram on UV 254 nm detector (A) HPLC chromatogram

115 on MSD1 detector (**B**). MS spectrum of the 2.808 minute region (**C**). MS spectrum of the 3.297 minute (**D**). Gallium isotopic

- pattern is magnified in the square

Figure S5. Detailed ESI-LC/MS spectrum of one of the two Ga-DOTA-C21 isomers with gallium isotopic pattern magnifiedin dashed square.

131Figure S6. 1 H NMR titration of DOTA-C21 with Ga³⁺ solution, from bottom to top: free chelator and incrementing addition132of Ga³⁺ solution, up to 1:1 metal-to-ligand molar ratio (top). All the spectra were acquired in MeOD- d_4 at 25 °C ([DOTA-133C21] = 0.63 mM).

Figure S7. Aliphatic region of ¹H, ¹H COSY NMR spectrum of Ga-DOTA-C21 in MeOD-*d*⁴ at 25 °C ([DOTA-C21] = 0.63 mM).

143 Figure S8. LC/MS fragmentation experiments on curcumin. HPLC-MS chromatogram (A) Fragmentation pathway of the

 $m/z = 369.5 [M+H^+]$ ion, corresponding to the peak at retention time 6.6 minutes (**B**). Molecular fragments attributed to the 145 $m/z = 369.5 [M+H]^+$ pattern (**C**).

148 Fig. S9 UV-vis spectra of DOTA-C21 in PBS solution (pH 7.4) upon increasing addition of Ga³⁺: from free ligand (black

- spectrum) up to metal to ligand 1:1 molar ratio (dark-blue spectrum) ([DOTA-C21] = 3μ M). Black arrow highlights the
- $\label{eq:change} 150 \qquad \text{change in the spectrum at increasing Ga}^{3+} \text{ concentration.}$

Figure S10. Fluorescence emission spectra of the system Ga³⁺/DOTA-C21 from free ligand (black spectrum) up to metal to ligand 1:1 molar ratio (dark green spectrum) (λ_{ex} 410 nm, [DOTA-C21]=3 μ M).

Figure S11. Representative radio-TLC analyses of Ga-DOTA-C21 prepared by using the post processing method after 15
 minutes of heating at 95 °C. RP-TLC plates scan developed in 0.1 M citrate buffer (pH 4) (A) and ITLC-SG scan developed
 in ammonium acetate 1M / MeOH 1:1 v/v solution (B).

Figure S12. Average biodistribution of ⁶⁸Ga-DOTA-C21 extracted from micro-PET data at 1h (A) and 2h (B) post *i.p.*injection (n = 5, mean ± SD). Average biodistribution of ⁶⁸Ga-DOTA-C21 extracted from micro-PET data at 1h post *i.v.*injection (n = 3, mean ± SD (C). Variation of the T/M ratio with time for each individual mouse (D). Correlation between
T/M ratio and tumour size (mm³) (E).

172 Figure S13. In *vivo* stability of ⁶⁸Ga-DOTA-C21 in blood samples at the injection time (A) and 90 minutes *post* injection (B).