Identification of Bis Cyclic Guanidines as Antiplasmodial Compounds from Positional Scanning Mixture Based Libraries

David L. Perry II ${ }^{1, t}$, Bracken F. Roberts ${ }^{1, \dagger}$, Ginamarie Debevec, ${ }^{2}$ Debopam Chakrabarti ${ }^{1}$ and Adel Nefzi ${ }^{2, *}$

${ }^{1}$ Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA
 ${ }^{2}$ Torrey Pines Institute for Molecular Studie, 11350 SW Village Parkway, Port Saint Lucie, FL 34987

Supporting Information

Pages 2-4: Building blocks used for the synthesis of library TPI-1955

Pages 5-7: Structures of all compounds derived from the deconvolution of library TPI- 1955

Pages 8-14: LCMS of reported active compounds

Pages $15-28:{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ of reported active compounds

Page 29: Stability in mouse plasma of compound TPI 2359-47

	R1	R2	R3	R4
TPI-1955-1	Boc-Ala-OH	X	X	X
TPI-1955-2	Boc-Phe-OH	X	X	X
TPI-1955-3	Boc-Gly-OH	X	X	X
TPI-1955-4	Boc-Ile-OH $11 / 2 \mathrm{H}_{2} \mathrm{O}$	X	X	X
TPI-1955-5	Boc-Leu-OH• $\mathrm{H}_{2} \mathrm{O}$	X	X	X
TPI-1955-6	Boc-Ser(Bzl)-oh	X	X	X
TPI-1955-7	Boc-Thr(Bzl)-OH	X	X	X
TPI-1955-8	Boc-Val-OH	X	X	X
TPI-1955-9	Boc-Tyr(2-Br-Z)-OH	X	X	X
TPI-1955-10	Boc-D-Ala-OH	X	X	X
TPI-1955-11	Boc-D-Phe-OH	X	X	X
TPI-1955-12	Boc-D-Ile-OH	X	X	X
TPI-1955-13	Boc-D-Leu-OH•H2O	X	X	X
TPI-1955-14	Boc-D-Ser(Bzl)-oh	X	X	X
TPI-1955-15	Boc-D-Thr(Bzl)-OH	X	X	X
TPI-1955-16	Boc-D-Val-OH	X	X	X
TPI-1955-17	Boc-D-Tyr(2-Br-Z)-OH	X	X	X
TPI-1955-18	Boc-Phg-OH	X	X	X
TPI-1955-19	Boc-Nva-OH	X	X	X
TPI-1955-20	Boc-D-Nva-OH	X	X	X
TPI-1955-21	Boc-Nle-OH	X	X	X
TPI-1955-22	Boc-D-Nle-OH	X	X	X
TPI-1955-23	$\begin{aligned} & \text { Boc-Ala(2-naphthyl)- } \\ & \mathrm{OH} \end{aligned}$	X	X	X
TPI-1955-24	$\begin{aligned} & \text { Boc-D-Ala(2- } \\ & \text { naphthyl)-OH } \end{aligned}$	X	X	X
TPI-1955-25	Boc-Cha-OH	X	X	X
TPI-1955-26	Boc-D-Cha-OH	X	X	X
TPI-1955-27	X	Boc-Ala-OH	X	X
TPI-1955-28	X	Boc-Phe-OH	X	X
TPI-1955-29	X	Boc-Gly-OH	X	X
TPI-1955-30	X	Boc-Ile-OH $\cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$	X	X
TPI-1955-31	X	Boc-Leu-OH• $\mathrm{H}_{2} \mathrm{O}$	X	X
TPI-1955-32	X	Boc-Ser(Bzl)-oh	X	X
TPI-1955-33	X	Boc-Thr(Bzl)-OH	X	X
TPI-1955-34	X	Boc-Val-OH	X	X
TPI-1955-35	X	Boc-Tyr(2-Br-Z)-OH	X	X
TPI-1955-36	X	Boc-D-Ala-OH	X	X
TPI-1955-37	X	Boc-D-Phe-OH	X	X
TPI-1955-38	X	Boc-D-Ile-OH	X	X
TPI-1955-39	X	Boc-D-Leu-OH•H2O	X	X
TPI-1955-40	X	Boc-D-Ser(Bzl)-oh	X	X

TPI-1955-41	X	Boc-D-Thr(Bzl)-OH	X	X
TPI-1955-42	X	Boc-D-Val-OH	X	X
TPI-1955-43	X	$\begin{aligned} & \text { Boc-D-Tyr(2-Br-Z)- } \\ & \text { OH } \end{aligned}$	X	X
TPI-1955-44	X	Boc-Phg-OH	X	X
TPI-1955-45	X	Boc-Nva-OH	X	X
TPI-1955-46	X	Boc-D-Nva-OH	X	X
TPI-1955-47	X	Boc-Nle-OH	X	X
TPI-1955-48	X	Boc-D-Nle-OH	X	X
TPI-1955-49	X	Boc-Ala(2-naphthyl)-OH	X	X
TPI-1955-50	X	Boc-D-Ala(2-naphthyl)-OH	X	X
TPI-1955-51	X	Boc-Cha-OH	X	X
TPI-1955-52	X	Boc-D-Cha-OH	X	X
TPI-1955-53	X	X	Boc-Ala-OH	X
TPI-1955-54	X	X	Boc-Phe-OH	X
TPI-1955-55	X	X	Boc-Gly-OH	X
TPI-1955-56	X	X	Boc-lle-OH•1/2 $\mathrm{H}_{2} \mathrm{O}$	X
TPI-1955-57	X	X	Boc-Leu-OH• $\mathrm{H}_{2} \mathrm{O}$	X
TPI-1955-58	X	X	Boc-Ser(Bzl)-oh	X
TPI-1955-59	X	X	Boc-Thr(Bzl)-OH	X
TPI-1955-60	X	X	Boc-Val-OH	X
TPI-1955-61	X	X	Boc-Tyr(2-Br-Z)-OH	X
TPI-1955-62	X	X	Boc-D-Ala-OH	X
TPI-1955-63	X	X	Boc-D-Phe-OH	X
TPI-1955-64	X	X	Boc-D-Ile-OH	X
TPI-1955-65	X	X	Boc-D-Leu-OH•H2O	X
TPI-1955-66	X	X	Boc-D-Ser(Bzl)-oh	X
TPI-1955-67	X	X	Boc-D-Thr(Bzl)-OH	X
TPI-1955-68	X	X	Boc-D-Val-OH	X
TPI-1955-69	X	X	Boc-D-Tyr(2-Br-Z)-OH	X
TPI-1955-70	X	X	Boc-Phg-OH	X
TPI-1955-71	X	X	Boc-Nva-OH	X
TPI-1955-72	X	X	Boc-D-Nva-OH	X
TPI-1955-73	X	X	Boc-Nle-OH	X
TPI-1955-74	X	X	Boc-D-Nle-OH	X
TPI-1955-75	X	X	Boc-Ala(2-naphthyl)-OH	X
TPI-1955-76	X	X	Boc-D-Ala(2-naphthyl)-OH	X
TPI-1955-77	X	X	Boc-Cha-OH	X
TPI-1955-78	X	X	Boc-D-Cha-OH	X
TPI-1955-79	X	X	X	1-phenyl-1-cyclopropanecarboxylic acid
TPI-1955-80	X	X	X	2-Phenylbutyric Acid
TPI-1955-81	X	X	X	3-Phenylbutyric Acid
TPI-1955-82	X	X	X	m-Tolylacetic acid

TPI-1955-83	X	X	X	3-Fluorophenylacetic Acid
TPI-1955-84	X	X	X	3-Bromophenylacetic Acid
TPI-1955-85	X	X	X	(α, α, α Trifluoro-m-Toly) acetic acid
TPI-1955-86	X	X	X	p -Tolylacetic acid
TPI-1955-87	X	X	X	4-Fluorophenylacetic acid
TPI-1955-88	X	X	X	3-Methoxyphenylacetic acid
TPI-1955-89	X	X	X	4-Bromophenylacetic acid
TPI-1955-90	X	X	X	4-Methoxyphenylacetic acid
TPI-1955-91	X	X	X	4-ethoxyphenylacetic acid
TPI-1955-92	X	X	X	4-isobutyl-alpha-Methylphenylacetic Acid
TPI-1955-93	X	X	X	3,4-Dichlorophenylacetic acid
TPI-1955-94	X	X	X	3,5-Bis(Trifluoromethyl)-Phenylacetic acid
TPI-1955-95	X	X	X	3-(3,4-Dimethoxyphenyl)-propionic Acid
TPI-1955-96	X	X	X	Phenylacetic acid
TPI-1955-97	X	X	X	3,4,5-Trimethoxybenzoic acid
TPI-1955-98	X	X	X	Butyric Acid
TPI-1955-99	X	X	X	Heptanoic Acid
TPI-1955-100	X	X	X	Isobutyric Acid
TPI-1955-101	X	X	X	2-Methylbutiric Acid
TPI-1955-102	X	X	X	Isovaleric acid
TPI-1955-103	X	X	X	3-Methylvaleric acid
TPI-1955-104	X	X	X	4-Methylvaleric acid
TPI-1955-105	X	X	X	p-Toluic Acid
TPI-1955-106	X	X	X	cyclopentanecarboxylic acid
TPI-1955-107	X	X	X	cyclohexanecarboxilic acid
TPI-1955-108	X	X	X	cyclohexylacetic acid
TPI-1955-109	X	X	X	cyclohexanebutyric acid
TPI-1955-110	X	X	X	cycloheptanecarboxylic acid
TPI-1955-111	X	X	X	2-Methylcyclopropanecarboxylic acid
TPI-1955-112	X	X	X	cyclobutanecarboxylic acid
TPI-1955-113	X	X	X	3-cyclopentylpropionic acid
TPI-1955-114	X	X	X	cyclohexanepropionic acid
TPI-1955-115	X	X	X	4-methyl-1-cyclohexancarboxylic acid
TPI-1955-116	X	X	X	4-tert-butyl-cyclohexancecarboxylic acid
TPI-1955-117	X	X	X	4-biphenylacetic acid
TPI-1955-118	X	X	X	1-Adamantancecarboxylic acid
TPI-1955-119	X	X	X	1-adamantaneacetic acid
TPI-1955-120	X	X	X	2-norbornaneacetic acid

2359-8

2359-9
Molecular Weight: 613.760

Molecular Weight: 575.788

2359-14
Molecular Weight: 545.762

2359-19
Molecular Weight: 509.773
2359-20
NH Molecular Weight: 537.826

Molecular Weight: 537.826

2359-26
Molecular Weight: 499.692

2359-29

2359-30
Molecular Weight: 541.8

2359-30
Molecular Weight: 541.77

Peak\#: 1 Ret.Time:Averaged 3.637-3.643(Scan\#:1092-1094)
BG Mode:Calc 3.320<>4.290(997<->1288)
Mass Peaks: 60 Base Peak:271.75(15758717) Polarity:Pos Segment1 - Event 1
(100

Molecular Weight: 463.703

Peak\#:1 Ret.Time:Averaged 3.370-3.377(Scan\#:1012-1014)
BG Mode:Calc $3.120<->4.130(937<->1240)$
Mass Peaks:49 Base Peak:231.75(16102704) Polarity:Pos Segment1 - Event1

Molecular Weight: 491.756

Segment\# 1 (x $10,000,000$)

Peak\#: 1 Ret:Time:Averaged 33.520.3.527(Scan\#:1057-1059)
BG Mode:Calc 3.267<->4.260.981<->1279)
Mass Peaks:35 Base Peak:238.75(17033442) Polarity:Pos Segment1 - Event 1
100

Molecular Weight: 461.730

Segment\#1 (x 10,000,000)

Molecular Weight: 591.80

Peak\#: 1 Ret.Time:Averaged 4.020-4.027(Scan\#: 1207-1209)
BG Mode:Calc 3.713<->4.607(1115<->1383)
Mass Peaks: 37 Base Peak:296.75(16249501) Polarity:Pos Segment1 - Event1

Molecular Weight: 475.757

Peak\#:1 Ret.Time:Averaged 3.520-3.527(Scan\#:1057-1059)
BG Mode:Calc $3.267<\gg 4.260(981<->1279)$
Mass Peaks:35 Base Peak: 238.75 (17033442) Polarity:Pos Segmentl - Event1

2359-48
Molecular Weight: 503.810

sțAepfl:H t ti stcaepf-LTOZ-Staon

Plasma Stability of 2359-47

The percentage of analyte detected compared to time point zero.

