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Abstract: Phenols are the most abundant naturally accessible antioxidants present in a human normal
diet. Since numerous beneficial applications of phenols as preventive agents in various diseases were
revealed, the evaluation of phenols bioavailability is of high interest of researchers, consumers and
drug manufacturers. The hydrophilic nature of phenols makes a cell membrane penetration difficult,
which imply an alternative way of uptake via membrane transporters. However, the structural
and functional data of membrane transporters are limited, thus the in silico modelling is really
challenging and urgent tool in elucidation of transporter ligands. Focus of this research was a
particular transporter bilitranslocase (BTL). BTL has a broad tissue expression (vascular endothelium,
absorptive and excretory epithelia) and can transport wide variety of poly-aromatic compounds.
With available BTL data (pKi [mmol/L] for 120 organic compounds) a robust and reliable QSAR
models for BTL transport activity were developed and extrapolated on 300 phenolic compounds.
For all compounds the transporter profiles were assessed and results show that dietary phenols and
some drug candidates are likely to interact with BTL. Moreover, synopsis of predictions from BTL
models and hits/predictions of 20 transporters from Metrabase and Chembench platforms were
revealed. With such joint transporter analyses a new insights for elucidation of BTL functional role
were acquired. Regarding limitation of models for virtual profiling of transporter interactions the
computational approach reported in this study could be applied for further development of reliable
in silico models for any transporter, if in vitro experimental data are available.

Keywords: phenols; membrane transporters; bilitranslocase; transport activity; QSAR; in silico
models

1. Introduction

Phenols are one of the most promising groups of dietary preventive agents [1,2]. They are
widely amenable natural and nutritional agents, i.e. nutraceuticals, which belong to a heterogeneous
family of chemical compounds comprising benzoquinones, phenolic acids and aldehydes,
coumarins, chromones, xanthonoids, stilbenoids, flavonoids, lignans, tannins, etc. [3]. In general,
phenolic compounds are classified based on the number of phenol units in the molecule, as simple
phenols or polyphenols [2,4]. Functionally, they are secondary metabolites produced by plants and
microorganisms or synthesized industrially [5,6]. As the most abundant antioxidants present in a
human normal diet they have received increasing interest from researchers, consumers, food and
drug manufacturers [2,7]. The phenols, being recognized as one of the most potential antioxidants,
have role in preventing an imbalance in reactive oxygen species (ROS) production and an attenuation
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of anti-oxidant defense, what can turnout the genesis of many ageing phenomena and diseases [1,8–10].
Furthermore, bioactivities of phenols appeared to be quite broad-spanning, yet many multi-step
interactions have not been exactly elucidated. Thus, numerous beneficial application of phenols as
preventive and therapeutic agents in cancer and inflammatory, neurodegenerative and cardiovascular
diseases have been reported [1,9,11–32]. Particularly, the initiation stages of carcinogenesis were shown
to be largely preventable and susceptible to modulation by nutraceuticals, especially highlighting the
dietary polyphenols as one of the most promising anti-carcinogenic agents [10,15]. However, solely the
normal diet phenolic intake is insufficient for the effective chemoprevention, but the ingestion of
extra dietary phenolic supplements as support to chemotherapy is a promising approach [7,10].
The epidemiological data show that life-long intake of phenolic compounds is beneficial and related
to reduce the incidence of various diseases [8,11,15,33], yet to improve our knowledge on the
bioavailability of polyphenols from the diet uptake is of high interest.

The uptake of nutraceuticals and orally administrated drugs is dependent on their capacity of
absorption from the digestive tract. The studies, which followed the oral ingestion and gastro-intestinal
uptake of flavonoids, show that the concentrations are <1% of the administrated dose [34,35].
Such stringent intestinal control can be explained with the experimental evidence that many importers
are unable to transport phenols, while various exporters can [34]. This complexity obscures the
delivery of phenolic nutraceuticals or drugs, and raises the need for good substrate permeability
predictive models. Since phenols are widely distributed in fruits, vegetables, grains and their processed
foodstuffs, but are not synthesized by animal cells, their detection in animals is solely indicative of
plant ingestion [36]. Therefore, their absorption and tissue distribution in specimens is indispensably
dependent on transport ability of membrane transporters, and in this regard the cellular uptake
of phenolic compounds can be efficiently estimated by in vitro transport assays [37–39], while in
silico applications of membrane transport processes are very limited due to extremely slow rise of
high-resolution structures of membrane transporters [40]. At present, the development of in silico
methodologies for filling the gap among protein structures and properties is emerging and helps
circumventing the difficulties in resolving membrane transporter structures and functions [40–42].
In general, two in silico strategies exists: (i) ligand-based methods enabling analysis of transporter
substrate specificity in the absence of 3D structure, and (ii) protein-based methods providing
modeling of transporters structures based on sequence identity of available experimentally determined
atomic structures [43]. Among first, the pharmacophore mapping and development of quantitative
structure-activity relationship (QSAR) models are the most common for predicting ligand binding
modes (Figure 1) [44]. Among second, the comparative modeling is the most frequently used approach
to reveal structure and function of transporter, yet is only applicable, if homolog structures are
available [45]. Furthermore, studies show that the combination of both strategies is favorable as
it provides information beyond individual models [45]. Due to shortage of currently available
experimental functional and structural data on membrane transporters, the in silico modelling
is essential in the discovery of adverse effects, ADMET properties and more efficient transporter
substrates (e.g., dietary products, drugs) [44].
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transporters studies. Nevertheless, according to the reports in TransportDB 
(www.membranetransport.org) [47] and Transporter Classification Database (www.tcdb.org) [48] a 
hundreds of potential transporters exist (in the human genome > 1400 unique transport proteins 
were identified). Therefore, our interest arises on a specific, neglected but extremely attractive 
transporter bilitranslocase (BTL, Uniprot O88750, GenBank: Y12178.1). 

 
Figure 1. General scheme of the quantitative structure-activity relationship (QSAR) strategy. 
Chemical structures and biological activity data are obligated input for model building and 
validation. After the model development and optimization the new activity predictions can be made 
based solely on chemical structure input. 

Bilitranslocase is a 38.22 kDa bilirubin membrane transporter and is the first reported member 
of the Bilirubin Transporter (BRT) Family (TCDB 2.A.65.1.1) [35]. The gene of BTL is unidentified, 
and even no homology with any other known protein structure was found [35,49]. Yet, a surprising 
feature of BTL is its coding sequence, which is 94% homologous to a segment of the antisense strand 
of the ceruloplasmin transcript (RNO 30106) in the anti-CODE database (www.anticode.org). The 
considerable biological importance in BTL sequence has the bilirubin-binding motif, which plays a 
central role in ligand binding, and it is similar to highly conserved segment in α-phycocyanins [49], 
which are ancient biliproteins present in cyanobacteria. Further on, BTL shares similar tissue 
distribution and functional properties with some of the members of the family of organic anion 
transporters (OAT) (Figure 2), which is the most dominant family of the solute carriers (SLC, one of 
the two classified categories of transporters) [50]. BTL does not transport only bilirubin into 
hepatocytes [51,52], but can transport a wide variety of poly-aromatic compounds among vitally 
important endogenous substrates and drugs [35,53,54]. Its tissue expression is broad from vascular 
endothelium to stomach, intestine, kidney and liver epithelia (Figure 2) [55–58]. These peculiarities 
make BTL a hot spot for future investigation as potential important endogenous drug delivery 
system to the intracellular targets, especially for its ability of cancer drugs uptake [59] and also as 
tumor biomarker [60]. The study on renal carcinoma cells figure out an outstanding fact, that BTL 
expression is severely down-regulated in the renal cortical tumors [61], therefore the BTL assessment 
with specific BTL antibodies could serve as a novel biomarker of human kidney cancers [60]. In spite 
of our high interest and several efforts, the synthesis of BTL was unsuccessful, thus its structural and 
functional characterization remains unclear. However, up to date the data on tissue expression 
based on the specific BTL monoclonal antibodies [35], transport activity assays [53,54] and 

Figure 1. General scheme of the quantitative structure-activity relationship (QSAR) strategy.
Chemical structures and biological activity data are obligated input for model building and validation.
After the model development and optimization the new activity predictions can be made based solely
on chemical structure input.

By evidence dietary substances and drugs in mammals are transported via membrane
transporters rather than passive diffusion [38]. Therefore, it is of interest to profile the membrane
transport ability by using the recently available transporter databases in the public domain like
Metrabase (www-metrabase.ch.cam.ac.uk) [46] and ChemBench (www.chembench.mml.unc.edu) [44].
Metrabase provides the structural, physiochemical and biological data about transporters and their
ligands. It contains 16 efflux and influx transporters, which are also included in the guidance for
the approval of drugs proposed by the US Food and Drug Administration and by the European
Medicines Agency [46]. On the other hand, Chembench platform offers the largest collection of
human intestinal transporters interactions and the compendium of QSAR models for virtual screening
of chemicals. Moreover, these two databases reflect the current research focus in mammalian
transporters, as up to the best of our knowledge they encompass majority of existing transporters
studies. Nevertheless, according to the reports in TransportDB (www.membranetransport.org) [47]
and Transporter Classification Database (www.tcdb.org) [48] a hundreds of potential transporters exist
(in the human genome > 1400 unique transport proteins were identified). Therefore, our interest arises
on a specific, neglected but extremely attractive transporter bilitranslocase (BTL, Uniprot O88750,
GenBank: Y12178.1).

Bilitranslocase is a 38.22 kDa bilirubin membrane transporter and is the first reported member
of the Bilirubin Transporter (BRT) Family (TCDB 2.A.65.1.1) [35]. The gene of BTL is unidentified,
and even no homology with any other known protein structure was found [35,49]. Yet, a surprising
feature of BTL is its coding sequence, which is 94% homologous to a segment of the antisense
strand of the ceruloplasmin transcript (RNO 30106) in the anti-CODE database (www.anticode.org).
The considerable biological importance in BTL sequence has the bilirubin-binding motif, which plays
a central role in ligand binding, and it is similar to highly conserved segment in α-phycocyanins [49],
which are ancient biliproteins present in cyanobacteria. Further on, BTL shares similar tissue
distribution and functional properties with some of the members of the family of organic anion
transporters (OAT) (Figure 2), which is the most dominant family of the solute carriers (SLC,
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one of the two classified categories of transporters) [50]. BTL does not transport only bilirubin
into hepatocytes [51,52], but can transport a wide variety of poly-aromatic compounds among vitally
important endogenous substrates and drugs [35,53,54]. Its tissue expression is broad from vascular
endothelium to stomach, intestine, kidney and liver epithelia (Figure 2) [55–58]. These peculiarities
make BTL a hot spot for future investigation as potential important endogenous drug delivery
system to the intracellular targets, especially for its ability of cancer drugs uptake [59] and also
as tumor biomarker [60]. The study on renal carcinoma cells figure out an outstanding fact, that BTL
expression is severely down-regulated in the renal cortical tumors [61], therefore the BTL assessment
with specific BTL antibodies could serve as a novel biomarker of human kidney cancers [60].
In spite of our high interest and several efforts, the synthesis of BTL was unsuccessful, thus its
structural and functional characterization remains unclear. However, up to date the data on tissue
expression based on the specific BTL monoclonal antibodies [35], transport activity assays [53,54] and
computational elucidation of its 3D structure based on available NMR data (Figure 2) [62] are available.
Since BTL gene is not defined, the BTL characterization experimentally still remains limited only on
immunological approach by specific ant-peptide antibodies and in silico modeling with identified
synthetic transmembrane segments.
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mucosa [35,63]. Even more, it seems that the fast absorption of polyphenols in the upper digestive 
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intensive chemical and microbial degradation [1,34], which significantly affect their bioavailability.  

The aim of this study was to assess the membrane transporters activity of selected phenolic 
compounds by a comprehensive virtual profiling. Firstly, we developed new robust and reliable 
models for BTL transport activity that were used for screening of new untested dataset of 300 

Figure 2. (a) Structural model of membrane transporter bilitranslocase (top-scoring computational
arrangement of four transmembrane helices based on NMR spectroscopy data) [62]. No homologs were
defined for 1026 bp mRNA sequence (GenBank: Y12178.1), thus the comparative modeling studies
are not possible to perform. The further structure characterization of bilitranslocase is under study.
(b) Scheme of cell membrane transporters distribution in different tissues [44,50,58]. ABC transporters
are indicated by black arrows and solute carriers (SLC) by white arrows; one direction transport
(one way arrow), bidirectional transport (two way arrow).
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Considering the current limitation and dearth of empirical data about the interesting BTL
transporter, the usage of in silico approaches is more than welcome to elucidate the BTL functional
properties. Moreover, they can even provide new guidelines for further design of the BTL experiments.
Some QSAR models for prediction of the BTL transport ability were preliminary build on available data
of biological assay of the BTL transport activity for the poly-aromatic organic compounds [53,54,59].
The in vitro experiments showed fast kinetics of plasma appearance of polyphenols and their
concentrations were found in the range of half-saturation of BTL in the portal blood [63]. Thus,
Passamonti et al. suggest that particularly at the gastric level the BTL-mediated mechanism could
be the basis of the fast kinetics and ability of polyphenols to permeate the gastric mucosa [35,63].
Even more, it seems that the fast absorption of polyphenols in the upper digestive tract is a mindful
steep, as polyphenols in the lower segments of digestive tract are exposed to intensive chemical and
microbial degradation [1,34], which significantly affect their bioavailability.

The aim of this study was to assess the membrane transporters activity of selected phenolic
compounds by a comprehensive virtual profiling. Firstly, we developed new robust and reliable
models for BTL transport activity that were used for screening of new untested dataset of 300 phenolic
compounds (including potential drug candidates, nutraceuticals). With the developed QSAR models
the new insights into transport interactions of structurally unresolved BTL transmembrane protein
were gained and the phenolic compounds that could inhibit the BTL transport were identified. We also
discussed the preferences of using the consensus of models to enhance predictivity of in silico models.
Secondly, the unique transporter profile of studied compounds was performed based on the results
from a new BTL models developed in this study and from the results obtained from Metrabase [46]
and Chembench platforms [44], a freely available tools for membrane transporters characterization.

2. Results

2.1. BTL Classification Models

The development of QSAR models is a complex process therefore general OECD principles to
properly produce and validate models [64,65] have been taken into account. In order to build reliable
models and also to detect possible model pathologies in the modelling strategy, a cross validation and
external validation was included. Thus, BTL dataset (n = 120) was divided into two or three subsets in
rate 75/25 or 60/25/15. The model NN-C had three subsets; training set (n = 70), test set (n = 31) and
validation set (n = 19). Models NN-D and Q-D had two subsets; training set (n = 90) and validation set
(n = 30). A dataset splitting conditions are precisely stated in study of Martinčič et al. [59].

Initial modeling datasets included 66 or 78 variables, Codessa and Dragon descriptors, respectively.
The model NN-C was the best model available from study of Martinčič et al. [59] and was developed
with non-reduced number of descriptors (66 Codessa MDs). In this study new Dragon molecular
descriptors (MDs) were calculated and further model optimization with cross validation and genetic
algorithm was used. The newly developed models (NN-D and Q-D) contain significantly reduced set
of MDs (from 78 to 18/11). The list of selected descriptors of NN-D and Q-D models is represented
in Table S4 (Supplementary Material). The selected models have comparable quality parameters
for training set, yet new CP-ANN model has significantly improved performance of validation set
(Tables 1 and 2). Regarding results of quantitative quality indicators and graphical quality parameter
(ROC curve) the NN-D model shows the best training and validation performances (Figure 3).
Predictions for compounds used in the models development and validation are presented in Table S1
(Supplementary Material).
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Table 1. Statistic parameters of the best three single models and consensus classification models.

Single Models 2-Model Consensus 3-Model Consensus

NN-C NN-D Q-D NN-C +
NN-D

NN-C +
Q-D

NN-C +
Q-D A B A + B

TP 44 44 46 33 33 41 29 19 48
TN 61 65 58 47 49 55 45 17 62
FP 9 5 12 6 2 1 1 7 8
FN 6 6 4 0 2 0 0 2 2
∑ 120 120 120 86 86 97 75 45 120

PR 1 (0.98) 1 (0.92) 1 (0.97) 0.72 0.72 0.81 0.62 0.37 1
SE 0.88 0.88 0.92 1.00 0.94 1.00 1.00 0.90 0.96
SP 0.87 0.93 0.83 0.89 0.96 0.98 0.98 0.71 0.89

ACC 0.88 0.91 0.87 0.93 0.95 0.99 0.99 0.80 0.92
NPV 0.91 0.92 0.94 1.00 0.96 1.00 1.00 0.89 0.97
PPV 0.83 0.90 0.79 0.85 0.94 0.98 0.97 0.73 0.86
MCC 0.75 0.81 0.74 0.87 0.90 0.98 0.97 0.62 0.84

A—complete agreement among predictions, B—maximal one disagreement among predictions.

Table 2. Summary of classification models results.

Model ID. Type No. of
Descriptors

ACCTR ACCV
Predict Ratio [%] No. of Active

Compound Predictions

BTL Dataset Phenols BTL Dataset Phenols

NN-C CP-ANN 66 0.93 0.74 100 (97) 100 (94) 54 (51) 75 (74)
NN-D CP-ANN 18 0.92 0.87 100 (92) 100 (69) 49 (46) 138 (100)
Q-D MLR 11 0.88 0.77 100 (97) 100 (93) 58 (55) 72 (68)

A + B 3 cons / 0.93 0.87 100 (99) 100 (100) 56 (55) 65 (65)
A 3 cons / 1.00 0.92 62 (62) 36 (36) 30 (30) 15 (15)

NN-D + Q-D 2 cons / 1.00 0.96 81 (81) 50 (50) 42 (42) 31 (31)

( ) values for compounds in AD; 3 cons—3-model consensus; 2 cons—2-model consensus.
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The reliability of a QSAR model depends on its capacity to achieve confident predictions of new
compounds not considered in the model development, which implies the necessity of considering
the applicability domain (AD) of the model. Several AD analyses including the descriptor’s range,
leverages, Euclidian distances, rivality and modelability indexes [66–68] are available. In this study we
used two of AD approaches; maximal Euclidian distance of training set in NN-C (EDcrt = 6.16) and
NN-D model (EDcrt = 2.36), and leverage values in Q-D model (hat* = 0.4) (Figure 4) [67,68].
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(NN-C, NN-D, Q-D). Compounds with estimated Euclidian distances/leverages > EDcrit/hat* fail out
of applicability domain of model.

The structure activity relationship analysis has revealed the influential structural properties of BTL
ligands. In general, high capability of compounds of forming hydrogen bonds, ionic properties and
planarity of molecules are the most relevant one. The same features were highlighted in previous BTL
experimental studies [53,54,59]. The molecular descriptors, which are used in newly developed
models NN-D and Q-D (Table S4, Supplementary Material) represent the following properties:
planarity (number of multiple and aromatic bonds — nBM, nArCO, nArOR, ARR), hydrogen bonds
forming ability (nOHp, nO, H-052, P_VSA_LogP_2, P_VSA_p_4, CATS2D_07_DA, CATS2D_04_AN),
ionic properties (MATS7e, GATS5i, EE_B(s)).

2.1.1. Consensus of Model Predictions

Consensus modeling was performed by integrated predictions among two QSAR models (2-model
consensus, three possible combinations) and all three models together (3-model consensus). In general,
researchers acknowledged an increase in overall predictive performance, if consensus of predictions
among a battery of models was applied [69]. Following the protocol of Marzo et al. [69] we made
various combinations of consensus of model predictions by combining predictions from NN-C,
NN-D and Q-D models. The 3-model consensus A was the strictest and considered only predictions
with all three models (NN-C + NN-D + Q-D) in agreement. In 3-model consensus ‘A + B’ the
predictions with maximal one disagreement among the NN-C, NN-D and Q-D models were considered.
In 2-model consensus ‘NN-D + Q-D’ the predictions where both models were in agreement were
considered. In the same way the rest two combinations of a 2-model consensus (NN-C + NN-D and
NN-C + Q-D) were also performed, but have lowest performance evaluation than ‘NN-D + Q-D’.
The results of performance evaluation of consensus modeling are represented in Tables 1 and 2, and
the detailed predictions in Table S1 (Supplementary Material). When compared with the single models,
the accuracy performance of consensus of predictions was increased, but consequently the prediction
rate was decreased. The highest overall accuracy (0.99) was determined in 2-model consensus
‘NN-D + Q-D’ and 3-model consensus A, yet both consensus significantly differ in prediction rate
ability, 81% and 62%, respectively. Therefore, the best balance among accuracy and prediction rate was
achieved with 3-model consensus ‘A + B’ (ACC = 0.92, PR = 100%). This 3-model consensus was shown
as robust and reliable, and in evaluation parameters outperformed all single models. In this regard,
the high impact of integration of predictions of three models was conformed and in concordance with
expectations the overall predictive performance was increased.

2.1.2. Application of Classification Models on Phenolic Dataset

Developed QSAR models enabled efficient application in screening processes regarding
bioavailability of dietary/pharmaceutically interesting compounds. With single classification models
and 2-/3-model consensus of predictions we estimated the BTL transport potential for compounds,
which were not experimentally tested for BTL transport activity (phenolic dataset, n = 300). Results of



Molecules 2019, 24, 837 8 of 21

predictions are represented in Figure 5 and Table S2 (Supplementary Material). Consensus ‘A + B’
and single models N-C and Q-D performed with a 100% prediction rate with most of the compounds
within AD (A + B = 300, NN-C = 283, Q-D = 278). On the other hand, the model NN-D resulted
with a lower number of compounds in AD (NN-D = 208). As expected, lower prediction rate was
evaluated for other consensus of predictions (NN-D + Q-D = 50%, A = 36%), due to strictest conditions.
Generally, the integration of multiple models increased the overall reliability of predictions in all
consensus combinations, also increased the prediction rate for phenolic compounds in consensus
‘A + B’, but decreased in other consensus (NN-D + Q-D, A).
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Using in silico models one is challenged with the paradigm of selecting single model or very strict
consensus (e.g., A) with high accuracy and narrow AD, or on the price of broadening of AD decide
for wider consensus (e.g., A + B). In this regard, the number of active compounds predictions varied
from 15 in consensus A to 65 in consensus ‘A + B’ (Table S2, Supplementary Material). Among single
models the highest number of active compounds was predicted with the model NN-D (138), which was
significantly higher than in other models (NN-C = 75, Q-D = 72). However, none of single models
or consensus of predictions did not recognize groups of phenols that are more likely to interact with
BTL (Figure 5). For sure the most promising active compounds are those 15 that were predicted in all
models: luteolin (ID4), kaempferol (ID86), eriodictyol (ID95), pinobanksin (ID117), cianidanol (ID127),
leucodelphinidin (ID131), ellagic acid (ID181), rosmarinic acid (ID182), gallic acid (ID199), methyl
gallate (ID200), 3-methoxy-4-hydroxybenzoic acid (ID209), 3-methoxy-4-hydroxyhippuric acid (ID211),
decanyl caffeate (ID225), oleuropein (ID226), PACD3 (ID280) (see Table S2, column A, Supplementary
Material). Since in vivo/in vitro experimental data on membrane transport ability for majority of
the above mentioned compounds are not available either for BTL neither for other transporters from
the list in Table 3 (except for four compounds and few transporters, see results in Section 2.3), the in
silico predictions are currently the only relevant estimations of their membrane transport activities.
Interestingly, based on our results BTL might be also involved in the gastric absorption of the flavone
luteolin, as its gastric uptake was observed in vivo [70]. Indeed, this is in support of hypothesis of
Passamonti et al. [35] that at the gastric level the BTL-mediated mechanism could play an important
role in active transport of polyphenols. The isoflavone daizdein, on the other hand, was classified as
inactive with our consensus of QSAR models and was also experimentally identified as not being a BTL
substrate [35]. However, study of Piskula et al. [71] demonstrated that daizdein can be absorbed from
the rat stomach, thus in its gastric uptake probably another specific OAT transporter, a monocarboxylate
transporter, is involved [35].
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Table 3. List of transporters from Metrabase and ChemBench platforms.

Protein Symbol Gene Symbol Name Tissue Expression Data

MDR1 M,C ABCB1 ATP-binding cassette sub-family B member 1, P-glycoprotein intestine, kidney, liver, brain
BSEP C ABCB11 ATP binding cassette subfamily B member 11 liver

MRP1 M,C ABCC1 ATP-binding cassette, sub-family C member 1 intestine, kidney, liver, brain
MRP2 M,C ABCC2 ATP-binding cassette sub-family C member 2 stomach, intestine, kidney, liver, brain
MRP3 M,C ABCC3 ATP-binding cassette sub-family C member 3 stomach, intestine, kidney, liver, brain
MRP4 M,C ABCC4 ATP-binding cassette, sub-family C member 4 stomach, intestine, kidney, liver, brain
MRP5 C ABCC5 ATP Binding Cassette Subfamily C member 5 kidney, brain

BCRP1 M,C ABCG2 ATP-binding cassette sub-family G member 2 stomach, intestine, kidney, liver, brain
OATP1A2 M SLCO1A2 solute carrier organic anion transporter family member 1A2 kidney, liver, brain
OATP2A1 M SLCO2A1 solute carrier organic anion transporter family member 2A1 intestine, kidney, liver, brain
OATP1B1 M SLCO1B1 solute carrier organic anion transporter family member 1B1 liver
OATP1B3 M SLCO1B3 solute carrier organic anion transporter family member 1B3 liver

OATP2B1 M,C SLCO2B1 solute carrier organic anion transporter family member 2B1 intestine, kidney, liver, brain
OATP3A1 M SLCO3A1 solute carrier organic anion transporter family member 3A1 intestine, kidney, liver, brain
OATP4A1 M SLCO4A1 solute carrier organic anion transporter family member 4A1 stomach, intestine, kidney, liver, brain

GLUT1 M SLC2A1 solute carrier family 2 (facilitated glucose transporter) member 1 intestine, kidney, liver, brain
NTCP C SLC10A1 solute carrier family 10 member 1 liver
ASBT C SLC10A2 solute carrier family 10 Member 2 intestine
PEPT1 C SLC15A1 solute carrier family 15 member 1 intestine

MCT1 M,C SLC16A1 solute carrier family 16 member 1, monocarboxylic acid transporter 1 stomach, intestine, kidney, liver, brain
OCT1 M,C SLC22A1 solute carrier family 22 (organic cation transporter) member 1 intestine, kidney, liver

BTL * / bilitranslocase, bilirubin membrane transporter stomach, intestine, kidney, liver

* new, not available in Metrabase and ChemBench, M—available in Metrabase, C—available in ChemBench.
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2.2. BTL Regression Models

The activity predictions for the BTL inhibition constants pKi [mmol/L] were performed with the
best in-house predictive CP-ANN models (M1–M4) [59]. The neural networks were selected regarding
results from the previous studies [59]. Firstly, we analyzed, if the regression models were accurately
developed and validated regarding the need of evenly frequency distribution of compounds in all
ranges of BTL biological activity in the training and validation datasets. This condition was fully
satisfied and a compounds frequency distribution in five intervals of BTL activity is shown in Figure S1
(Supplementary Material). For further detailed evaluation of models a five quality parameters of
validation were employed (R2, RMSE, Q2

F3, CCC, rm
2), and their performance is represented in Table 4.

Statistical differences among models are low and in general all validation parameters characterize
model M1 as the best one. The validation parameter rm

2 was specially reported to help in identifying
the best models among a set of comparable models [72], but in this case all parameters were equally
sensitive. Since GA approach was used in the development and optimization of models, consequently
a large availability of different models predicting the same endpoint was produced. Thus, to avoid
having cluster of similar models we tested the diversity of the top scoring models by measuring
of Hamming distance between them. The results are shown in Table S5 (Supplementary Material).
The distances among models are in range of 7–17. This indicated that numbers of variables not shared
by the models are high. Accordingly, our set of top models was shown to be diverse and consensus
analyses were justified. An average response and weighted average response were used as proposed
by Todeschini et al. [65]. The consensus gave better statistical fits of predictions in regard to the
single models.

Table 4. Statistic parameters of the best four regression models.

Model R2
tr RMSEiv R2

iv Q2
F3iv CCCiv R2

ev Q2
F3ev CCCev RMSEall CCCall rm

2
(all)

M1 0.996 0.266 0.949 0.957 0.970 0.872 0.927 0.939 0.198 0.987 0.821
M2 0.999 0.280 0.943 0.953 0.968 0.842 0.909 0.927 0.206 0.986 0.812
M3 0.998 0.289 0.939 0.950 0.964 0.839 0.908 0.934 0.213 0.985 0.806
M4 0.995 0.295 0.937 0.948 0.964 0.760 0.863 0.899 0.243 0.980 0.776

Application of Regression Models on Phenolic Dataset

Predictions were made for 205 compounds. These were compounds that were classified as
active with at least one model (Table S7, Supplementary Material). In order to produce more reliable
estimates of our endpoint the consensus modeling strategy was also applied. Most of models were
well applicable for phenols, since majority of compounds were in AD of models (>75%); exception was
model M3 with only 50% of compounds in AD. Moreover, the predictions were highly harmonized,
since varied for less than 10% of standard deviation, if compared among all models (M1-M4). Up to
our knowledge only one study exist on extrapolation of BTL models to make predictions of new
compounds, which were not included in model development or validation [59]. Comparison with that
study revealed that BTL models have wider capacity for prediction of phenolic compounds than other
antioxidants and antiprions (Table S6, Supplementary Material).

2.3. Metrabase and Chembench Analyses

Based on data and tools available on Metrabase and Chembench platforms we made the
comprehensive virtual profiling of membrane transport interactions for compounds of both datasets.
Herein, we performed the unique transporter profile of studied compounds, which is based on the
results from new BTL models and hits/predictions from over 20 membrane transporters of Metrabase
and Chembench (Figures 6 and 7).
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We compared the transport activity data among BTL and 16 transporters that are publicly
available in Metrabase (cheminformatics and bioinformatics database) [46]. Analysis of hits of BTL
dataset (compounds from Table S1, Supplementary material) in Metrabase database is represented
on Figure 6. It was found out that almost no experimental data exist for the phenolic compounds
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(ID 37–84), nucleobases, nucleosides and nucleotides (ID 1–36). The only exception was few flavonoids
(ID 65–70). On the other hand, drugs and endogenous substances (ID 85–120), which are of interest
for pharmaceutical industry, were better studied and experimentally analyzed, therefore more hits
were found.

Based on these results we can conclude that for phenolic compounds, nucleobases, nucleosides
and nucleotides the only available information regarding experimental transport activity of the
membrane transporters is those of BTL provided from research group of prof. Passamonti [53,54],
which are not included in Metrabase. Further on, we made analyses in Metrabase for compounds of
consensus A, which were predictive as active (15 compounds, see Section 2.1.2). We found out that
only for luteolin (ID4), kampferol (ID86), cianidanol (ID127) and eriodictyol (ID95) a few experimental
studies exist in this database; luteolin (MDR1–inhibitor, BCRP1–inhibitor, MRP2–non-inhibitor),
kaempferol (BCRP1–inhibitor, MRP2–non-inhibitor, OCT1–inhibitor, OATP1A2–inhibitor), cianidanol
(MRP2–non-inhibitor or substrate, OCT1–non-inhibitor, OATP2B1–inhibitor or non-inhibitor)
eriodictyol (MRP2–non-inhibitor). Besides this four compounds, which were captured the significant
attention of the scientific audience for their potential anti-oxidative, anti-tumor, and anti-inflammatory
effects, also other phenolic compound of natural origin like oleuropein (ID226) and leucodelphinidin
(ID131) are of interest due to their anti-neurodegenerative and hypolipidaemic effects [73,74]. Thus,
the predictions about transport ability by BTL and 14 others importers and exporters that are
represented in Tables S2 and S9 (Supplementary Material) are of high interest for clarification about
their active transport across membrane. Further on, we made predictions for 420 compounds (BTL and
phenolic datasets) by using QSAR models of 14 transporters available in Human intestinal transporter
database at Chembench platform [44]. The results of predictions are represented in Figure 7, Tables S8
and S9 (Supplementary Material). In general, the models have been found to have good prediction
ability and coverage for phenolic compounds, since only few compounds were out of AD or unable
to predict (Table S9, Supplementary Material). Yet, almost all models had poor prediction ability for
nucleobases, nucleosides and nucleotides (ID 1–36, Table S8, Supplementary Material). Poor prediction
ability was observed also for some flavonoids in models of MRP4, MRP5, MCT1, NTCP, ASBT and
OCT1 (anthocyanidins (ID 71–84) and flavonols (ID 52–64)).

3. Discussion

In spite a lack of adequate experimental validation for our in silico predictions, some information
could be gained by comparing structurally similar compounds. Among the fifteen the most
promising active compounds, which were selected with the BTL QSAR models, luteolin, kaempferol,
eriodictyol and pinobanksin were found to share the highest structural similarity with quercetin.
Quercetin, malvidin 3-glucoside, bilirubin and bromosulfophthalein are up to date the only compounds
identified experimentally as BTL substrates [55,75]. Hopefully, the results published in this study
would be inspiration for in vitro experts to test the most promising predicted active compounds with
the BTL transport activity assay. The compounds of natural origin with high health benefit should be
selected first, like oleuropein, luteolin, eriodictyol, cianidanol, and leucodelphinidin.

The clinic reports highlighted the impact of knowledge about how various therapeutics or dietary
supplements interacts with membrane transporters [76]. Herein, for the first time were represented
joint analyses of transport activities of BTL and several others membrane transporters. Results not
solely present a new insight in interactions between phenols and several membrane transporters,
but can help also in assessment of their potential absorption and disposition properties, yet gain also
valuable information for understanding possible interference of phenols with the transport activity
of drugs. Since ingestion of extra dietary phenolic supplements as support to chemotherapy was
proposed as promising therapeutic approach [7,10], but such diet could consequently influence drugs
absorption and disposition [58]. For proper drug application this is for sure of high importance.
Moreover, results of the systematic analysis performed in this study are also important for elucidation
of functional role of BTL, as up to our knowledge only limited data exist. Up to date, only one
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synopsis of reported interactions with BTL and other membrane transporters one a few compounds
(>50) is available [58]. Since in general not much is known about interactions between phenols and
transporters, the results from this study are of interest [77]. Moreover, we managed to confirm our
expectations, that newly developed BTL QSAR models have good predictive ability and coverage for
phenolic compounds. In future it would be of interest to make a similar study on the pharmaceutically
interested nucleobase derivatives [78–80], for which it is assumed that BTL could have important role
on their transport [54].

More than half a century has passed since an implementation of Hansch-Fujita approach in
the formulation of QSAR, which provided a new perspective for chemical-biological interactions
and a number of successful applications are known especially in drug discovery [77]. Nowadays,
we have abundance of QSAR models for predictions of numerous endpoints in various fields of
science. In this study we tried to collect and compare the QSAR models of membrane transporters
to make a comprehensive transporter profiles for purposes of virtual screening of compounds for
their bioavailabilty. Now point of future investigation should be to switch in new level beyond
individual approaches and integrate various QSAR analyses with ontology and omics data [77,81–83].
Such simultaneously predicting with joint data analyses are shown to increase the accuracy of models
by exploiting their common representation and identifying common features between individual
properties, which are frequently strongly correlated with one another [81,83]. For sure not in so far
future a chemical characterization will be even more empowered with an artificial intelligence assisted
software, which would make decisions based on integration of numerous data from in silico, in vitro,
in vivo and in situ analyses [84]. Thus, hopefully models from this study will serve like small piece of
a large puzzle in the complex biochemical system analysis.

4. Materials and Methods

Quantitative structure-activity relationships (QSARs) are widely used in silico methods to predict
biological activity for untested chemicals (Figure 1). This is proven, time and cost-effective approach,
which is in most cases sufficient alternative method to animal testing [44]. For building and validation
of models the appropriate statistical algorithms and the data matrix which includes numerical values
of chemical structures and empirical values of biological activity are needed.

4.1. Dataset

The dataset for modeling included 120 aromatic organic compounds (43 phenols and 77 various
aromatic compounds like nucleobase derivatives, drugs, dyes, etc.) [59]. In general chemical
structures of all compounds were optimized and numerically coded with molecular descriptors
(MD). The MD calculation and selection of influential MD is described in the Section 4.2.1.
The corresponding empirical data of BTL transport activity assay were collected from experiments
of Župerl et al. [54] and Karawajczk et al. [53]. Inhibition constants (Ki) were determined based
on Michaelis-Menten constants, which were obtained from spectrophotometrical evaluation of BTL
transport activity on selected compounds in medium of sulfobromophtalein (BSP) and rat liver
plasma membrane vesicles. According to threshold criteria proposed by Župerl et al. [54] the dataset
composed of 50 active compounds (inhibitors, pKi > 1.3) and 70 inactive compounds (non-inhibitors,
pKi ≤ 1.3). The compounds are listed in Table S1 (Supplementary Material). The test dataset was
compiled from literature. It encompasses natural occurring and synthetic phenolic compounds
having various potential health benefits. Altogether 300 compounds were collected from over
30 publications [7,11–30,85–93], see Table S2 (Supplementary Material). Compounds were arranged
according to their structural similarity into 12 groups: flavones/isoflavones, flavonols, flavanones/
isoflavanones, flavanonols, flavanols, xanthones, chromones, coumarins, chalcones, phenolic acid
derivatives, simple phenols and other compounds. Experimental evaluation of potential role of
selected phenolic compounds in preventing various chronic diseases are explained in detail in the
references listed in Table S2 (Supplementary Material).
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4.2. Computational Analysis

4.2.1. Molecular Descriptors

Molecular structures were represented with a set of molecular descriptors (MDs). First,
the MOPAC software [94] was used for optimization of the 2D chemical structures into 3D
conformations considering the minimal energy criterion for the optimal conformation of the compound
in vacuum. Then numerical coding of 3D conformations was performed with MDs, which were
calculated with the CODESSA program [95]. With the applied software more than 400 MDs for each
compound were calculated. Second, the numerical encoding of 2D conformations was performed with
Dragon 7.0 software (Kode srl., Pisa, Italy) [96], which calculated over 3000 MDs for each molecule.
The dataset with Codessa and Dragon descriptors were further on treated separately. So, obtained two
datasets were normalized to zero mean and unit standard deviation for each descriptor. Afterwards,
the reduction of numerous descriptors was performed by omitting the MDs with zero variance or high
intercorrelation (>0.9). The set of descriptors was then reduced according to the similarity criterion in
the Kohonen map by following the protocol of Martinčič et al. [59], which resulted in the final data
pool of 66 and 87 MDs for Codessa and Dragon dataset, respectively.

4.2.2. Generation of Models

The inputs for model building were various m-dimensional vectors representing the chemical
structure, m being the number of MDs selected (independent variables), and the targets (properties,
i.e. dependent variables) corresponding to pKi of BTL transport activity. We used CPANNatNIC
software for the splitting of data for modeling into training and validation set [59,92]. For model
fitting the linear and nonlinear regression approaches were used. The multiple linear regression
models were developed with Qsarins software (DiSTA, Varese, Italy, www.qsar.it) [68]. The supervised
learning models were developed by using counter-propagation artificial neural network (CP-ANN)
algorithm and in-house software [97,98]. For classification and prediction of unknown compounds
two QSAR modeling strategies were adopted. Firstly, the classification models were developed to
separate chemicals into active/non-active classes, and then optimized regression models were used
for the active chemicals to predict the values of the inhibition constants [59]. All 120 compounds
were considered for the construction and optimization of the classification model, while the predictive
models are based on active compounds only. For optimization we applied cross-validation (CV)
and genetic algorithm (GA) [65,98] in order to select the influential descriptors and to improve the
predictive ability and robustness of the models. In models selection the applicability domain (AD) [67]
was applied to evaluate the model predictions within the established chemical space limits.

4.2.3. Statistical Evaluation of Models

The criteria for selection of the best classification models, so called quality indicators, are listed in
Table 5 [99,100].

Models with the highest quality indicators of the validation set and wider applicability (larger AD)
were further analyzed. Two approaches were used for AD evaluation, the cumulative distributions of
Euclidian distances to central neurons (MEDS) for CP-ANN models [67] and the leverage values for
MLR models [68]. Several models were built by each of the selected modelling method. Further on,
the consensus of model predictions was performed by combining predictions of three or two QSAR
models. The consensus was performed following the protocol of Marzo et al. [69], which including
arranging of compounds in two types: A—complete agreement among predictions, B-maximum one
disagreement among the predictions.

www.qsar.it
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Table 5. Quality indicators for evaluation of different classification models.

Acronym Quality Indicator Formula

TP true positive
TN true negative
FP false positive
FN false negative
PR predict ratio predicted compounds/total compounds

SE, TPR sensitivity, true positive rate TP/(TP + FN)
SP, TNR specificity, true negative rate TN/(TN + FP)

ACC accuracy (SP + SE)/2
NPV negative predictive value TN/(TN + FN)
PPV positive predictive value, precision TP/(TP + FP)

MCC Matthews correlation coefficient ((TP*TN)-(FP*FN))/
√

[(TP + FP)(TP +
FN)(TN + FP)(TN + FN)]

The criteria for selection of the best regression models were several validation parameters
(R2, RMSE, CCC, Q2

F3, rm
2) [64,70]. The consensus approach was also applied for the best four

regression models (M1-M4) by using the weighted average response. The calculation was performed
following the Equation (1); M—number of models, yk—response estimated by the k-th model,
hk—leverage [65]:

yw =
∑M

k=1
yk
hk

∑M
k=1

1
hk

(1)

In order to evaluate diversity of models the Hamming distances dh between models were
accounted based on the two-way table [65] (Equation (2)). The table represent the relationship between
two binary vectors, each vector represent one model; b—the number of cases that for same position
there is 1 in vector I and 0 vector II, c—the number of cases that for same position there is 0 in vector I
and 1 vector II Values in Table S5 (Supplementary Material) represent the number of MD not shared
among models:

dh = b + c (2)

4.3. Metrabase and Chembench Analyses

The public available cheminformatics and bioinformatics database for small molecule transporter
data analysis (Metrabase) [46,101] was screened for transport activity profile of 120 compounds
(BTL dataset). The synopsis of transport activity among BTL and 16 transporters from Metrabase
was performed. The selected 16 transporters are listed in Table 3. Further on, in Human intestinal
transporter database, available on Chembench platform, the QSAR models of 14 transporters were
used to make predictions for 420 compounds (BTL and phenolic datasets) [44,102]. The transporters
are listed in Table 3 and detailed list of QSAR models properties is summarized in Table S3
(Supplementary Material). The comparison of transport activity among BTL and 14 transporters
from Chembench was performed for both datasets.

5. Conclusions

New classifiers for BTL transport activity were developed. Based on in silico approach for
estimation of BTL transport activity the classification for dietary/pharmaceutically interesting
compounds (natural dietary phenols and synthetic phenol-like drugs) were performed. Using QSAR
classification models (NN-C, NN-D, Q-D) we estimated the BTL transport activity of 300 compounds,
which have not been previously experimentally evaluated. Moreover, the consensus among battery of
models was applied, since the detailed evaluation of models shown better performance than individual
models. With various predictive CP-ANN models (M1-M4) then the transport activity prediction
(inhibition constant pKi [mmol/L]) for the compounds classified as active was assessed. The reliability



Molecules 2019, 24, 837 16 of 21

of all predictions was evaluated with the applicability domain (AD) of each individual classification
and regression model. In general, BTL is known as a potential delivery system for wide variety of the
vitally important endogenous substrates and drugs, yet with the models represented in this study a
good ability for predicting phenolic compounds was shown too. The 205 compounds from the dataset
of 300 phenols have a potential to interact with BTL.

The central part of this study was the synopsis of unique transporter profiles of BTL in comparison
with 20 other membrane transporters from Metrabase and Chembench. Results present a new insight
in interactions between phenols and several membrane transporters, which can help not solely in
assessment of their potential absorption and disposition properties but also gain insight in possible
interference of phenols with the transport activity of drugs, what can be valuable information in
drug application.

Supplementary Materials: The list of ChemBench models and detailed list of BTL and phenolic datasets with
extended results of data analyses (Tables S1–S9) are available as supplementary material online.
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