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Abstract: Natural and synthetic small molecules from the NCI Developmental Therapeutics Program
(DTP) were employed in molecular dynamics-based docking with DNA repair proteins whose
RNA-Seq based expression was associated with overall cancer survival (OS) after adjustment for the
PCNA metagene. The compounds employed were required to elicit a sensitive response (vs. resistance)
in more than half of the cell lines tested for each cancer. Methodological approaches included
peptide sequence alignments and homology modeling for 3D protein structure determination, ligand
preparation, docking, toxicity and ADME prediction. Docking was performed for unique lists of
DNA repair proteins which predict OS for AML, cancers of the breast, lung, colon, and ovaries, GBM,
melanoma, and renal papillary cancer. Results indicate hundreds of drug-like and lead-like ligands
with best-pose binding energies less than −6 kcal/mol. Ligand solubility for the top 20 drug-like hits
approached lower bounds, while lipophilicity was acceptable. Most ligands were also blood-brain
barrier permeable with high intestinal absorption rates. While the majority of ligands lacked positive
prediction for HERG channel blockage and Ames carcinogenicity, there was a considerable variation
for predicted fathead minnow, honey bee, and Tetrahymena pyriformis toxicity. The computational
results suggest the potential for new targets and mechanisms of repair inhibition and can be directly
employed for in vitro and in vivo confirmatory laboratory experiments to identify new targets of
therapy for cancer survival.

Keywords: small molecule; ligand; receptor; docking; molecular dynamics; DNA repair; inhibition;
PCNA; ADME; toxicology

1. Introduction

One of the hallmarks of cancer is cellular growth dysregulation caused by mutations as a result
of genomic instability [1,2]. Such mutations play an important role in oncogenic transformation
and can be catastrophic during mitosis, or lead to chromothripsis [3,4]. The continuously forced cell
division in tumor cells also results in replication stress and increased oxidative damage, which requires
several DNA repair components [5,6]. When DNA repair deficiencies occur as a result of oncogenic
loss or genetic polymorphisms, alternative DNA repair pathways must be found if replication is to
continue [7]. Cancer’s addiction to alternative DNA repair pathways can therefore be targeted to
prevent the repair and restart of stressed replication forks [8–10].

Genetic stability relies on DNA repair, which is a complex process that depends on several
molecular pathways to correct damage to DNA. DNA damage ranges from minor mismatched bases
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and methylation events to oxidized bases, intra- and interstrand DNA crosslinks, protein-DNA
adducts, double strand breaks (DSBs), and stalled forks. DNA repair pathways include mismatch
repair, base excision repair, nucleotide excision repair, and the homology directed repair/Fanconi
anemia pathway. Earlier forms of chemotherapy and radiation therapy focused on damaging DNA to
promote excessive lethal mutations and cellular death; however, it has been demonstrated that cancer
cells can repair therapy-induced DNA damage [11,12]. This has led to the concept of synthetic lethality
and DNA repair inhibition, in which specific DNA repair pathways and their proteins are targeted for
increasing sensitivity to traditional therapeutics [13,14].

DNA repair inhibitors have been introduced to augment molecular-based therapies for oncogene
addiction and synthetic lethality [11,12,14]. DNA repair inhibitors for oncotherapy fall into several
classes, which include poly (ADP) ribose polymerase (PARP) inhibitors, nucleotide excision repair
(NER) inhibitors, DNA-PK inhibitors, MRN, ATM, ATR, CHK1/2 inhibitors, RAD51 inhibitors,
and base excision repair (BER) inhibitors. PARP inhibitors have demonstrated great promise in
the treatment of patients with deficiencies in homologous recombination (HR) DNA repairs, such as
those with loss of BRCA1 or BRCA2 function [11,15–20]. Nucleotide excision repair inhibitors target
more than thirty protein-protein interactions and removes DNA adducts caused by platinum-based
chemotherapy [21–25]. DNA-PK inhibitors [26–30] target DNA-dependent protein kinase (DNA-PK)
enzymes, which play a role in the detection and repair of DSB via the non-homologous end-joining
pathway. MRN, ATM, ATR, CHEK1/2 inhibitors [31,32] target the kinases MRN, ATM, ATR, CHK1,
and CHK2, and RAD51 [33–36] inhibitors target RAD51, a key protein of homologous recombination
to repair DSB and inter-strand cross-links. BER inhibitors [37,38] target BER proteins, which can
protect a cell after endogenous or exogenous genotoxic stress, since a deficiency in BER can result in
stress-induced apoptosis, necrotic cell death, mutagenesis, and chromosomal rearrangements.

In a recent investigation of TCGA RNA-Seq data and DNA repair genes, we identified sets of
DNA repair genes for various cancers (Table 1) whose down-regulated expression patterns were
associated with prolonged overall survival (OS) [39]. Prior to gene identification, DNA repair gene
expression was adjusted for age at diagnosis, stage, and expression of the PCNA metagene [40].
Statistical randomization tests were also employed in which sets of DNA repair genes were randomly
sampled for generating empirical, distribution-free, p-values. Using the list of DNA repair genes whose
down-regulation was associated with longer OS, we hypothesized that compounds which strongly
bind to these repair proteins could potentially establish new leads for novel DNA repair inhibitors.
Additional insight could be gained from our use of the PCNA metagene to adjust expression of DNA
repair genes prior to survival prediction, since this has heretofore eluded systematic investigation.
Therefore, it warrants noting that the DNA repair genes in Table 1 would not have been identified
without PCNA adjustment, and it is for this reason we believe this new perspective could very well
define new targets for cancer therapy.

Table 1. DNA Repair proteins employed in ligand-receptor docking [39].

Cancer DNA Repair Proteins Whose Downregulation is Associated with Prolonged OS

AML RAD23A, EME2, APEX2

Breast ATRIP, FANCC, RAD1, RFC3, NEIL3, EXO1, FANCB, FANCD2, FANCI, RAD51,
XRCC4

Colon RAD23A, RFC2, POLL, MLH3, FANCL

GBM XRCC5, NBN, DDB1, GTF2H2, ERCC4, ALKBH2, APEX1, PRKDC, PMS1, REV1

Renal papillary BLM, RAD1, FEN1, LIG1, EXO1, MSH6, BRCA2, EME1, FANCB, LIG4

Lung BRCA1, NBN, RAD1, NEIL3, MMS19, FANCI, XRCC1, XRCC5

Melanoma MDC1, NBN, MUTYH, POLE, UNG, FANCE, FANCI, POLI, POLK

Ovarian PARP2, GTF2H4, SMUG1, DCLRE1B, GPS1, FANCL, APEX2, PMS1, XRCC6, MSH6,
UNG, RAD51, RAD23A, EXO1, MUS81
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The purpose of this investigation was to perform in silico structural drug discovery hinged to
molecular dynamics (MD) to identify which compounds from the US National Cancer Institute’s
(NCI) Developmental Therapeutics Program (DTP) repository tightly bind to DNA proteins identified.
The DTP compounds used for ligand-receptor docking analysis will be filtered from the entire list
of DTP-tested compounds, for compounds that are associated with cell line sensitivity rather than
resistance. Computational toxicology and absorption, distribution, metabolism, and excretion (ADME)
will also be employed to address potential safety concerns on a preliminary basis. This initial
investigation can be followed by future in vitro and in vivo experiments, such as qPCR and
mouse/patient-derived xenografts, to establish supportive lines of evidence for efficacy.

2. Results

Table 2 lists the docked ligands, and the resulting number of drug-like and lead-like hits. For AML,
among 3835 docked ligands, 1181 were drug-like and 173 were lead-like. For breast cancer, there were
684 ligands docked, for which 237 were drug-like and 47 were lead-like. GBM, on the other hand
involved 343 docked ligands, for which 238 were drug-like and 38 were lead-like. Colon cancer
ligand-receptor docking included 1123 ligands, with 751 being drug-like and 106 taking on lead-like
properties. Lung cancer had the least number of docked ligands, with 31 identified having drug-activity,
20 that were drug-like, and 7 which were lead-like. Melanoma involved 291 docked ligands, with 224
revealing drug-like properties and 52 yielding lead-like properties. There were 105 docked ligands
for ovarian cancer, with 75 drug-like and 8 lead-like. Finally, for renal papillary cancer there were 161
ligands docked, with 103 being drug-like, and 24 being lead-like.

Table 2. Number of docked ligands, and drug-like or lead-like ligands identified.

Cancer Docked Binding Energy
(kcal/mol) < −6 Drug-Like Lead-Like

AML 3835 1533 1181 173
Breast 684 336 237 47
GBM 343 334 238 38
Colon 1123 1049 751 106
Lung 31 30 20 7

Melanoma 291 276 224 52
Ovarian 105 102 75 8

Renal papillary 161 149 103 24
Total 3669 3392

For the cancers investigated, we were able to identify many energy-minimized compounds
which were strongly bound to energy-minimized receptors. Altogether, our results indicate that
many compounds were strongly bound to multiple receptors, and passed criteria for being
drug-like, with fewer compounds portraying lead-like properties. The mean binding energy for
ligand-receptor docking of each of the cancers considered was −7.42(1.22) for GBM, −7.19(1.2)
for ovarian, −6.94(0.78) for lung, −6.93(1.25) for renal, −6.91(1.05) for melanoma, −6.88(1.04) for
breast, −6.82(1.06) for colon, and −6.6(1.27) for AML. The top 10 most strongly bound receptors
were PARP2(−8.88), REV1(−8.38), DDB1(−8.35), MUS81(−8.22), ALKB2(−8.01), XRCC5(−7.62),
RFC3(−7.62), MUTYH(−7.5), POLI(−7.47), and FANCD2(−7.47), which revealed the importance
of these receptors as potential druggable targets for therapy. Figure 1 shows the cancer-specific BE
distribution for all possible ligand-receptor pairs. The large proportion of significant docking poses
with BE<−6 kcal/mol are readily visible.
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Figure 1. Distribution of the docking binding energy, BE (kcal/mol), from the best pose for all possible 
combinations of ligand-receptor pairs for each cancer. BE values <−6 kcal/mol are considered 
significant. 

Figures 2–5 illustrate the 2D molecular structure for the top drug-like 20 ligands for AML, breast, 
lung, and colon cancer. Supplemental Figures S1–S4 contain 2D structure plots of the top 20 drug-
like hits for GBM, melanoma, ovarian, and renal papillary cancer. Scaffold analysis for the drug-like 
and lead-like ligands followed by cluster analysis is now being pursued to determine if there are 
unique clusters of compounds. 

Figure 1. Distribution of the docking binding energy, BE (kcal/mol), from the best pose for
all possible combinations of ligand-receptor pairs for each cancer. BE values <−6 kcal/mol are
considered significant.

Figures 2–5 illustrate the 2D molecular structure for the top drug-like 20 ligands for AML, breast,
lung, and colon cancer. Supplemental Figures S1–S4 contain 2D structure plots of the top 20 drug-like
hits for GBM, melanoma, ovarian, and renal papillary cancer. Scaffold analysis for the drug-like and
lead-like ligands followed by cluster analysis is now being pursued to determine if there are unique
clusters of compounds.
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Figure 2. 2D structures of top 20 drug-like ligands for AML. Listed are NSC-408383, NSC-676443, 
NSC-627757, NSC-749518, NSC-641596, NSC-116535, NSC-722325, NSC-666597, NSC-105132, NSC-
673181, NSC-609964, NSC-168470, NSC-267461, NSC-743508, NSC-695267, NSC-707801, NSC-718154, 
NSC-59937, NSC-684700, and NSC-656591. 

Figure 2. 2D structures of top 20 drug-like ligands for AML. Listed are NSC-408383, NSC-676443,
NSC-627757, NSC-749518, NSC-641596, NSC-116535, NSC-722325, NSC-666597, NSC-105132,
NSC-673181, NSC-609964, NSC-168470, NSC-267461, NSC-743508, NSC-695267, NSC-707801,
NSC-718154, NSC-59937, NSC-684700, and NSC-656591.

Determination of the absorption, distribution, metabolism, excretion (ADME) and toxicity and
of new and existing drugs is necessary to identify the harmful effects of humans, animals, plants,
and their environment. Historically, in vivo animal models have been applied for ADME and toxicity
testing; however, these are constrained by time, ethical considerations, and financial burden. As an
alternative, in silico computational methods can be used to simulate, analyze, and visualize predictions
for ADME and toxicity. In silico ADME and toxicology predictions can complement drug design to
prioritize chemicals, guide toxicity tests, and minimize late-stage failure of new drugs. Computational
prediction can also potentially minimize the need for animal testing, reduce costs and time for toxicity
testing, and improve toxicity and safety assessment. Early-stage identification of hazardous new
compounds can also improve the cost-benefits of novel drug synthesis.
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Figure 3. 2D structures of top 20 drug-like ligands for breast cancer. Listed are NSC-749518, NSC-
657704, NSC-716825, NSC-669736, NSC-726904, NSC-362664, NSC-668836, NSC-649750, NSC-684322, 
NSC-50648, NSC-766871, NSC-382584, NSC-98710, NSC-110383, NSC-684969, NSC-673841, NSC-
657996, NSC-652182, NSC-699471, and NSC-694620. 

Figure 3. 2D structures of top 20 drug-like ligands for breast cancer. Listed are NSC-749518,
NSC-657704, NSC-716825, NSC-669736, NSC-726904, NSC-362664, NSC-668836, NSC-649750,
NSC-684322, NSC-50648, NSC-766871, NSC-382584, NSC-98710, NSC-110383, NSC-684969,
NSC-673841, NSC-657996, NSC-652182, NSC-699471, and NSC-694620.

There are additional toxicology concerns for the P450 gene superfamily of proteins, which is
involved in the metabolism of approximately 90% of approved drugs and clearance of xenobiotics.
Drug safety and toxicity are directly hinged to CYP enzyme inhibition, because if a compound is a
strong inhibitor of a CYP enzyme, it can result in reduced metabolism of drugs that are a substrate
of the CYP enzyme, potentially leading to toxic serum plasma levels. Therefore, it is imperative to
develop in silico prediction models of CYP inhibition for new compounds to project safety and toxicity.
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Figure 4. 2D structures of top 20 drug-like ligands for lung cancer. Listed are NSC-720447, NSC-
107129, NSC-351710, NSC-719502, NSC-117917, NSC-703104, NSC-669455, NSC-695333, NSC-732287, 
NSC-91397, NSC-680553, NSC-715722, NSC-653384, NSC-627505, NSC-20527, NSC-4290, NSC-
706989, NSC-648273, NSC-709923, and NSC-717889. 

Figure 4. 2D structures of top 20 drug-like ligands for lung cancer. Listed are NSC-720447, NSC-107129,
NSC-351710, NSC-719502, NSC-117917, NSC-703104, NSC-669455, NSC-695333, NSC-732287,
NSC-91397, NSC-680553, NSC-715722, NSC-653384, NSC-627505, NSC-20527, NSC-4290, NSC-706989,
NSC-648273, NSC-709923, and NSC-717889.

Tables 3–6 list the physio-chemical properties and computational ADME and toxicity predictions
for the top 20 drug-like ligands, shown in Figures 2–5. (Tables S1–S4 in Supplemental Information
list these same parameters for GBM, melanoma, ovarian, and renal papillary cancers). As one
can notice, lipophilicity values (LogP) fell within the acceptable range. Compounds which are too
lipophilic (LogP > 5) are often associated with greater metabolic clearance, metabolite-related toxicity,
lower solubility, less oral absorption, and affinity for hydrophobic targets instead of the desired
target, which increases promiscuity-related off-target toxicity. Low lipophilicity can also increase renal
clearance, and negatively impact permeability and decrease potency, resulting in lower efficacy. Most of
the ligands reported also had solubilities (LogS) near lower bound of −4 for the majority of approved
drugs; compounds with Log S< −6 are classified as being poorly soluble. Poorly soluble compounds
tend to have poor absorption, low stability, and fast clearance [41]. Less soluble compounds are also
more difficult to handle and formulate, and parenteral delivery requires greater levels of solubility [42].
Most of the top 20 drug-like ligands appeared to be BBB permeable and readily absorbed in the
intestine (i.e., HIA) as indicated by high prediction probabilities. While HERG channel blockage and
the Ames carcinogenicity tests did not seem to be of too much concern, there were several ligands
which resulted in high probabilities for FHM, HBT, and TPT toxicity. However, during the stages of
discovery, it is customary to sacrifice false positives (lower specificity) in toxicity, while prioritizing
greater sensitivity for efficacy, due to the greater uncertainty in adverse events during clinical studies.
There also appeared to be wide variation in the predicted inhibition of cytochrome P-450 (CYP)
enzymes, which may or may not turn out to be a metabolic or safety concern. Our future in vitro
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and in vivo experiments will require additional filtering within the lists of drug-like and lead-like
candidates (results not shown). In addition, further toxicity and ADME predictions will be pursued to
refine these estimates.Molecules 2019, 24, x FOR PEER REVIEW 8 of 23 
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Figure 5. 2D structures of top 20 drug-like ligands for colon cancer. Listed are NSC-771557, NSC-768051,
NSC-754670, NSC-722316, NSC-684405, NSC-676188, NSC-754664, NSC-753802, NSC-382053,
NSC-754567, NSC-665497, NSC-754666, NSC-656158, NSC-753211, NSC-765699, NSC-768313,
NSC-778318, NSC-703110, NSC-656155, and NSC-774959.
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Table 3. AML: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are probabilities in the
range [0, 1] *.
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sensitivity, and aquatic toxicity from SMARTS hits not listed. 

  

Name MW LogP LogS TPSA Rotb HBD HBA BBB HIA HERG AMES FHM HBT TPT CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

408383 372.3 3.87 -4.67 66.48 4 1 3 0.99 0.98 0.16 0.16 1 0.24 0.98 0.68 0.67 0.66 0.27 0.42

676443 369.38 -0.69 -5.12 112.58 4 3 5 0.99 0.94 0.61 0.61 0.03 0.84 0 0.75 0.22 0.29 0.14 0.33

627757 370.49 2.29 -3.95 38.33 2 1 2 1 0.62 0.01 0.01 0 0.8 0 0.14 0.13 0.27 0.16 0.37

749518 304.35 0.37 -3.84 69.11 4 2 2 0.94 0.99 0.01 0.01 0.35 0.93 0.88 0.87 0.38 0.63 0.06 0.4

641596 314.72 1.33 -4.35 57.53 3 2 5 1 1 0.01 0.01 1 0 0.95 0.4 0.56 0.6 0.03 0.24

116535 327.21 4.79 -5.89 53.49 2 2 2 1 0.98 0.95 0.95 0.41 0.02 0.96 0.76 0.42 0.55 0.12 0.24

722325 374.35 1.96 -5.23 133.11 5 1 4 0.95 0.98 0.1 0.1 0.03 0.14 0.88 0.85 0.19 0.4 0.08 0.31

666597 296.27 2.73 -3.34 97.99 2 4 5 0.89 0.98 0.04 0.04 0.99 0.7 0.87 0.55 0.13 0.36 0.08 0.18

105132 332.35 3.43 -5.2 43.37 1 0 3 0.93 0.99 0.35 0.35 0.36 0.99 0.95 0.83 0.57 0.62 0.28 0.53

673181 290.32 1.59 -5.19 48.78 3 2 4 0.97 0.98 0.09 0.09 0.08 0.22 0.88 0.91 0.2 0.44 0.55 0.28

609964 275.34 4.47 -5.48 29.1 2 1 2 1 0.98 0.13 0.13 0.79 0.93 0.98 0.49 0.22 0.42 0.36 0.25

168470 308.29 2.46 -4.86 112.48 4 2 3 0.73 0.98 0.59 0.59 0.34 0.29 0.89 0.96 0.35 0.49 0.09 0.32

267461 302.28 2.43 -2.04 100.9 2 2 6 0.69 0.96 0.01 0.01 1 0.98 0.94 0.18 0.3 0.4 0.04 0.41

743508 378.4 1.54 -5.51 64.63 6 1 5 0.81 0.9 0.01 0.01 0.92 0.81 0.95 0.93 0.79 0.75 0.07 0.8

695267 350.4 -2.92 -4.37 129.38 2 4 4 1 0.95 0.36 0.36 0.98 0.49 0.93 0.76 0.14 0.5 0.3 0.46

707801 303.33 3.3 -2.68 50.72 1 2 4 1 0.82 0.55 0.55 0.77 0.97 0.94 0.05 0.43 0.2 0.53 0.75

718154 330.34 3.74 -4.53 69.89 3 2 4 0.96 0.96 0.07 0.07 0.9 0.37 0.88 0.86 0.3 0.45 0.1 0.24

59937 262.3 4.73 -5.89 26.3 3 0 2 1 0.98 0.09 0.09 0.8 0.7 0.98 0.77 0.18 0.37 0.26 0.23

684700 360.29 0.13 -4.94 40.13 5 0 3 0.95 0.99 0.57 0.57 0.73 0.15 0.96 0.62 0.24 0.65 0.09 0.75

656591 315.32 4.39 -5.67 47.56 0 1 3 0.83 1 0.09 0.09 0.01 0.77 0.87 0.61 0.34 0.78 0.23 0.61

* Listed are NSC-408383, NSC-676443, NSC-627757, NSC-749518, NSC-641596, NSC-116535, NSC-722325, NSC-666597, NSC-105132, NSC-673181, NSC-609964, NSC-168470, NSC-267461,
NSC-743508, NSC-695267, NSC-707801, NSC-718154, NSC-59937, NSC-684700, and NSC-656591. Receptor binding energies, promiscuity, genotoxicity, skin sensitivity, and aquatic toxicity
from SMARTS hits not listed.
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Table 4. Breast cancer: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are probabilities
in the range [0, 1] *.

Molecules 2019, 24, x FOR PEER REVIEW 11 of 23 

 

Table 4. Breast cancer: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are probabilities in 

the range [0,1]*. 

 

*Listed are NSC-749518, NSC-657704, NSC-716825, NSC-669736, NSC-726904, NSC-362664, NSC-668836, NSC-649750, NSC-684322, NSC-50648, NSC-766871, NSC-382584, 

NSC-98710, NSC-110383, NSC-684969, NSC-673841, NSC-657996, NSC-652182, NSC-699471, and NSC-694620. Receptor binding energies, promiscuity, genotoxicity, skin 

sensitivity, and aquatic toxicity from SMARTS hits not listed. 

  

Name MW LogP LogS TPSA Rotb HBD HBA BBB HIA HERG AMES FHM HBT TPT CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

749518 304.35 0.37 -3.84 69.11 4 2 2 0.94 0.99 0.01 0.01 0.35 0.93 0.88 0.87 0.38 0.63 0.06 0.4
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716825 368.48 -0.59 -5.17 29.1 2 1 3 0.96 1 0.07 0.07 0.01 0.03 0.96 0.66 0.8 0.83 0.09 0.79
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362664 251.28 2.62 -4.42 44.7 2 1 2 1 0.98 0.68 0.68 0.41 0.02 0.96 0.76 0.31 0.5 0.12 0.24

668836 390.52 4.05 -4.62 37.38 1 1 2 0.94 0.99 0.08 0.08 0 0.16 0.98 0.3 0.39 0.53 0.29 0.46

649750 334.33 -0.28 -5.7 41.46 3 1 4 0.95 0.27 0.4 0.4 1 0.59 0.95 0.95 0.36 0.94 0.23 0.24

684322 206.24 4.31 -4.95 47.7 0 2 2 1 0.97 0.04 0.04 1 0.7 0.94 0.61 0.09 0.21 0.18 0.09

50648 308.29 3.53 -5.09 117.19 4 2 2 0.97 0.93 0.03 0.03 0.78 0.11 0.95 0.82 0.34 0.43 0.2 0.44

766871 332.32 -3.09 -4.41 49.33 4 2 6 0.26 1 0.05 0.05 0 0.05 0.88 0.68 0.42 0.48 0.07 0.49

382584 299.3 3.71 -4.65 134.62 3 1 2 1 0.99 0.09 0.09 0 0.31 0.96 0.9 0.5 0.71 0.03 0.23

98710 290.32 0.72 -5.19 76.76 3 2 4 1 0.99 0.03 0.03 0.88 0.22 0.89 0.96 0.21 0.38 0.1 0.27

110383 244.31 3.26 -5.9 0 0 0 0 1 0.98 0.08 0.08 0.31 0.36 0.95 0.82 0.1 0.41 0.28 0.21

684969 303.31 1.95 -5.14 50.09 3 1 4 0.06 0.9 0.14 0.14 0.37 0.25 0.96 0.83 0.19 0.5 0.21 0.52

673841 387.2 -3.42 -3.41 102.78 2 4 5 0.99 1 0.07 0.07 0.01 0.7 0.97 0.65 0.46 0.33 0.04 0.1

657996 396.42 0.58 -3.33 138.94 3 5 6 1 0.55 0.48 0.48 1 0.22 0.95 0.42 0.85 0.86 0.18 0.83

652182 396.39 3.39 -3.94 97.66 6 1 7 0.78 0.96 0.03 0.03 1 0.66 0.98 0.28 0.46 0.41 0.07 0.6

699471 343.17 3.4 -5.51 49.33 0 3 2 0.94 1 0.43 0.43 0 0.01 0.98 0.89 0.64 0.85 0.52 0.56

694620 365.36 1.1 -5.33 94.16 4 0 2 0.86 0.94 0.04 0.04 0.6 0.05 1 0.8 0.37 0.58 0.03 0.51

* Listed are NSC-749518, NSC-657704, NSC-716825, NSC-669736, NSC-726904, NSC-362664, NSC-668836, NSC-649750, NSC-684322, NSC-50648, NSC-766871, NSC-382584, NSC-98710,
NSC-110383, NSC-684969, NSC-673841, NSC-657996, NSC-652182, NSC-699471, and NSC-694620. Receptor binding energies, promiscuity, genotoxicity, skin sensitivity, and aquatic toxicity
from SMARTS hits not listed.
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Table 5. Lung cancer: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are probabilities
in the range [0, 1] *.
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Name MW LogP LogS TPSA Rotb HBD HBA BBB HIA HERG AMES FHM HBT TPT CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

720447 278.31 2.32 -5.3 34.14 2 2 2 0.99 0.94 0.01 0.01 1 0.99 0.98 0.85 0.53 0.36 0.02 0.25

107129 358.51 4.7 -2.77 46.53 1 1 2 0.99 0.94 0.02 0.02 1 0.97 0.69 0.05 0.02 0.12 0.02 0.04

351710 261.34 2.56 -5.83 0 0 1 0 1 0.98 0.6 0.6 0.18 0.27 0.95 0.77 0.16 0.45 0.48 0.21

719502 249.27 1.22 -4.63 17.07 0 1 2 0.83 0.98 0.28 0.28 0.96 0.27 1 0.61 0.18 0.2 0.08 0.18

117917 296.28 3.33 -4.99 121.35 3 2 2 1 0.98 0.51 0.51 0.76 0.02 0.95 0.88 0.34 0.46 0.04 0.34

703104 252.27 -1.7 -4.47 24.39 3 2 4 1 0.69 0.04 0.04 0.99 0.21 0 0.85 0.16 0.45 0.35 0.14

669455 298.21 -5.19 -2.71 90.92 2 0 4 0.99 0.38 0.04 0.04 1 0.35 0.92 0.65 0.15 0.27 0.05 0.21

695333 399.9 3.17 -5.01 85.58 6 2 2 0.16 0.78 0.3 0.3 0 0.05 0 0.41 0.67 0.84 0.05 0.7

732287 329.7 2.53 -5.06 55.12 4 2 2 1 0.98 0.14 0.14 0 0.71 0.88 0.82 0.45 0.68 0.08 0.7

91397 396.91 4.31 -5.77 35.94 6 1 3 0.87 0.95 0.17 0.17 0.34 0.38 0.97 0.45 0.34 0.53 0.62 0.33

680553 311.31 1.64 -5.71 38.33 5 1 3 0.98 1 0.01 0.01 0.16 0.02 0 0.94 0.34 0.39 0.02 0.3

715722 394.23 3.01 -5.16 55.87 2 0 2 0.64 0.89 0.49 0.49 0.88 0.27 0.95 0.79 0.14 0.3 0.3 0.59

653384 400.42 4.02 -4.01 64.61 5 0 7 1 0.99 0.07 0.07 1 0.94 0.94 0.46 0.33 0.39 0.17 0.33

627505 291.37 2.58 -5.85 9.23 1 1 1 0.95 0.98 0.58 0.58 0.4 0.27 0.95 0.75 0.25 0.58 0.47 0.31

20527 371.02 3.44 -4.89 49.33 3 2 2 0.97 0.98 0.03 0.03 0.48 0.11 0.95 0.63 0.39 0.49 0.22 0.35

4290 313.37 2.88 -5.13 84.93 8 0 1 1 0.98 0.38 0.38 0.18 0.27 0.98 0.64 0.37 0.45 0.19 0.33

706989 296.34 2.68 -4.59 27.69 3 0 3 0.97 0.96 0.24 0.24 0.21 0.27 0.98 0.73 0.34 0.6 0.54 0.56

648273 302.37 2.77 -4.94 83.13 6 1 2 0.99 0.98 0.35 0.35 0 0.16 0.98 0.83 0.17 0.48 0.71 0.65

709923 244.29 1.46 -4.69 26.02 1 1 1 1 0.97 0.06 0.06 0.18 0.37 0.89 0.85 0.34 0.69 0.1 0.38

717889 270.39 1.82 -2.31 74.46 0 1 1 0.99 0.94 0.04 0.04 0 0.4 0.5 0.51 0.45 0.52 0.08 0.11

* Listed are NSC-720447, NSC-107129, NSC-351710, NSC-719502, NSC-117917, NSC-703104, NSC-669455, NSC-695333, NSC-732287, NSC-91397, NSC-680553, NSC-715722, NSC-653384,
NSC-627505, NSC-20527, NSC-4290, NSC-706989, NSC-648273, NSC-709923, and NSC-717889. Receptor binding energies, promiscuity, genotoxicity, skin sensitivity, and aquatic toxicity
from SMARTS hits not listed.
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Table 6. Colon cancer: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are probabilities
in the range [0, 1] *.
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Name MW LogP LogS TPSA Rotb HBD HBA BBB HIA HERG AMES FHM HBT TPT CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4

771557 355.39 1.83 -5.31 72.19 3 2 3 1 0.98 0.43 0.43 0 0.02 0.98 0.79 0.72 0.77 0.37 0.93

768051 360.38 2.59 -5.79 35.82 4 1 3 1 0.99 0.07 0.07 0.47 0.45 0.96 0.89 0.12 0.57 0.45 0.76

754670 337.4 1.41 -5.09 72.19 3 2 3 1 0.98 0.26 0.26 0 0.02 0.98 0.81 0.62 0.74 0.38 0.93

722316 315.37 1.37 -5.86 24.39 3 1 3 0.99 0.88 0.49 0.49 0 0.2 0.95 0.82 0.27 0.37 0.39 0.22

684405 345.28 0.75 -3.2 88.59 5 1 5 0.42 0.98 0.04 0.04 0 0.59 0.95 0.47 0.32 0.4 0.08 0.33

676188 250.3 2.64 -5.79 17.07 1 1 2 0.9 0.98 0.29 0.29 0.02 0.06 0.89 0.9 0.13 0.46 0.2 0.4

754664 385.87 2.56 -5.92 72.19 3 2 3 1 0.98 0.27 0.27 0 0 0.98 0.81 0.81 0.87 0.38 0.94

753802 371.84 2.05 -5.59 72.19 3 2 3 1 0.98 0.36 0.36 0 0 0.98 0.81 0.81 0.87 0.38 0.93

382053 359.43 -1.54 -5.77 52.04 5 2 4 0.88 0.98 0.07 0.07 1 0.01 0.95 0.69 0.48 0.56 0.31 0.49

754567 355.39 1.83 -5.31 72.19 3 2 3 1 0.98 0.55 0.55 0 0.02 0.98 0.79 0.62 0.74 0.4 0.93

665497 368.34 4.23 -4.27 72.45 3 0 6 0.93 0.99 0.18 0.18 1 0.98 0.94 0.34 0.45 0.68 0.33 0.41

754666 351.42 1.92 -5.43 72.19 3 2 3 1 0.98 0.19 0.19 0 0.02 0.98 0.81 0.63 0.72 0.38 0.94

656158 283.25 3.7 -5.31 35.53 1 1 3 0.96 0.97 0.46 0.46 0.68 0.18 0.95 0.92 0.23 0.74 0.39 0.69

753211 314.13 0.53 -5.05 23.79 0 0 4 0.96 1 0.02 0.02 0.78 0.66 0.86 0.73 0.35 0.46 0.16 0.3

765699 359.31 -1.11 -5.41 26.02 4 1 3 0.46 0.63 0.26 0.26 0.02 0.16 0.88 0.86 0.39 0.73 0.46 0.63

768313 367.42 1.46 -5.11 81.42 4 2 4 1 0.98 0.39 0.39 0 0.02 0.98 0.81 0.72 0.72 0.42 0.94

778318 351.47 2.19 -5.71 55.12 3 2 2 1 0.98 0.62 0.62 0 0.02 0.98 0.71 0.64 0.73 0.4 0.91

703110 336.33 1.03 -5.5 24.39 4 1 3 1 0.74 0.11 0.11 0 0.08 0.96 0.86 0.33 0.67 0.08 0.32

656155 280.28 2.56 -4.68 61.55 1 2 3 0.81 0.97 0.42 0.42 0.68 0.22 0.95 0.94 0.23 0.76 0.44 0.73

774959 347.37 2.1 -5.97 47.56 4 2 4 0.81 0.99 0.26 0.26 0.04 0.18 0.98 0.72 0.71 0.74 0.13 0.66

* Listed are NSC-771557, NSC-768051, NSC-754670, NSC-722316, NSC-684405, NSC-676188, NSC-754664, NSC-753802, NSC-382053, NSC-754567, NSC-665497, NSC-754666, NSC-656158,
NSC-753211, NSC-765699, NSC-768313, NSC-778318, NSC-703110, NSC-656155, and NSC-774959. Receptor binding energies, promiscuity, genotoxicity, skin sensitivity, and aquatic toxicity
from SMARTS hits not listed.



Molecules 2019, 24, 645 13 of 21

3. Discussion

The adjustment of gene expression for the PCNA metagene in oncology is not a new concept [42];
however, there are groups which are unaware of its existence, and the novel perspective that can be
attained once it is performed. Approximately 50% of the genome is co-regulated by PCNA, and because
its effect is so widespread, it is imperative that investigations in cancer research account for and remove
the effects of this non-cancer related transcriptional mechanism. Our effort to remove PCNA effects
from RNA-Seq based gene expression in TCGA data is novel, and this has resulted in new lists
of DNA repair genes which are predictive of OS beyond chance variation. Regarding molecular
docking, virtual drug screens typically employ hundreds of thousands of ligands for which no
dose-response information is available prior to the analysis. We took the opposite approach by filtering
on cell line-derived drug activity z-scores, and only used DTP compounds which elicited a sensitive
dose-response. Therefore, the only remaining uncertainties surrounding the strongly binding ligands
are whether the observed DTP cell line sensitivities were due to a direct/indirect inhibitory mechanism,
underlying toxicity independent of binding, or both. These issues can be addressed in future in vitro
experiments to confirm protein binding and in vivo xenograft models to confirm animal model efficacy.

The results support repair inhibition models of cancer survival, which can be applied to
longitudinal studies and clinical trials. The molecular docking employed revealed results that are
potentially hinged to repair inhibition via protein binding. Overall, our docking analysis allowed us
to make inferences about cell line sensitivity to draw conclusions about the relationships between
binding and tumor growth for common cancers. The translational value of our results is established
by the identification of drug-like and lead-like compounds. This could prove useful in future studies
of molecular markers of therapy for delayed progression. Our future investigations will start with the
top 50–100 ligands identified for each cancer to link verified gene-knockdown with xenograft models
for confirming an association between repair inhibition and experimental data for tumor growth
and survival. Molecular docking of DTP compounds with DNA repair proteins has enabled us to
gain a perspective that hit identification and repair inhibition in the cell line data employed could
likely reveal new compounds and mechanisms for oncotherapy. This view will hopefully enforce an
appreciation among oncologists and biologists for the translational value of DTP cell line testing results,
compounds, and molecular docking of these compounds with DNA repair proteins, for potential
clinical trials involving single- or multi-label treatments associated with prolonged survival and
pursuing longitudinal studies to improve therapeutic strategies.

We did not comparatively assess gene expression in the tumor cell lines employed. Recall that
although the DTP project has used a variety of gene expression platforms, expression patterns in
cell lines was not available for most of the DNA repair genes used in this investigation. We also
did not employ a gold-standard to establish false positive and false negative rates of toxicological
and ADME endpoints. Rather, we ranked ligands by their binding energies hinged to MD and
approximated computationally the toxicological and ADME outcomes. Experimental validation of
the binding efficiency of ligands and in vitro determination of delayed tumor growth, toxicological,
and ADME outcomes are needed in order to assess whether select groups of patients will benefit from
new therapies arising from our findings. The work presented here suggests that molecular docking
studies of DNA repair proteins with cell line-sensitive DTP compounds can provide new insights
into the development of human cancer and can establish new leads for future research on molecular
diagnosis and therapeutics.

There are several challenging issues surrounding the development of tumor progression
models based on repair inhibition. First, there is the problem of inherited germline polymorphisms,
which confer a variety of risks and require a variety of treatment regimens. Second, tumor heterogeneity
and immune escape are others hallmarks of cancer that cannot be easily overcome when searching for
new modes of therapy. The RNA-Seq based data obtained from TCGA are not based on single-cell
analysis, which would be helpful for elucidating heterogeneity; however, the large genetic variation
identified throughout the TCGA samples used would exacerbate the complexity surrounding our
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attempt to portray repair inhibition via a single picture. Third, our approach was bioinformatic
and not mechanistic using laboratory methods, since the intent was purely computational at this
stage of investigation. We also did not consider DNA methylation status, chromosome aberrations,
and microsatellite instability, which would overlay more complexity on the results obtained.

In conclusion, our bioinformatic approach to infer repair inhibition from cell line and RNA-Seq
data in the absence of data on genomic alterations and germline polymorphisms should be cautiously
interpreted. While most human cancers are nevertheless sporadic, the importance of the inherited
component of cancer, combined with genomic alterations and tumor heterogeneity leading to growth
and progression was not addressed in this investigation.

4. Materials and Methods

Small-Molecule Ligand Library. The National Cancer Institute (NCI) DTP maintains a repository
of synthetic and pure natural products that are available to investigators for non-clinical research
purposes [43]. The repository collection is a uniquely diverse set of more than 200,000 compounds that
have been either submitted to DTP for biological evaluation or, in some cases, synthesized under DTP
auspices. Drug activity levels expressed as 50% growth inhibitory levels (GI50s) are determined by the
DTP at 48 h using the sulphorhodamine B assay [44]. All GI50 data were assessed and transformed
into z-scores, as described previously [45].

Ligand Selection from DTP. Activity z-scores for 21,737 DTP compounds tested for dose-response
for each cell line were obtained using the CellMiner web server (V2.1 [46]). Activity z-scores >0.5
indicate cell line sensitivity, while z-scores <0.5 imply resistance. Compound activity z-scores were
available for 60 cancer cell lines representing the following cancers: Breast (five cell lines), CNS (six),
colon (seven), leukemia (six), melanoma (ten), lung (nine), ovarian (seven), prostate (two), and renal
(eight). For each cancer, a compound was selected for docking if the z-score >0.5 for more than half of
the cell lines available.

Protein (receptor) 3D structures. The receptors (proteins) employed in this investigation (Table 1)
were identified during our previous work with TCGA RNA-Seq data and the PCNA metagene to
have an association with prolonged overall survival (OS) when down-regulated. FASTA amino
acid sequences (Homo Sapiens) for these proteins were obtained from the Uniprot web server [47].
Homology modeling for obtaining a predicted 3D protein structure was determined using the
SWISS-MODEL web server [48–50]. The SWISS-MODEL pipeline comprises the four main steps
that are involved in building a homology model of a given protein structure. The first step involves
identification of structural template(s) using BLAST [51,52], which is followed by alignment of the
target sequence and template structure(s) based on the BLOSUM amino acid substitution matrix [53,54].
The next step includes model building and energy minimization, based on quaternary structure
prediction with QSQE [55]. Finally, the model’s quality is assessed using QMEAN [56], which evaluates
statistical potentials of mean force. The accuracy, stability, and reliability of the SWISS-MODEL server
pipeline was validated by the EVA-CM benchmark project [57]. Currently, the SWISS-MODEL server
pipeline is participating in the CAMEO3D project, which continuously evaluates the accuracy and
reliability of protein structure prediction services in a fully-automated manner [58]. Once the predicted
3D model was constructed, molecular charges were merged, and non-polar hydrogens, lone pairs,
and water molecules were removed using the .NET assembly of OpenBabel (OB) [59].

Molecular Ligand-Receptor Docking. Ligand-receptor docking is an MD approach for
reproducing chemical potentials which determine the bound conformation preference and free energy
of binding between a ligand and its receptor. The MD technique seeks to establish the optimal receptor
binding pocket (pose) with a minima in the energy profile, shape, and temperature [60], while assuming
consistency in the ligand charge distribution and protonation states for the bound and unbound forms.
At each receptor pocket identified, several poses are evaluated while iterating through alternative
conformations of the ligand at its rotatable covalent bonds.
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Prior to docking, ligand SMILES strings were converted to 3-dimensional SDF format containing
partial charges of each atom. The .NET OB assembly was used for adding hydrogens to ligands and
performing energy minimization of ligands and receptors using the Merck MMFF94 force field [61],
with 250 iterations during conjugate gradient convergence. Energy-minimized ligands and receptors
were saved in PDBQT format. Vina [62] was used for ligand-receptor docking on Amazon AWS cloud
formations with Linux high-performance compute clusters. A total of 10 ligand poses were assessed at
each receptor pocket identified, and the best pose was assumed to have the lowest binding energy (BE)
in kcal/mol. BE values less than -6 kcal/mol are considered to represent significant binding affinity.

Drug-like and Lead-like Hit Determination. Ligands that yielded the best docking pose with
BE<-6 were additionally filtered using physio-chemical properties of compounds. These included
lipophilicity (LogP: Log of octanal-water partition coefficient) and solubility (LogS) using the SMARTS
notation available from SILICOS-IT [63], which were implemented in .NET. The molecular weight
(MW), topological surface area (TPSA), number of hydrogen bond donors (HBD), hydrogen bond
acceptors (HBA), and number of rotatable bonds (RotB) were determined using OB’s .NET assembly.
All compounds were kekulized and stripped of salts prior to calculation of physio-chemical properties,
except for LogS solubility calculations, for which hydrogens were added. Two sets of criteria were
employed for assessing the suitability of ligands for lead discovery: “Drug-like” and “lead-like”.
The drug-like hits were based on the Muegge (Bayer) criteria [64] for which 200 ≤ MW ≤ 600, −2 ≤
LogP ≤ 5, TPSA ≤ 150, HBD ≤ 5, HBA ≤ 10, and RotB ≤ 15. Whereas the lead-like criteria were LogP
< 3, MW < 300, HBD ≤ 3, HBA ≤ 3, and RotB ≤ 3.

Fathead Minnow Toxicity (FMT). The Fathead minnow is an important aquatic and terrestrial
toxicity endpoint target, and Fathead minnow toxicity data were obtained from Cheng et al. [65].
FMT toxicity data consisted of 188 FMT- and 366 FMT+ compounds (554 total). The FMT endpoint
for each compound was expressed as the concentration lethal to 50% of the organisms (LC50) for
FMT during 96h flow-through exposure tests. Cheng et al. [65] selected a threshold value of LC50
= 0.5mmol/L to partition the data into low and high acute FMT compounds. Compounds with the
value of LC50 less than 0.5 mmol/L were assigned as high acute FMT compounds, whereas others
were assigned as low acute FMT compounds. The chemical name, CAS numbers, FMT test results, and
SMILES strings were available in the data.

Honey Bee Toxicity (HBT). 195 pesticides or pesticide-like molecules for HBT (96 HBT-, 99 HBT+)
were collected from Cheng et al. [65], based on data from the US EPA ECOTOX database [66]. The HBT
endpoint for Apis mellifera bees was expressed as the dose lethal to 50% of the test population (LD50)
during a 48h exposure test. Cheng et al. [65] selected a threshold value of LD50 = 100 µg/bee to
designate high acute HBT compounds and low acute HBT compounds. Compounds with an LD50
below 100 µg/bee were coded as high acute HBT compounds, while others were coded as low acute
HBT compounds. The chemical name, CAS numbers, HBT test results, and SMILES strings were
available in the data.

Tetrahymena Pyriformis Toxicity (TPT). Tetrahymena pyriformis toxicity (TPT) is often used as
a toxicology endpoint, and 1571 diverse TPT-tested chemicals were collected from Cheng et al. [67].
Toxicity data were expressed as the negative logarithm of 50% growth inhibitory concentration
(pIGC50) values and duplicated molecules were removed. Xue et al. [68] selected a threshold value of
pIGC50 = −0.5 for discriminating TPT and non-TPT compounds (compounds with pIGC50 > −0.5
were assigned as TPT, otherwise as non-TPT). The entire dataset was then divided into 1217 TPT+ and
354 TPT- compounds. The chemical name, CAS numbers, SMILES strings and pIGC50 value of 1571
compounds were available in the data.

Human Intestinal Absorption (HIA). The original HIA dataset was collected from Shen et al. [69].
This dataset contained n = 578 compounds with fraction absorption (%FA) values. Shen et al. also
specified a threshold value of 30% to partition compounds into HIA+ and HIA- (78 HIA- and 500
HIA+ compounds). Drugs with oral dosage formulations were considered to be HIA+ compounds.
The chemical name, SMILES and class labels HIA+ and HIA- were available in the data.



Molecules 2019, 24, 645 16 of 21

Blood Brain Barrier Penetration (BBB). The BBB dataset contained n = 1593 compounds,
also obtained from Shen et al. [69], and have been categorized into BBB+ (n = 1283) and BBB-(n
= 310). The chemical name, CAS numbers, BBB test results, and SMILES strings were available in
the data.

Cytochrome P450 Inhibition (CYP). A large dataset containing more than 13,445 unique
compounds against five major CYP isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 3A4, was obtained
from the PubChem AID-1851 database [70]. The assay employed for the generation of these data used
various human CYP P450 isozymes to measure the dealkylation of various pro-luciferin substrates to
luciferin. The luciferin is then measured by luminescence after the addition of a luciferase detection
reagent. Pro-luciferin substrate concentration in the assay was equal to its KM for its CYP P450
isozyme. Inhibitors and some substrates limit the production of luciferin and decrease measured
luminescence. A compound was classified as a CYP inhibitor if the AC50 (the compound concentration
leads to 50% of the activity of an inhibition control) value was 10 µM. A compound was considered
as a non-inhibitor if AC50 was >57 µM. Regarding samples sizes, for CYP1A2 there were 13,256 total
compounds with 7256 non-inhibitors and 6000 inhibitors, for CYP2C9 there were 12,901 compounds
with 8782 non-inhibitors and 4119 inhibitors, for CYP2C19 there were 13,445 molecules with 7532
non-inhibitors and 5913 inhibitors, for CYP2D6 there were 13,910 compounds 11,139 non-inhibitors
and 2771 inhibitors, and for CYP3A4 there were 13,017 compounds with 7751 non-inhibitors and 5266
inhibitors. The chemical name, CAS numbers, CYP test results, and SMILES strings were available in
the data.

Chemical Fingerprints for Toxicity and ADME Predictions. One approach to computational
ADME and toxicity prediction employs chemical substructure analysis of known compounds which
have been tested and applies the associative rules between structure and outcome to new compounds
whose substructure has been determined [71]. The traditional method for identifying chemical
substructure in compounds has been based on the FP2 fingerprint, which yields the presence (absence)
of various atoms, bonds, aromaticity and cyclicity, and fine structure of a compound. FP2 fingerprints
are in the form of binary 1024-bit vectors which signify the presence and absence of the various
moieties. It is important to note that while the granularity of FP2 fingerprints is high, there is less
available information related to copy number of substructure elements, so any exercise is essentially
hinged to a binary yes/no dilemma.

Using the toxicity and ADME training data described above, we employed the .NET OB
assembly [57] to transform SMILES strings for each training compound into an FP2 1024-bit vector
representing chemical substructures. OB yields FP2 fingerprints in the form of 256 4-byte Hex
characters were translated to binary bits. Bit values were transformed from 0 to −1, and 1 to 1+
and appended to an analytic file with ADME or toxicity outcomes of the respective training molecule.
Toxicity and ADME predictions for the selected DTP ligands were based on trained logistic regression
models using 25–100 fingerprints that achieved an ROCAUC > 65% for leave-one-out cross validation.
Therefore, the predictive results are crude approximations.

Figure 6 illustrates the workflow employed for all ligand preparation, receptor preparation,
docking, drug- and lead-like filtering of docked ligands, and computational toxicology and
ADME predictions.
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5. Conclusions

We employed computational methods to derive ligand-receptor binding and prediction of
toxicological and ADME endpoints for synthetic and natural compounds in the DTP repository
and DNA repair proteins which were predictive of OS after adjustment for the PCNA metagene.
Results of our computational methods translate to portraits of potentially new repair inhibitors of
delayed tumor progression. The utility of our findings can be realized by oncologists and biologists
who envision new targets and mechanisms of repair inhibition. We conclude that the results presented
can be directly employed for in vitro and in vivo confirmatory experiments to identify new targets of
therapy for cancer survival.
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Table S1. GBM: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands.
Toxicology and ADME predictions are probabilities in the range [0, 1]; Table S2. Melanoma: List of physio-chemical
properties and predicted toxicology and ADME for top 20 ligands. Toxicology and ADME predictions are
probabilities in the range [0, 1]; Table S3. Ovarian: List of physio-chemical properties and predicted toxicology and
ADME for top 20 ligands. Toxicology and ADME predictions are probabilities in the range [0, 1]; Table S4. Renal
papillary: List of physio-chemical properties and predicted toxicology and ADME for top 20 ligands. Toxicology
and ADME predictions are probabilities in the range [0, 1]; Figure S1. 2D structures of top 20 drug-like ligands
for GBM; Figure S2. 2D structures of top 20 drug-like ligands for melanoma; Figure S3. 2D structures of top 20
drug-like ligands for ovarian cancer; Figure S4. 2D structures of top 20 drug-like ligands for renal papillary cancer.
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