Supplementary Materials

Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis

pathway and migration

Kun Yang¹, Ming-Ji Jin², Zhe-Shan Quan^{1,*}, Hu-Ri Piao^{1,*}

- ¹ Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education; Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, PR China; <u>yangkun815@163.com</u> (K.Y.)
- ² Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050, China; <u>mingji612@126.com</u> (M.-J.J.)
- * Correspondence: <u>zsquan@ybu.edu.cn</u> (Z.-S.Q.); <u>piaohr@ybu.edu.cn</u> (H.-R.P.); Tel.: +86-433-243-6149 (H.-R.P.)

Table of contents

Table S1	S1
Table S2	S1
Table S3	
Table S4	
NMR Spectra	
1	

Apoptosis stage	Apoptosis percentage (%) ^a			
	0 μΜ	2.5 µM	5 μΜ	10 µM
Early apoptosis	$1.85\ \pm 0.13$	$2.91\ \pm 0.45$	15.93 ± 0.76	37.73 ± 0.97
Late apoptosis	3.62 ± 0.07	$3.69\ \pm 0.48$	7.51 ± 0.68	14.63 ± 1.17
Overall apoptosis	5.47 ± 0.06	6.59 ± 0.93^{b}	$23.450 \pm 1.07^{\circ}$	$52.00 \pm 1.41^{\circ}$

Table S1. The apoptosis rates of HepG2 cells treated with different concentration compound 7a.

^a Data are expressed as means \pm SD of the percentages of apoptotic cells from three independent experiments.

^b Statistical significance is determined by two-tailed Student t-test: p < 0.01.

^c Statistical significance is determined by two-tailed Student t-test: p < 0.001.

Antibody –	Relative expression level ^a			
	0 μΜ	2.5 μM	5 μΜ	10 µM
Bax	1.011 ±0.113	1.180 ± 0.046^{b}	$1.347 \pm 0.081^{\circ}$	1.593 ± 0.112^{d}
Bcl-2	1.052 ± 0.107	$0.685\ {\pm}0.025^{d}$	0.312 ± 0.012^{d}	0.268 ± 0.022^{d}
cytochrome c	1.023 ± 0.078	1.407 ± 0.015^{d}	1.663 ± 0.110^{d}	2.220 ± 0.387^{d}
procaspase-3	1.106 ± 0.033	$0.510 \ {\pm} 0.132^{d}$	0.317 ± 0.031^d	$0.170\ {\pm}0.053^{d}$
procaspase-9	1.050 ± 0.013	0.600 ± 0.082^{d}	0.297 ± 0.058^d	$0.223\ \pm 0.029^{d}$
Full length	0.852 ± 0.019	$0.019 \qquad 0.78 \pm 0.012^{d}$	0.220 ± 0.019^{d}	0.152 ± 0.009^d
procaspase-3				
Cleaved	0.045 + 0.007	0.056 · 0.011 ^d	$0.142 + 0.012^{d}$	$0.185 + 0.02c^{d}$
Caspase-3	0.043 ± 0.007	0.030 ± 0.011	0.143 ± 0.013	0.185 ± 0.026

Table S2. Western blot analysis effect of compound 7a in HepG2 cells.

^a Data are expressed as means \pm SD of the percentages of apoptotic cells from three independent experiments.

^b Statistical significance is determined by two-tailed Student t-test: p < 0.05.

^c Statistical significance is determined by two-tailed Student t-test: p < 0.01.

^d Statistical significance is determined by two-tailed Student t-test: p < 0.001.

cells.				
Cell cycle stage –	Cell cycle distribution (%) ^a in different concentrations			
	0 μΜ	0.25 μΜ	0.5 μΜ	1 µM
G0/G1	33.73 ±1.93	44.18 ± 1.79^{b}	$56.49 \pm 1.40^{\circ}$	63.96 ± 2.42^{c}
S	48.10 ±2.52	38.25 ± 1.65^{b}	$19.21 \pm 1.33^{\circ}$	14.52 ± 1.43^{c}
G2/M	18.30 ± 1.64	17.55 ± 0.90^{d}	24.81 ± 1.79^{d}	22.22 ±1.16 ^d

Table S3. The statistical results of cell cycle distribution after treatment of compound **7a** in HepG2 cells.

^a Data are expressed as means \pm SD of the percentages of apoptotic cells from three independent experiments.

^b Statistical significance is determined by two-tailed Student t-test: p < 0.05.

^c Statistical significance is determined by two-tailed Student t-test: p < 0.001.

^d No significance.

Table S4. Compound 7a inhibited migration of HepG2 cells.

Concentration	0 μΜ	0.25 μΜ	0.5 μΜ	1 µM
Inhibition (%) ^a	0	12.58 ± 1.69^{b}	23.71 ± 0.59^{b}	40.18 ± 2.92^{b}

^a Data are expressed as means ±SD of cell inhibitory rate (%) for the migration of HepG2 cells from three independent experiments.

^b Statistical significance is determined by two-tailed Student t-test: p < 0.001.

NMR Spectra

Figure S1. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **2**.

Figure S2. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 2.

Figure S3. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 3a.

Figure S4. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 3a.

Figure S5. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3a**.

Figure S6. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3b**.

Figure S7. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3b**.

Figure S8. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3b**.

Figure S9. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 3c.

Figure S10. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3c**.

Figure S11. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3c**.

Figure S12. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3d**.

Figure S13. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3d.

Figure S14. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3d**.

Figure S15. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3e**.

Figure S16. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3e**.

Figure S17. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3e**.

Figure S18. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3f**.

Figure S19. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3f.

Figure S20. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3f**.

Figure S21. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 3g.

Figure S22. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3g.

Figure S23. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3g**.

Figure S24. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3h**.

Figure S25. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3h**.

Figure S26. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3h**.

Figure S27. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 3i.

Figure S28. ¹³C NMR (101 MHz, DMSO–*d*₆) spectrum of compound 3i

Figure S29. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3i**.

Figure S30. ¹H NMR (400 MHz, DMSO–*d*₆) spectrum of compound 3j.

Figure S31. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3j.

Figure S32. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3***j*.

Figure S33. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3k**.

Figure S34. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3k.

Figure S35. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3k**.

Figure S36. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **31**.

Figure S37. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 31.

Figure S38. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound 31.

Figure S39. ¹H NMR (400 MHz, DMSO–*d*₆) spectrum of compound **3m**.

Figure S40. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 3m.

Figure S41. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3m**.

Figure S42. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 3n.

Figure S43. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3n.

Figure S44. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3n**.

Figure S45. ¹H NMR (400 MHz, DMSO–*d*₆) spectrum of compound 30.

Figure S46. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 30.

Figure S47. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **30**.

Figure S48. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3p**.

Figure S49. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3p**.

Figure S50. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3p**.

Figure S51. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3q**.

Figure S52. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3q.

Figure S53. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3q**.

Figure S54. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3r**.

Figure S55. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3r.

Figure S56. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3r**.

Figure S57. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3s**.

Figure S58. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3s.

Figure S59. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3s**.

Figure S60. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3t**.

Figure S61. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3t.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 11 (ppm)

Figure S62. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3t**.

Figure S63. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3u**.

Figure S64. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3u**.

Figure S65. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3u**.

Figure S66. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3v**.

Figure S67. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3v.

Figure S68. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3v**.

Figure S69. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3w**.

Figure S70. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3w**.

Figure S71. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3w**.

Figure S72. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3x**.

Figure S73. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3x.

Figure S74. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3x**.

Figure S75. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3y**.

Figure S76. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **3y**.

Figure S77. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3y**.

Figure S78. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **3z**.

Figure S79. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 3z.

Figure S80. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **3z**.

Figure S81. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 4a.

Figure S82. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 4a.

Figure S83. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound 4a.

Figure S84. ¹H NMR (400 MHz, DMSO–*d*₆) spectrum of compound 4b.

Figure S85. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 4b.

Figure S86. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **4b**.

Figure S87. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **5a**.

Figure S88. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 5a.

Figure S89. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **5a**.

Figure S90. ¹H NMR (400 MHz, DMSO–*d*₆) spectrum of compound **5b**.

Figure S91. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **5b**.

Figure S92. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **5b**.

Figure S93. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **6a**.

Figure S94. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **6a**.

Figure S95. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **6b**.

Figure S96. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **6b**.

Figure S97. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **6c**.

Figure S98. ¹³C NMR (101 MHz, DMSO–*d*₆) spectrum of compound 6c

Figure S99. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **6d**.

Figure S100. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **6d**.

Figure S101. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 6e.

Figure S102. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 6e.

Figure S103. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 6f.

Figure S104. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **6f**.

Figure S105. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7a.

Figure S106. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 7a.

Figure S107. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7a**.

Figure S108. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **7b**.

Figure S109. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 7b.

Figure S110. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7b**.

Figure S111. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **7c**.

Figure S112. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound **7c**.

Figure S113. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7c**.

Figure S114. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **7d**.

Figure S115. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 7d.

Figure S116. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7d**.

Figure S117. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7e.

Figure S118. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 7e.

Figure S119. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7e**.

Figure S120. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **7f**.

Figure S121. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 7f.

Figure S122. ¹⁹F NMR (376 MHz, DMSO $-d_6$) spectrum of compound **7f**.

Figure S123. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7g.

Figure S124. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 7g.

Figure S125. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7g**.

Figure S126. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound **7h**.

Figure S127. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound **7h**.

Figure S128. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7h**.

Figure S129. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7i.

Figure S130. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 7i.

Figure S131. ¹⁹F NMR (376 MHz, DMSO–*d*₆) spectrum of compound 7i.

Figure S132. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7j.

Figure S133. ¹³C NMR (101 MHz, DMSO– d_6) spectrum of compound 7j.

Figure S134. ¹⁹F NMR (376 MHz, DMSO $-d_6$) spectrum of compound **7**j.

Figure S135. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 7k.

Figure S136. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 7k.

Figure S137. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound **7k**.

Figure S138. ¹H NMR (400 MHz, DMSO– d_6) spectrum of compound 71.

Figure S139. ¹³C NMR (101 MHz, DMSO $-d_6$) spectrum of compound 71.

Figure S140. ¹⁹F NMR (376 MHz, DMSO– d_6) spectrum of compound 71.