



1 *Type of the Paper Article* 

## 2 Identification of the Tetrel Bonds between Halide

3 Anions and Carbon Atom of Methyl Groups Using

## 4 Electronic Criterion

## 5 Ekaterina Bartashevich <sup>1,\*</sup>, Yuriy Matveychuk <sup>1</sup> and Vladimir Tsirelson <sup>1,2</sup>

6 <sup>1</sup> South Ural State University Chelyabinsk, Russia; <u>info@susu.ru</u>

7 <sup>2</sup> D.I. Mendeleev University of Chemical Technology, Moscow, Russia;

8 \* Correspondence: bartashevichev@susu.ru;

| 9  | Table S1. The energy characteristics of Hal <sup>-</sup> CH <sub>3</sub> –YR (Hal <sup>-</sup> = Cl, Br) complexes taken from crystal |
|----|---------------------------------------------------------------------------------------------------------------------------------------|
| 10 | structures with listed refcodes                                                                                                       |

| Refcode        | E <sub>com</sub> <sup>2</sup> | E <sub>cat</sub> <sup>2</sup> | EHal <sup>2</sup> | E <sub>b</sub> <sup>2</sup> | $\Delta E_{BSSE^3}$ | E <sub>b</sub> * 4 |
|----------------|-------------------------------|-------------------------------|-------------------|-----------------------------|---------------------|--------------------|
| LONGEB (Y=N)   | -1227.466350                  | -767.095777                   | -460.257420       | -71.052830                  | -0.001526           | -71.895402         |
| TMHYZC (Y=N)   | -690.470080                   | -230.081010                   | -460.257420       | -82.668243                  | -0.001488           | -83.217361         |
| VAPREJ (Y=N)   | -633.933164                   | -173.545474                   | -460.257420       | -81.800417                  | -0.002269           | -82.062672         |
| ZENJAD (Y=O)   | -993.217431                   | -532.876748                   | -460.257420       | -52.282767                  | -0.001837           | -53.577581         |
| GETQIF (Y=N)   | -635.155302                   | -174.768773                   | -460.257420       | -81.072254                  | -0.001438           | -81.495893         |
| FADXIR (Y=N)   | -3015.071263                  | -440.680183                   | -2574.261952      | -81.086284                  | -0.000161           | -81.598635         |
| LILLOH (Y=N)   | -2747.932725                  | -173.545490                   | -2574.261952      | -78.670336                  | -0.000810           | -78.901512         |
| POSTUM02 (Y=N) | -2709.858138                  | -135.469081                   | -2574.261952      | -79.815774                  | -0.000104           | -80.207947         |
| ZZZGVM01 (Y=N) | -2749.154832                  | -174.768716                   | -2574.261952      | -77.967743                  | -0.000772           | -78.343999         |
| ZZZUQO03 (Y=N) | -2788.451625                  | -214.067645                   | -2574.261952      | -76.626898                  | -0.000749           | -77.006447         |

11 <sup>1</sup>R – residual fragments of cations in crystals with corresponding refcodes

12 <sup>2</sup> Notations are same as in Calculations section

13 <sup>3</sup> The value of BSSE correction  $\Delta E_{BSSE} = E_b *_{BSSE} - E_b *$ , where  $E_b *_{BSSE} -$  the binding energy between halide anion and

14 cation with non-relaxed structures as in optimized complex with BSSE correction

15 <sup>4</sup> E<sub>b</sub>\* – the binding energy between halide anion and cation with non-relaxed structure as in optimized complexes



| - | Crystal | Bond      | Crystal Dexp,<br>⊖<br>(HalC–N)exp | Crystal D <sub>calc</sub> ,<br>O<br>(HalC–<br>N) <sub>calc</sub> | ϱ(rьcp),<br>crystal | Cation<br>D <sub>calc</sub> | Q(rbcp),<br>cation |
|---|---------|-----------|-----------------------------------|------------------------------------------------------------------|---------------------|-----------------------------|--------------------|
| _ | GETQIF  | Cl(3)C(2) | 3.4584                            | 3.4260                                                           | 0.0056              | -                           | -                  |

|          |                                | 169.08 | 163.91 |         |       |        |
|----------|--------------------------------|--------|--------|---------|-------|--------|
|          | C(2)–N(1)                      | 1.4815 | 1.4958 | 0.2441  | 1.505 | 0.2368 |
|          | $C_{1}(1) - \cdots - C_{n}(4)$ | 3.4251 | 3.4087 | 0.0068  | _     | _      |
| LONGEB   |                                | 175.28 | 166.64 | 0.0000  |       |        |
|          | C(4)–N(2)                      | 1.4722 | 1.4740 | 0.2458  | 1.478 | 0.2450 |
|          | $C_{1}(1) - \cdots - C_{n}(1)$ | 3.417  | 3.4385 | 0 0064  | _     | _      |
| VAPREJ   |                                | 164.88 | 164.49 | 0.0001  |       |        |
|          | C(1)-N(1)                      | 1.466  | 1.4747 | 0.2480  | 1.479 | 0.2442 |
|          | $C_{1}(1) - \cdots C_{2}(2)$   | 3.4374 | 3.4280 | 0.0062  | _     | _      |
| TMHYZC   | C(1) $C(2)$                    | 174.96 | 176.34 | 0.0002  |       |        |
|          | C(2)–N(1)                      | 1.4976 | 1.5080 | 0.2406  | 1.508 | 0.2413 |
|          | $C_{1}(1) - \cdots C_{n}(7)$   | 3.5111 | 3.4644 | 0.0056  | _     | _      |
| ZENJAD   | C(I) = C(I)                    | 170.58 | 171.72 | 0.0000  |       |        |
|          | C(7)–O(2)                      | 1.4471 | 1.4468 | 0.2306  | 1.451 | 0.2270 |
|          | $Br(1) - \cdots C(1)$          | 3.4915 | 3.4436 | 0.0070  | _     | _      |
| JIBDED01 | DI(1) C(1)                     | 173.25 | 173.24 | 0.007.0 |       |        |
|          | C(1)-N(1)                      | 1.4926 | 1.5015 | 0.2490  | 1.519 | 0.2261 |
|          | $P_{r}(1) = C(2)$              | 3.533  | 3.5664 | 0.0061  |       |        |
| LILLOH   | $DI(1) \cdots C(2)$            | 167.25 | 166.86 | 0.0001  | —     | -      |
|          | C(2)–N(1)                      | 1.474  | 1.4735 | 0.2490  | 1.479 | 0.2442 |
|          | Br(1) C(6)                     | 3.6014 | 3.5722 | 0.0058  |       |        |
| FADXIR   | DI(1) = C(0)                   | 170.87 | 173.15 | 0.0050  | _     | _      |
|          | C(6)–N(1)                      | 1.5025 | 1.5082 | 0.2371  | 1.506 | 0.2389 |
|          | Br(1) <sup>-</sup> C(1)        | 3.7012 | 3.6667 | 0.0048  |       |        |
| POSTUM02 |                                | 175.21 | 174.15 | 0.0040  | _     | —      |
|          | C(1)–N(1)                      | 1.4852 | 1.4928 | 0.2432  | 1.509 | 0.2304 |
|          | Br(1) <sup>-</sup> C(2)        | 3.742  | 3.7283 | 0.0042  | _     | _      |
| ZZZGVM01 |                                | 168.65 | 169.04 | 0.0042  |       |        |
|          | C(2)–N(1)                      | 1.474  | 1.4968 | 0.2437  | 1.505 | 0.2368 |
|          | Br(1)C(1)                      | 3.685  | 3.6819 | 0 0049  | _     | _      |
| ZZZUQO03 |                                | 171.12 | 171.11 | 0.0017  |       |        |
|          | C(1)–N(1)                      | 1.487  | 1.5039 | 0.2411  | 1.506 | 0.2399 |

19 20 21

**Table S3**. Bond lengths D(Å), the characteristics of electron density, potential and kinetic energy densities (a.u.), electrostatic potential (a.u.), potential acting on an electron in molecule PAEM at bcp (a.u.) for Hal<sup>-</sup>···CH<sup>3</sup> and Y–C bonds in complexes and cations calculated in GAMESS code

| Refcode | Bond  | D in<br>complex | D in<br>cations | ϱ(r <sub>bcp</sub> ) in<br>complex | Q(r <sub>bcp</sub> ) in<br>cation | v(rbcp) | g(rbcp) | ESP(rbcp) | PAEM(rbcp) |
|---------|-------|-----------------|-----------------|------------------------------------|-----------------------------------|---------|---------|-----------|------------|
| CETOIE  | ClC   | 2.8262          |                 | 0.019                              |                                   | 0.0161  | -0.0131 | 0.0022    | -0.4944    |
| GEIQIF  | N–C   | 1.5218          | 1.4947          | 0.214                              | 0.235                             | 0.1509  | -0.3922 | 1.2734    |            |
| LONCER  | ClC   | 2.8782          |                 | 0.017                              |                                   | 0.0147  | -0.0116 | -0.0246   | -0.4569    |
| LONGED  | N-C   | 1.4930          | 1.4698          | 0.221                              | 0.242                             | 0.1801  | -0.4520 | 1.3820    |            |
| тмнулс  | ClC   | 2.8248          |                 | 0.019                              |                                   | 0.0164  | -0.0133 | 0.0068    | -0.5004    |
| IWIIIZC | N-C   | 1.5185          | 1.4975          | 0.220                              | 0.239                             | 0.1491  | -0.3980 | 1.2583    |            |
| VADDEI  | ClC   | 2.8226          |                 | 0.019                              |                                   | 0.0167  | -0.0135 | 0.0076    | -0.5006    |
| VALKEJ  | N-C   | 1.4859          | 1.4722          | 0.225                              | 0.241                             | 0.2033  | -0.4935 | 1.4894    |            |
| ZENJAD  | ClC   | 2.9268          |                 | 0.015                              |                                   | 0.0125  | -0.0098 | -0.0771   | -0.3956    |
|         | O-C   | 1.4844          | 1.4422          | 0.196                              | 0.224                             | 0.2124  | -0.4483 | 1.4698    |            |
| FADXIR  | Br⁻…C | 2.9855          |                 | 0.017                              |                                   | 0.0134  | -0.0110 | 0.0145    | -0.4865    |







Figure S1. Binding energy (kcal/mol) in complexes vs the potential (a) and kinetic (b) energy density (a.u.) at the bond critical point of tetrel bonds





Figure S2. Binding energy (kcal/mol) in complexes vs the electrostatic potential (a.u.) (a) and (b), potential acting on an electron in molecule (a.u.) at the bond critical point of tetrel bon



29 30

Figure S3. ESP in the trimethylammonium chloride on the isosurface of electron density of 0.02 a.u.