Supporting Information

Catalytic asymmetric fluorination of alkyl 1-indanone-2-carboxylates ruled by *pybox*-Eu(III) combination

Albert Granados, † Pau Sarró, † Adelina Vallribera†,*

†Department of Chemistry, Centro de Innovación en Química Avanzada (ORFEO-CINQA). Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona (Spain).

Table of Contents

1.	General Information	S2
2.	Starting Materials	S2
3.	General procedure for the acylation reactions	S2
4.	Data of compounds 10	S3
5.	Synthesis of pybox ligands 4 and 5	S5
6.	Spectra, HPLC and CD of compounds	S6

1. General Information

GLC chromatography was performed on a capillary column (5% biphenyl and 95% dimethylpolysiloxane) of 15 m \times 0.25 mm with stationary phase diameter of 0.25 μ m. Column chromatography was performed on silica gel (230–400 mesh). IR spectra were determined either by transmission or by attenuated total reflectance mode (ATR). Enantiomeric excesses were determined, unless otherwise stated, by HPLC using a chiral column Chiracel Daicel-AD-H. NMR spectra were recorded operating at 250, 360, and 400 MHz. Optical rotations are reported as follows: [α]D ^{rt} (c in g per 100 mL, solvent). ¹³C NMR spectra were registered at 63, 91, and 101 MHz. Elemental analyses are the average of two determinations. HRMS were recorded by a Bruker micrOTOF-QII mass spectrometer (fly time analyzer) through positive electrospray ionization.

2. Starting materials

Purchased from comercial sources

3. General procedure for the acylation reactions

In a round-bottomed flask NaH 60% in grease (3 eq.) was placed. Then, it was dissolved in dry THF (0.2 mL/mmol NaH) while stirring under argon atmosphere, forming a white suspension. Next, dimethyl carbonate (3 eq.) was added (methyl 1*H*-imidazole-1-carboxylate in case **1i**) to the suspension and the corresponding ketone (1 eq.) was dissolved with dry THF (1 mL/mol ketone) in an addition funnel. The ketone solution was added to the reaction mixture dropwise in a period of 3-5 minutes. The reaction mixture was heated to reflux until total conversion of the reagent was observed by TLC (3-5 h). Afterwards, 1 M HCl was added to the mixture until pH = 2-3. The aqueous mixture was then extracted with dichloromethane. The organic fraction was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure.

Finally, the product was purified by column chromatography on silica-gel when necessary.

4. Data of compounds 10 (already described) obtained following the general procedure of enantioselective α -fluorination described in the experimental part of the manuscript:

Methyl (*R*)-2-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (**10a**): ¹² Following the general procedure, 70 mg (80% yield) of **10a** were obtained as a white oily solid from 0.42 mmol of **1a** using La(OTf)₃ and (*S*,*R*)-ind-*pybox*. It was purified by column chromatography on silica-gel (hexane/AcOEt 4:1). ¹H NMR (250 MHz [D]CDCl₃, 298 K, TMS) $\delta = 7.83$ (d, J = 7.9 Hz, 1H, Ar*H*), 7.71 (t, J = 7.9 Hz, 1H, Ar*H*), 7.49 (m, 2H, Ar*H*), 3.80 (m, 4H, C*H*₂CF and OC*H*₃), 3.44 ppm (dd, J = 23.4 Hz, J = 23.6 Hz, 1H, C*H*₂CF); ¹⁹F NMR (235 MHz [D]CDCl₃, 298 K, TMS) $\delta = -160.9$ ppm (s, 1F); HPLC: Daicel Chiralpack AD-H, Hexane/ⁱPrOH=99.5:0.5, 0.8 mL/min, 254 nm, t_r(minor) = 38.7 min, t_r(major) = 40.7 min (62% *ee*); [α]₂₀D: -8.6 (c=5.9, CHCl₃).

Tert-butyl (*R*)-2-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**10c**):¹² Following the general procedure, using Eu(OTf)₃ and (*S*,*R*)-ind-pybox, 67 mg (78% yield) of **10c** were obtained as a colorless oil from 0.34 mmol of **2c**. It was purified by column chromatography on silica-gel (hexane/AcOEt 9:1). ¹H NMR (250 MHz [D]CDCl₃, 298 K, TMS) δ = 7.84 (d, ³*J*(*H*,*H*) = 7.6 Hz, 1H, Ar*H*), 7.70 (t, ³*J*(*H*,*H*) = 7.6 Hz, 1H, Ar*H*), 7.47 (m, 2H, Ar*H*), 3.74 (dd, ³*J*(*H*,*H*) = 10.7 Hz, ²*J*(*H*,*F*) = 18.3 Hz, 1H, C*H*₂CF), 3.40 (dd, ²*J*(*H*,*H*) = 22.6 Hz, ³*J*(*H*,*F*) = 24.9 Hz, 1H, C*H*₂CF), 1.44 (s, 9H, OC(C*H*₃)₃); ¹⁹F NMR (235 MHz [D]CDCl₃, 298 K, TMS) δ = -164.4 ppm (s, 1F); HPLC: Daicel Chiralpack AD-H, Hexane/iPrOH=99:1 1.0 mL/min, 254 nm, t_r(minor) = 24.6 min, t_r(major) = 33.7 min (96% *ee*); [α]₂₀D: 11.2 (c=5.7, CHCl₃).

Adamantan-1-yl (*R*)-2-fluoro-1-oxo-2,3-dihydro-1*H*-indene-2-carboxylate (**10d**):¹² Following the general procedure, using Eu(OTf)₃ and (*S*,*R*)-ind-*pybox*, 74 mg (85% yield) of **10d** were obtained as a yellowish oil from 0.26 mmol of **2d**. It was purified by column chromatography on silica-gel (hexane/AcOEt 4:1). ¹H NMR (250 MHz [D]CDCl₃, 298 K, TMS) δ = 7.82 (d, ³ $J_{(H,H)}$ = 7.8 Hz, 1H, Ar*H*), 7.70 (t, ³ $J_{(H,H)}$ = 7.8 Hz, 1H, Ar*H*), 7.46 (m, 2H, Ar*H*), 3.73 (dd, ² $J_{(H,H)}$ = 10.5 Hz, ³ $J_{(H,F)}$ = 18.1 Hz, 1H, C*H*₂CF), 3.39 (dd, ² $J_{(H,H)}$ = 22.7 Hz, ³ $J_{(H,F)}$ = 23.8 Hz, 1H, C*H*₂CF), 2.08 (m, 9H,

OAda), 1.63 ppm (s, 6H, OAda); ¹⁹F NMR (235 MHz [D]CDCl₃, 298 K, TMS) δ = -164.5 ppm (s, 1F); HPLC: Daicel Chiralpack AD-H, Hexane/ⁱPrOH=99:1, 1.0 mL/min, 254 nm, t_r (minor) = 23.5 min, t_r (major) = 31.4 min (90% ee); $[\alpha]_{20}^D$: 6.9 (c=5.7, CHCl₃).

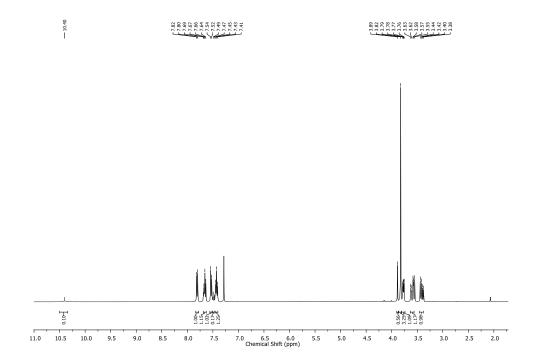
Tert-butyl (*R*)-2-fluoro-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carbox-ylate (**10e**):¹² Following the general procedure, using Eu(OTf)₃ and (*S*,*R*)-ind-pybox, 61 mg (72% yield) of **10e** were obtained as a yellowish oil from 0.33 mmol of **2c**. It was purified by column chromatography on silica-gel (hexane/AcOEt 9:1). ¹H NMR (250 MHz [D]CDCl₃, 298 K, TMS) δ = 7.38 (d, ${}^{3}J_{(H,H)}$ = 8.0 Hz, 1H, Ar*H*), 7.24 (m, 2H, Ar*H*), 3.85 (s, 3H, OC*H*₃), 3.65 (dd, ${}^{2}J_{(H,H)}$ = 10.5, ${}^{3}J_{(H,F)}$ = 17.6 Hz, 1H, C*H*₂CF), 3.31 (dd, ${}^{2}J_{(H,H)}$ = 22.7, ${}^{3}J_{(H,F)}$ = 24.2 Hz, 1H, C*H*₂CF), 1.44 ppm (s, 9H, OC(C*H*₃)₃); ¹⁹F NMR (235 MHz [D]CDCl₃, 298 K, TMS) δ = -163.9 ppm (s, 1F); HPLC: Daicel Chiralpack AD-H, Hexane/ⁱPrOH=99:1, 1.0 mL/min, 254 nm, t_r(minor) = 18.1 min, t_r(major) = 20.0 min (90% *ee*); [α]₂₀^D: 10.9 (c=5.8, CHCl₃).

Tert-butyl (R)-2,6-difluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (10f): 12 Following the general procedure, using Eu(OTf)₃ and (S,R)-ind-pybox, 61 mg (71% yield) of 10f were obtained as a yellowish oil from 0.32 mmol of the starting material. It was purified by column chromatography on silica-gel (hexane/AcOEt 9:1). 1 H NMR (250 MHz CDCl₃, 298 K) 7.45 (m, 3H, ArH), 3.71 (dd, 2 J_(H,H) = 10.5, 3 J_(H,F) = 18.5 Hz, 1H, CH₂CF), 3.32 (m, 1H, CH₂CF), 1.44 (s, 9H, OC(CH₃)₃); 19 F NMR (235 MHz [D]CDCl₃, 298 K, TMS) δ = -112.8 (s, 1F), -163.8 pm (s, 1F); HPLC: Daicel Chiralpack AD-H, Hexane/ i PrOH=99.5:0.5 1.0 mL/min, 254 nm, t_r(minor) = 25.0 min, t_r(major) = 28.6 min (93% ee); [α]₂₀D: 8.3 (c=6.0, CHCl₃).

Tert-butyl (*R*)-2-fluoro-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carbox-ylate (**10h**):¹² Following the general procedure, using Eu(OTf)₃ and (*S*,*R*)-ind-*pybox*, 57 mg (66% yield) of **10h** were obtained as a yellowish oil from 0.33 mmol of **2h**. It was purified by column chromatography on silica-gel (hexane/AcOEt 9:1). ¹H NMR (360 MHz [D]CDCl₃, 298 K, TMS) δ = 7.22 (s, 1H, Ar*H*), 6.90 (s, 2H, Ar*H*), 4.01 (s, 3H, OC*H*₃), 3.94 (s, 3H, OC*H*₃), 3.64 (dd, ²*J*_(*H*,*H*) = 10.5 Hz, ³*J*_(*H*,*F*) = 17.6 Hz, 1H), 3.30 (dd, ²*J*_(*H*,*H*) = 22.7, ³*J*_(*H*,*F*) = 24.2 Hz, 1H), 1.44 ppm (s, 9H, OC(C*H*₃)₃); ¹⁹F NMR (235 MHz [D]CDCl₃, 298 K, TMS) δ = -163.6 ppm (s, 1F); HPLC: Daicel Chiralpack AD-H,

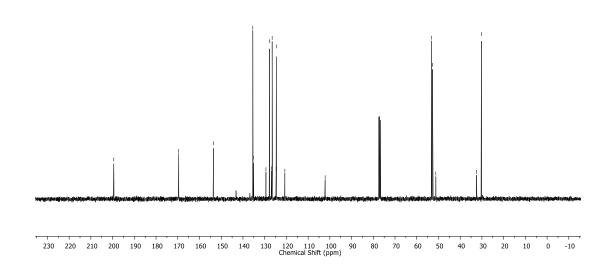
Hexane/ i PrOH=85:15, 0.5 mL/min, 254 nm, t_r (major) = 17.1 min, t_r (minor) = 19.6 min (91% ee); $\lceil \alpha \rceil_{20}^{D}$: -34.4 (c=6.1, CHCl₃).

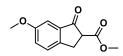
5. Synthesis of *pybox* ligands 4 and 5


To and argon purged solution of 2,6-pyridine carbonitrile (0.8 g, 6 mmol, 1 eq) in dry methanol (25 mL) was added 0.001 g of sodium, and the solution was stirred at room temperature for 48 hours. Glacial acetic acid (0.05 mL) was subsequently added, and the solution was stirred for additional 5 minutes. Then the solution was dried in vacuo affording an off white solid. This intermediate was reintroduced in dry dichloromethane (30 mL) and the desired amino-alcohol (13.4 mmol, 2.2 eq) was added in one portion to the solution. The mixture was refluxed under inert atmosphere for 4 hours, and then stirred for 48 h at room temperature. The mixture was concentrated in vacuo and filtered from MeOH. The solid was then collected, dissolved in dichloromethane, dried over Na₂SO₄ and concentrated under vacuum, affording the final *pybox* ligand.

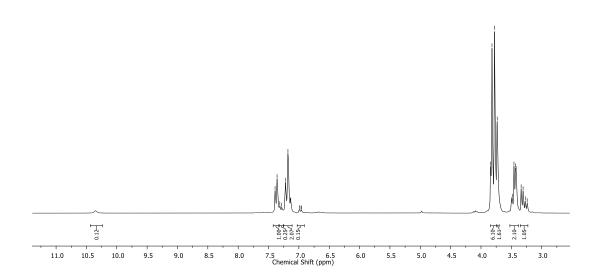
2,6-Bis[(4S,5R)-4,5-diphenyl-4,5-dihydro-1,3-oxazol-2-yl]pyridine (4): 16 ¹H NMR (250 MHz [D]CDCl₃, 298 K, TMS) δ = 8.39 (d, $^{3}J_{(H,H)}$ = 8.5 Hz, 2H, ArH), 8.04 (t, J = 8.5 Hz, 1H, ArH), 7.03-7,09 (m, 20H, Ph), 6.14 (d, J = 10.5 Hz, 2H, CHO), 5.84 (d, J = 10.5 Hz, 2H, CHN). 13 C NMR (63 MHz [D]CDCl₃, 298 K, TMS) δ = 164.2, 138.1, 137.9, 136.5, 128.4, 128.1, 127.9, 127.5, 127.2, 127.0, 126.9, 86.7, 74.9.

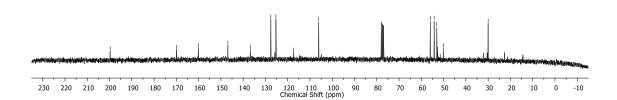
2,6-bis[(4*R*,5*R*)-4,5-diphenyl-4,5-dihydro-1,3-oxazol-2-yl]pyridine (**5**):^{14b} ¹H NMR (360 MHz [D]CDCl₃, 298 K, TMS) δ = 8.39 (d, *J* = 9.5 Hz, 2H, Ar*H*), 7.98 (t, *J* = 9.5 Hz, 1H, Ar*H*), 7.30-7,37 (m, 20H, *Ph*), 5.54 (d, *J* = 8.5 Hz, 2H, C*H*O), 5.33 (d, *J* = 8.5 Hz, 2H, C*H*N). ¹³C NMR (91 MHz [D]CDCl₃, 298 K, TMS) δ = 163.8, 142.1, 140.6, 138.2, 129.6, 129.4, 128.7, 127.7, 127.4, 127.0, 90.9, 79.9.

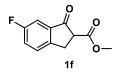

6. Spectra, HPLC and CD of compounds

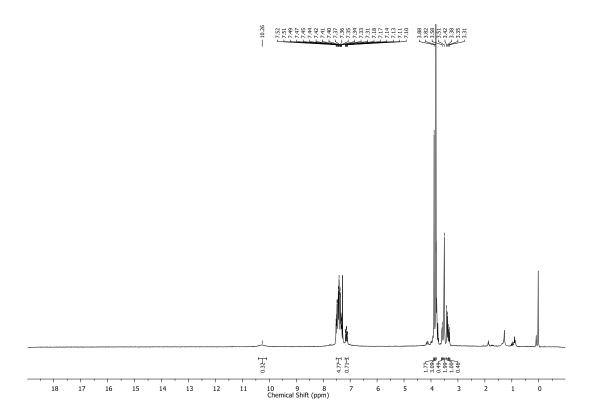

¹H NMR (400 MHz, CDCl₃)

¹³C[¹H] NMR (91 MHz, CDCl₃)

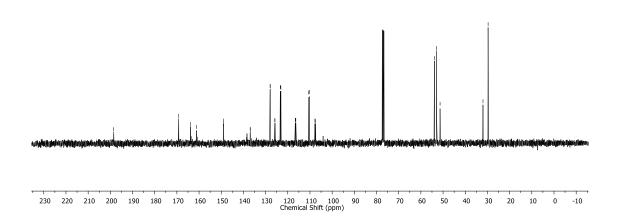



¹H NMR (250 MHz, CDCl₃)

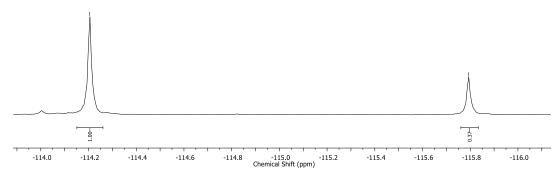

3.32 1.327 1.327 1.327 1.327 1.327 1.327 1.327

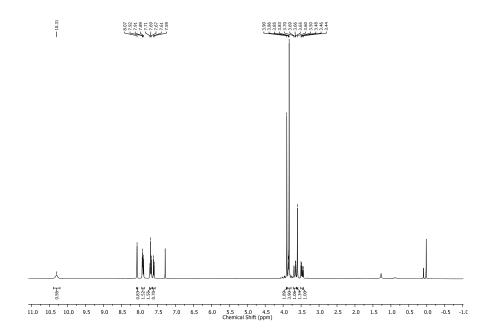

¹³C[¹H] NMR (63 MHz, CDCl₃)

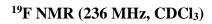
- 199.72
- 160.13
- 160.13
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 127.57
- 1

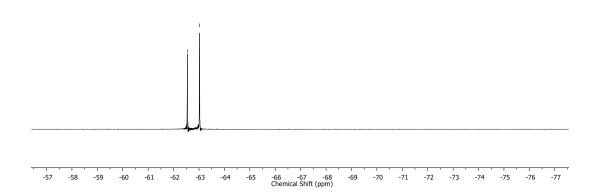


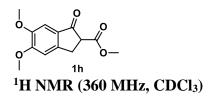
¹H NMR (250 MHz, CDCl₃)

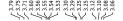

¹³C[¹H] NMR (91 MHz, CDCl₃)

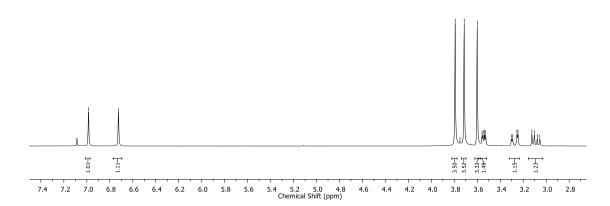

| 198.47 | 198.47 | 198.47 | 198.49 | 198.99 | 1

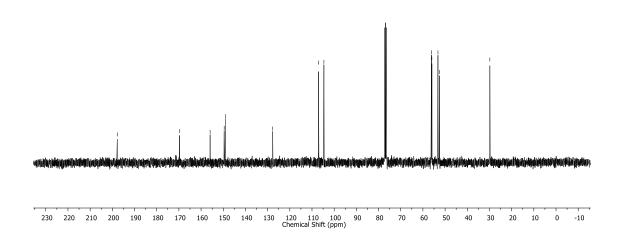


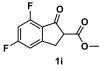


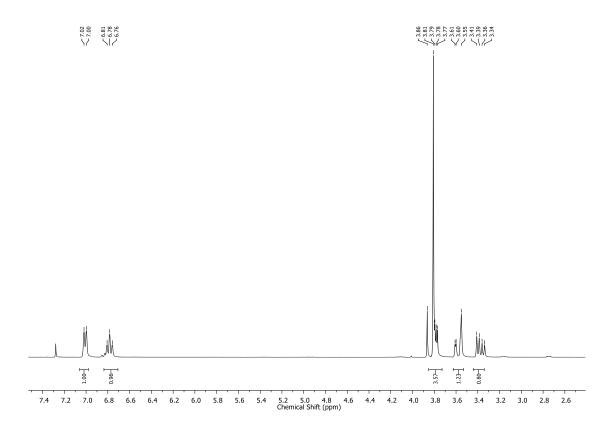



¹³C[¹H] NMR (101 MHz, CDCl₃)

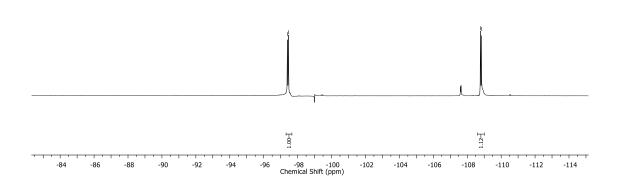




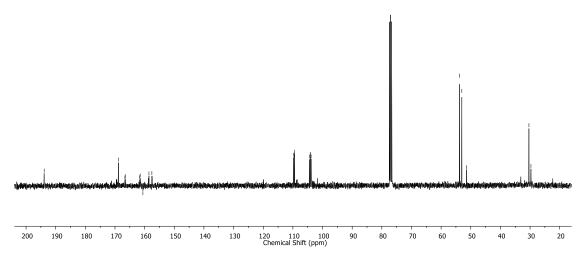


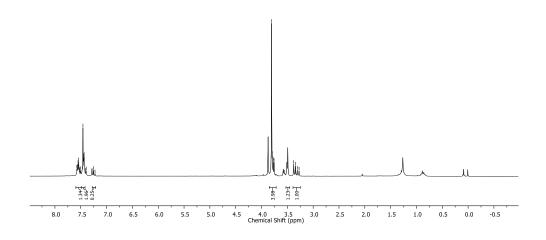

¹³C[¹H] NMR (91 MHz, CDCl₃)

 $\begin{array}{c|c} -197.78 \\ -169.71 \\ \hline -169.71 \\ \hline -107.06 \\ \hline \end{array}$

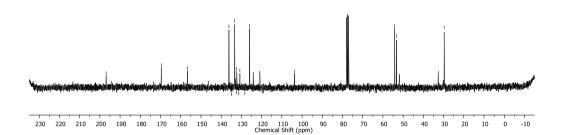


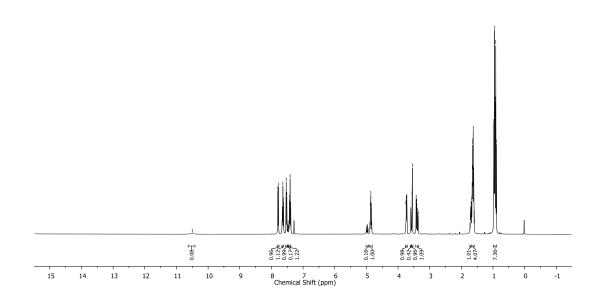
¹H NMR (360 MHz, CDCl₃)



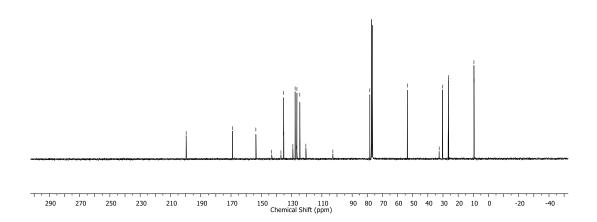


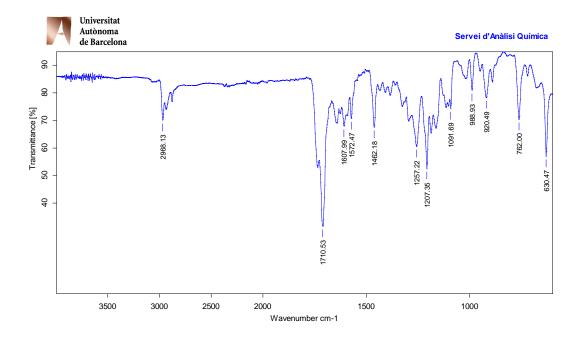
$^{13}C[^{1}H]$ NMR (91 MHz, CDCl₃)

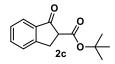


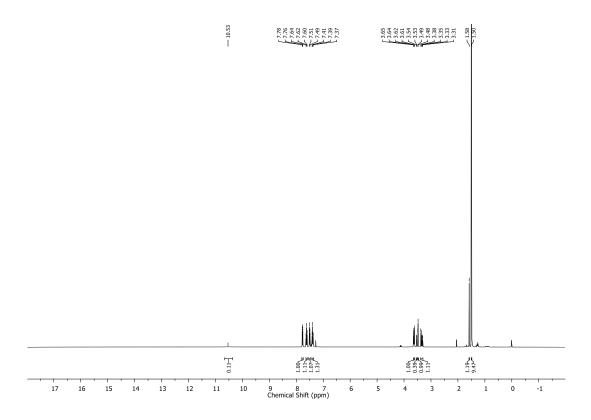

^{1}H NMR (250 MHz, CDCl₃)

¹³C[¹H] NMR (63 MHz, CDCl₃)

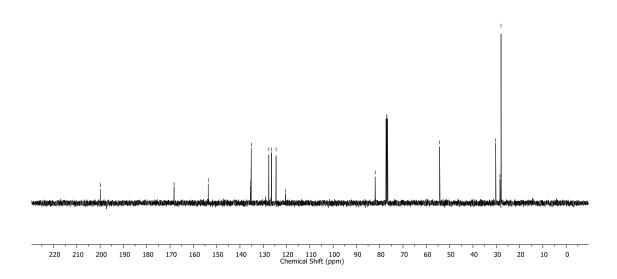


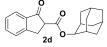



$^{13}\mathrm{C}[^{1}\mathrm{H}]$ NMR (101 MHz, CDCl₃)

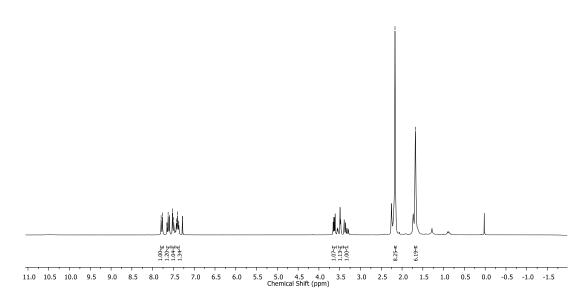


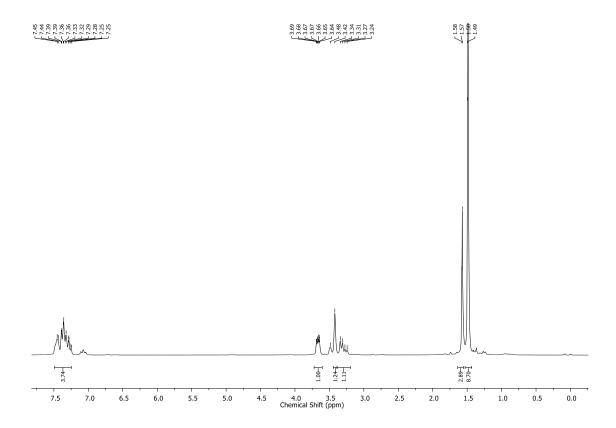
IR (ATR)

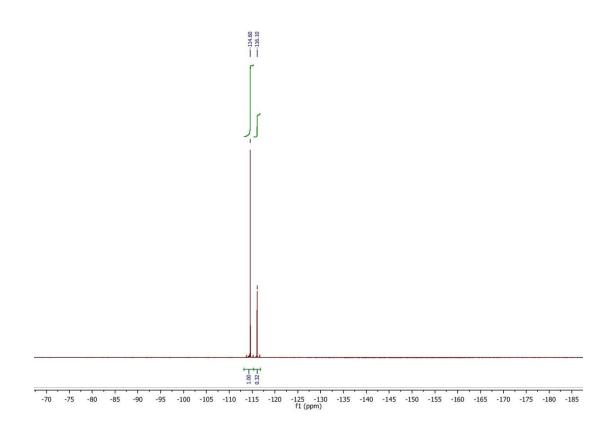


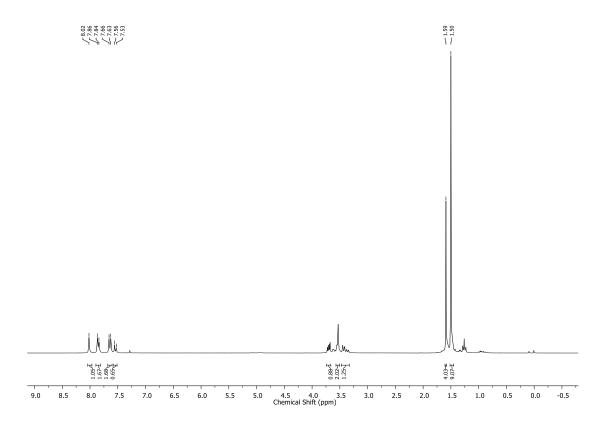

¹H NMR (360 MHz, CDCl₃)

¹³C[¹H] NMR (101 MHz, CDCl₃)

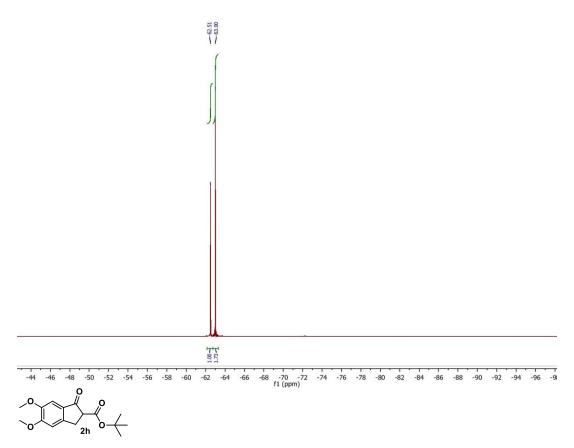

| 19934 | 158.26 | 15

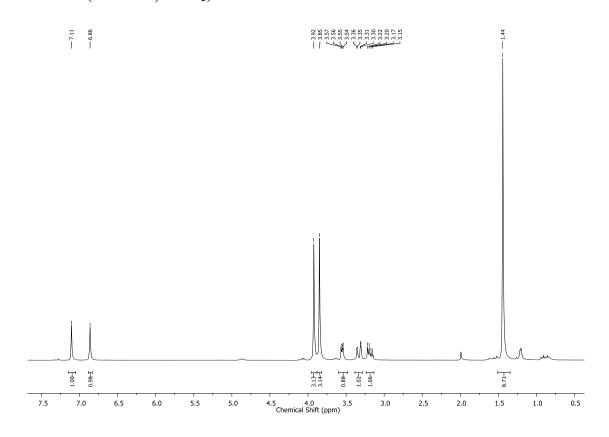

 ^{1}H NMR (360 MHz, CDCl₃)

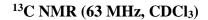


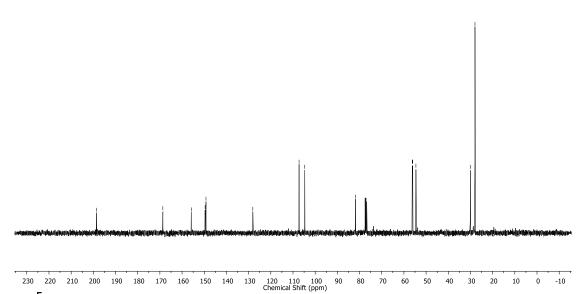

¹H NMR (250 MHz, CDCl₃)

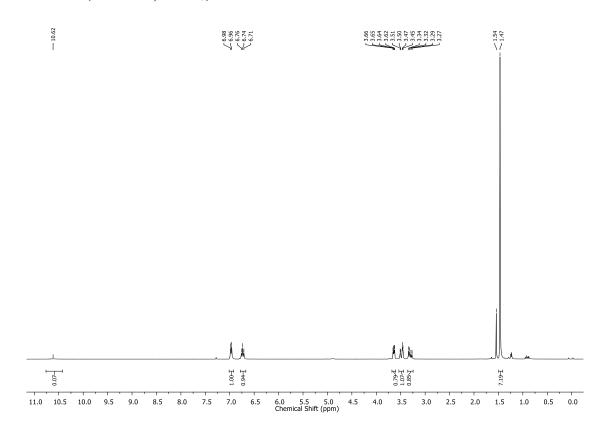
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 Chemical Shift (appn) 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5

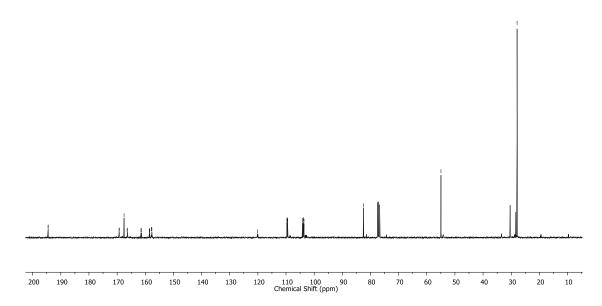


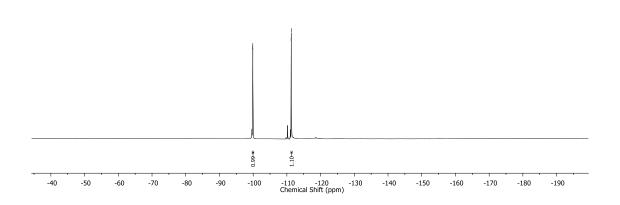

¹⁹F NMR (235 MHz, CDCl₃)

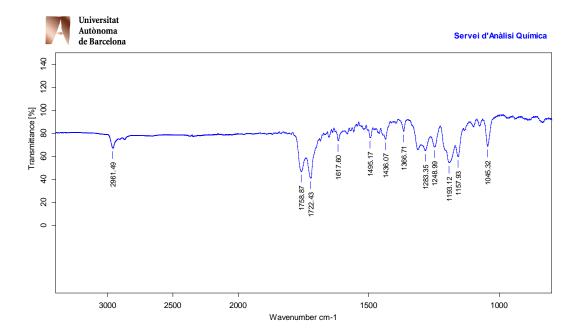


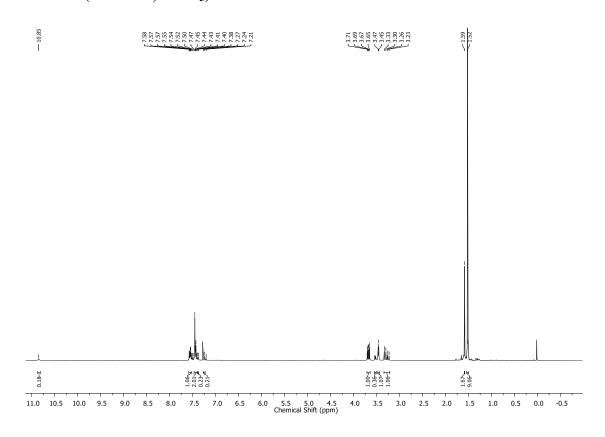

¹⁹F NMR(235 MHz, CDCl₃)

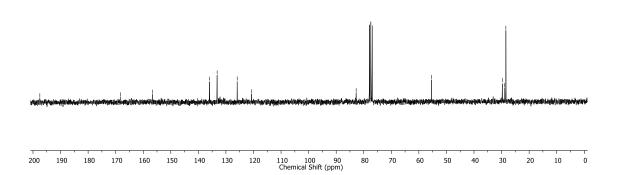


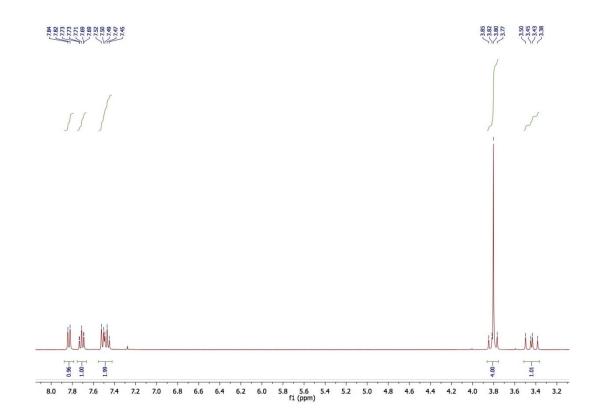


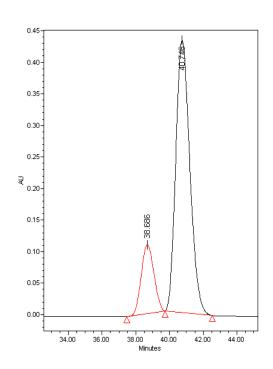

F 0 0 0

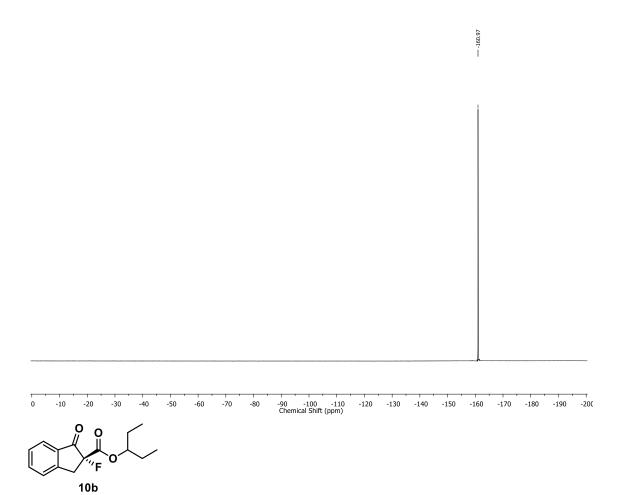

¹³C NMR (91 MHz, CDCl₃)



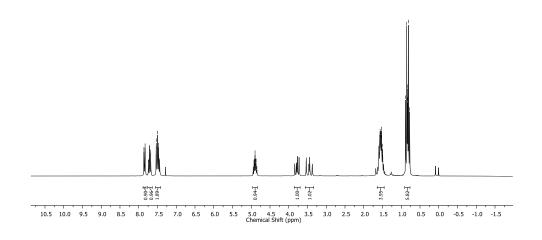

IR (ATR)



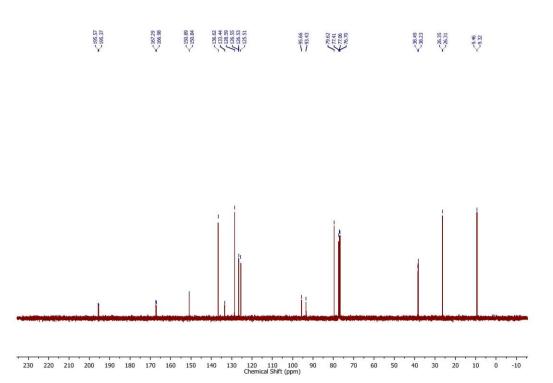




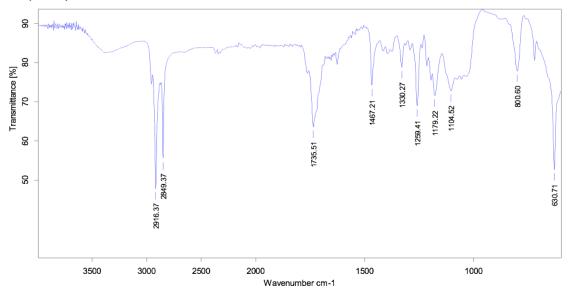
1H NMR (250 MHz, CDCl₃), HPLC and ^{19}F NMR(235 MHz, CDCl₃)



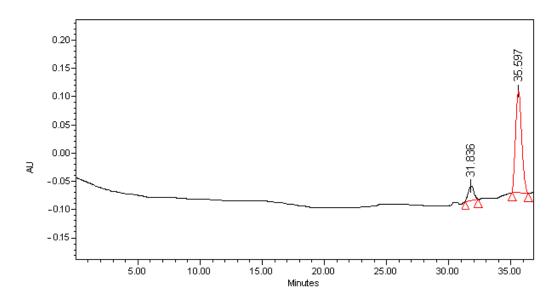
6	Retention Time (min)	Purity1 Angle	Purity1 Threshold	PDA/FLR Match1 Spect. Name	PDA/FLR Match1 Angle	PDA/FLR Match1 Threshold	PDA/FLR Match1 Lib. Name	Area (μV*sec)	% Area
1	38.686							5689646	18.55
2	40.746							24989421	81.45



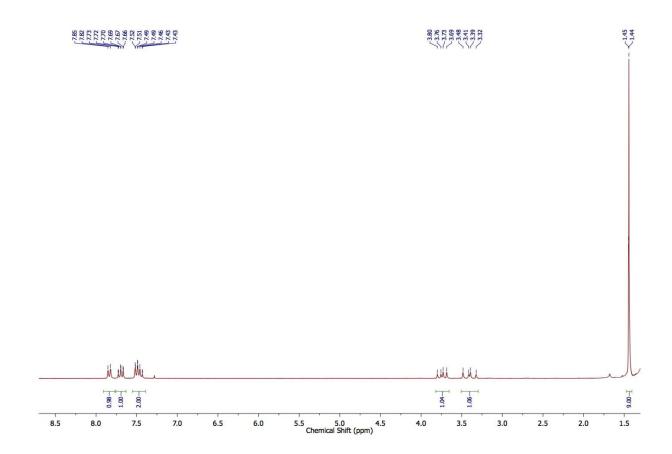
1H NMR (250 Mz, CDCl₃)

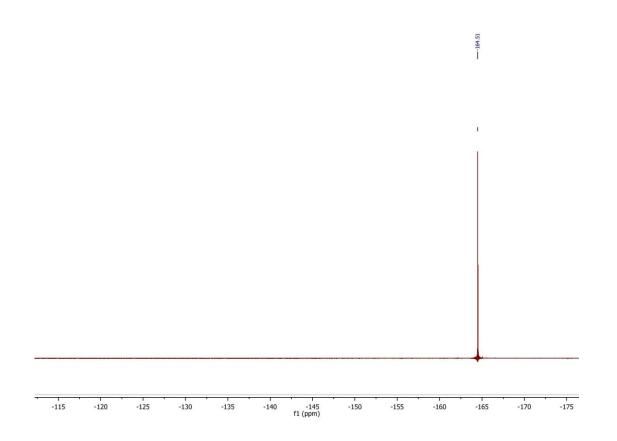


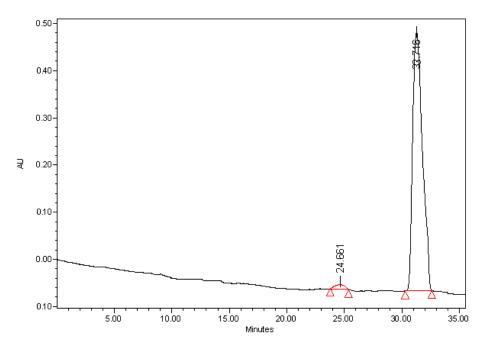
¹³C NMR(91 MHz, CDCl₃)



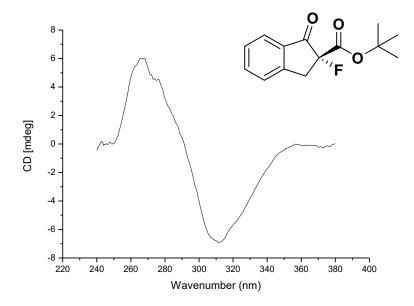
IR (ATR)



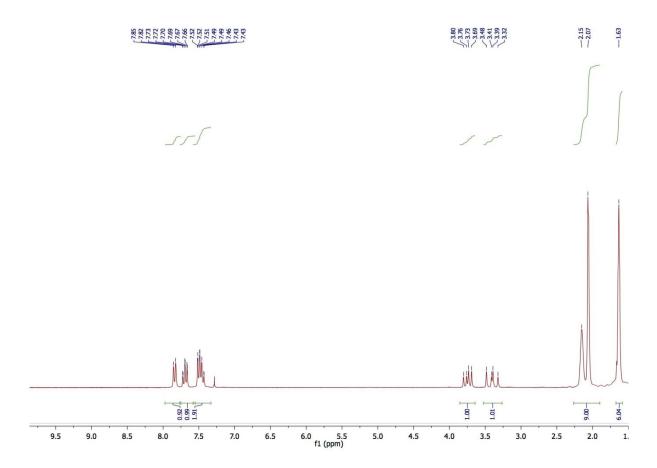

HPLC


S	Name	Retention Time (min)	Area (μV*sec)	% Area	Height (µ∀)	Int Type
1		31.836	7651	11.09	261	bb
2		35.597	61347	88.91	1806	bb

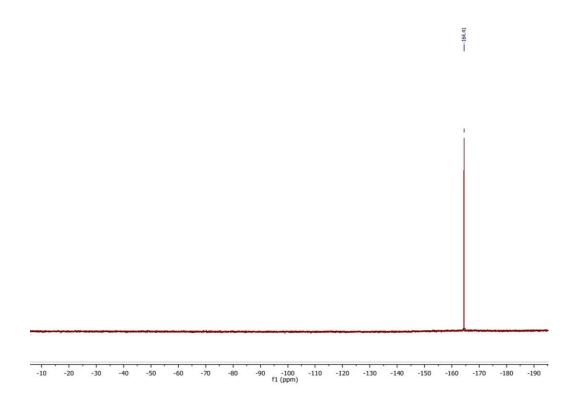
¹H NMR (250 MHz, CDCl₃)

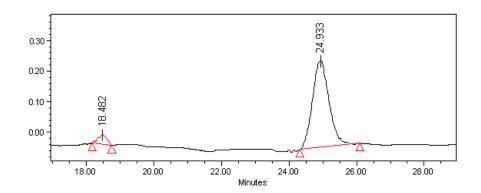


HPLC

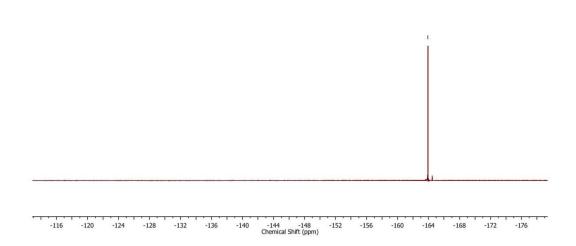


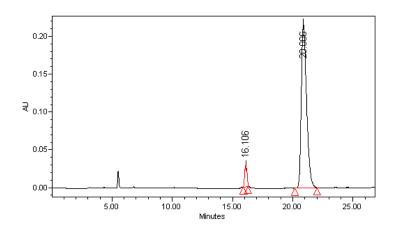
•	•	Name	Retention Time (min)	Area (μV*sec)	% Area	Height (μV)	Int Type
ľ	1		24.661	97730	2.49	719	bb
Ė	2		33.761	3831190	97.51	24433	bb

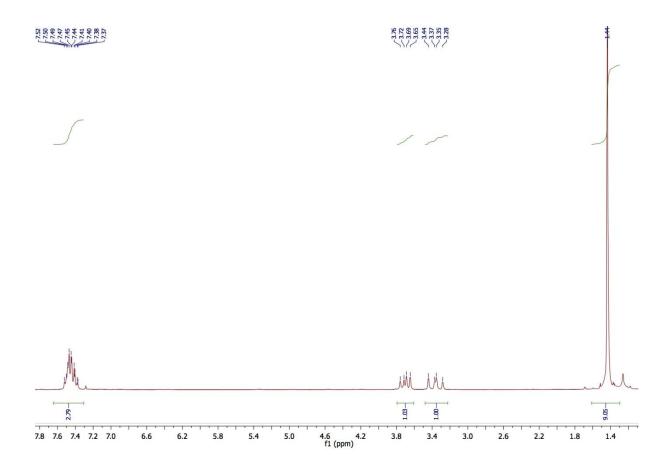

CD (MeCN, 25°C)

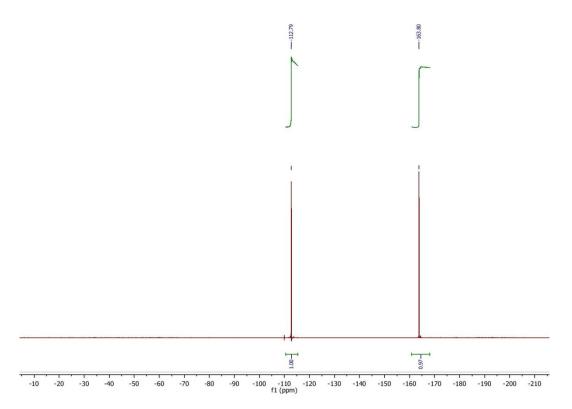

 ^{1}H NMR (250 MHz, CDCl₃)

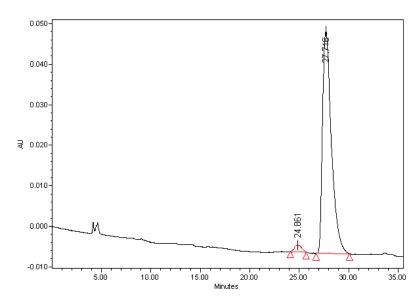
¹⁹F NMR (235 MHz, CDCl₃)


HPLC

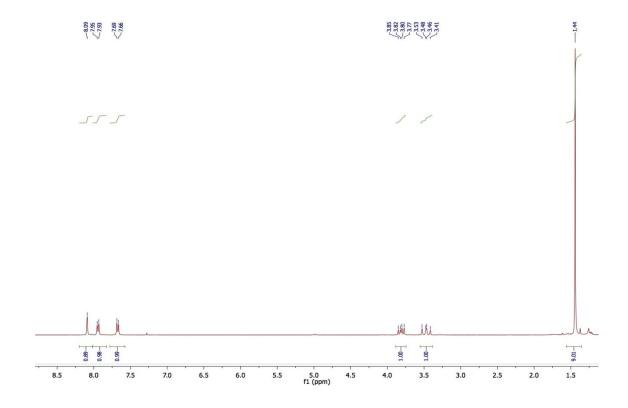

8	Name	Retention Time (min)	Area (μV*sec)	% Area	Height (μV)	Int Type
1		18.482	2699	5.33	155	bb
2		24.933	47939	94.67	1411	bb

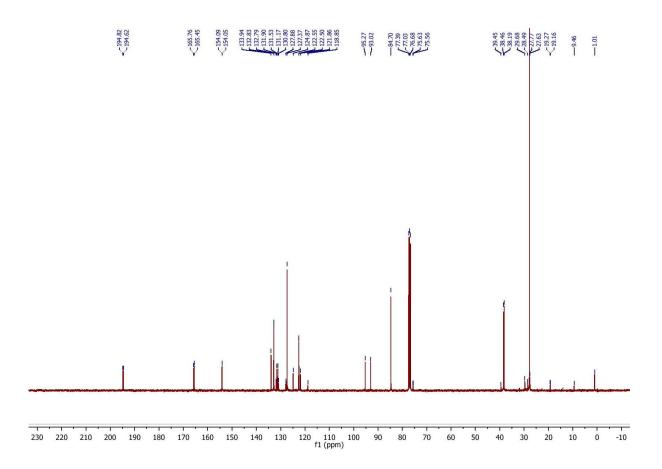


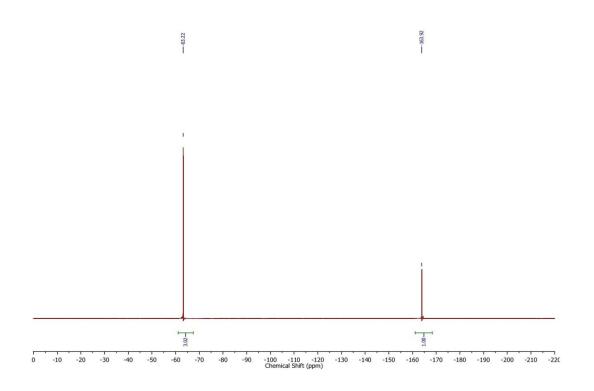

HPLC


8	Name	Retention Time (min)	Area (μV*sec)	% Area	Height (μV)	Int Type
1		16.106	399058	5.69	28434	bb
2		20.886	6619515	94.31	216558	bb

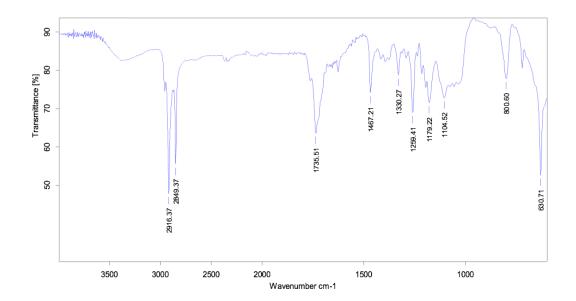
¹H NMR (250 MHz, CDCl₃)



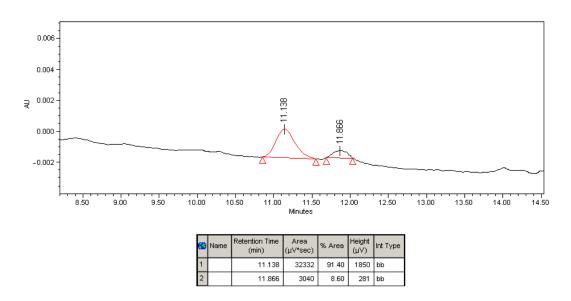

HPLC

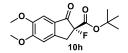


65	Name	Retention Time (min)	Area (µV*sec)	% Area	Height (µV)	Int Type
1		24.425	129898	3.65	-3094	bb
2		27.861	3429908	96.35	54929	bb

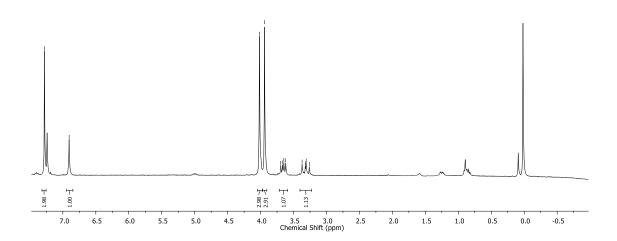


¹³C NMR (91 MHz, CDCl₃)

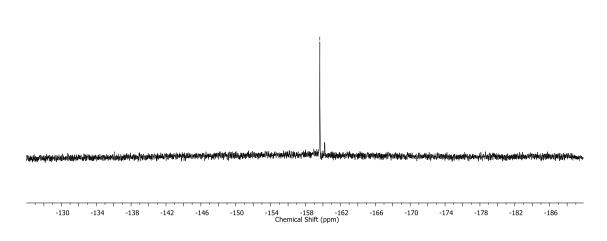




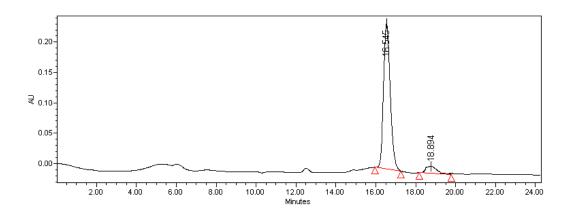
IR



HPLC



 ^{1}H NMR (360 MHz, CDCl₃)

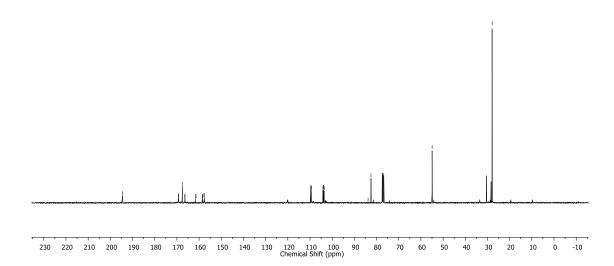


¹⁹F NMR (235 MHz, CDCl₃)

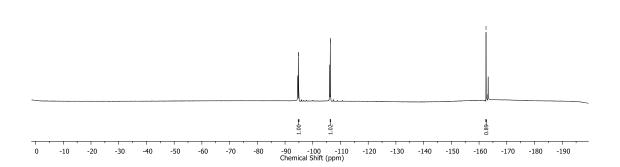
--159.64

HPLC

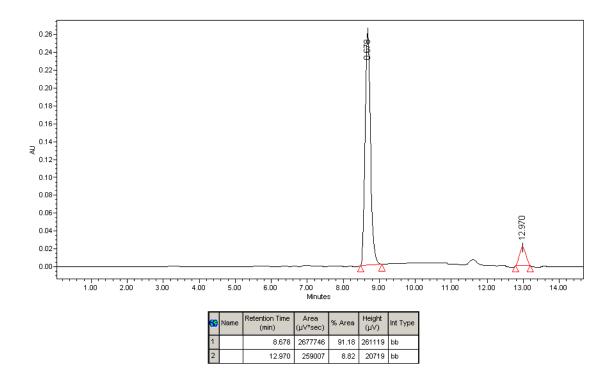
65	Name	Retention Time (min)	Area (μV*sec)	% Area	Height (µ∀)	Int Type
1		16.545	4132861	95.29	179762	bb
2		18.894	87838	4.71	8601	bb

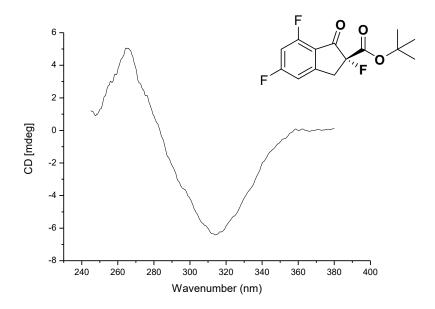

¹H NMR (400 MHz, CDCl₃)

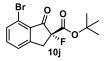
12.5 11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 Chemical Shift (ppm)


7.02 7.00 6.88 6.86 6.83

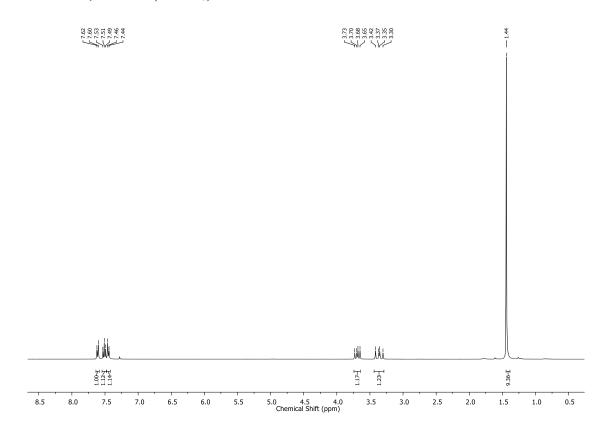
¹³C NMR (101 MHz, CDCl₃)

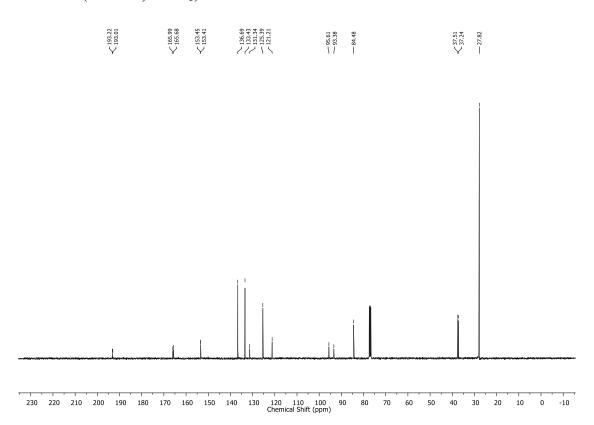


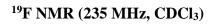


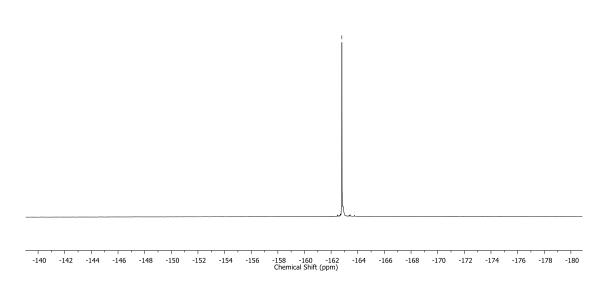


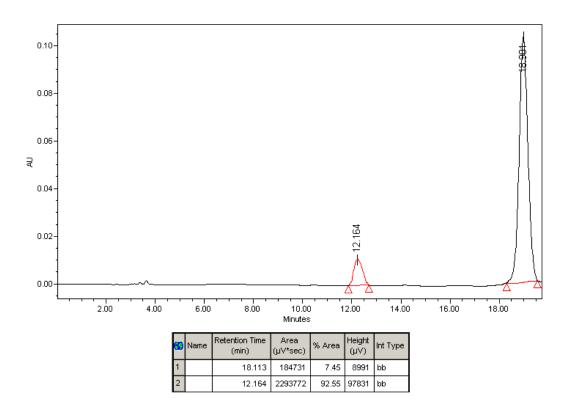
HPLC

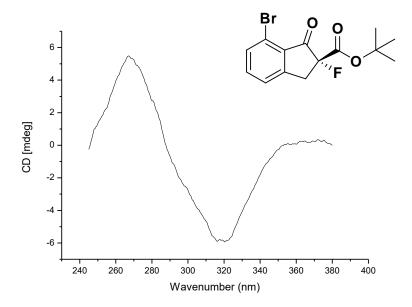


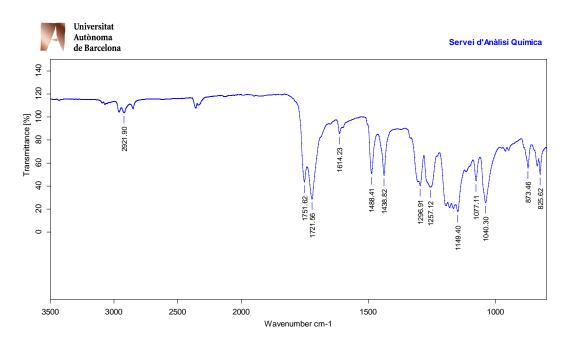

CD (MeCN, 25°C)

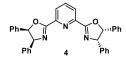



¹H NMR (360 MHz, CDCl₃)

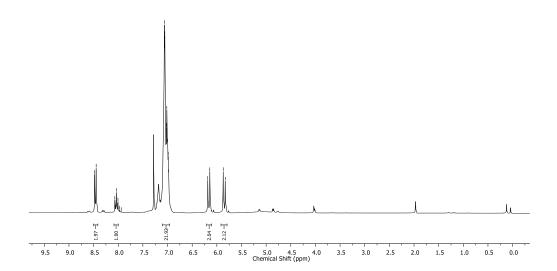




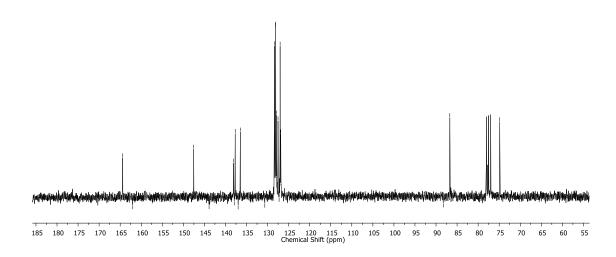

HPLC

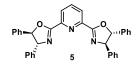


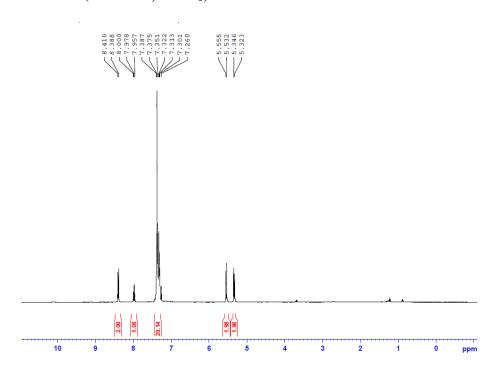
CD (MeCN, 25°C)

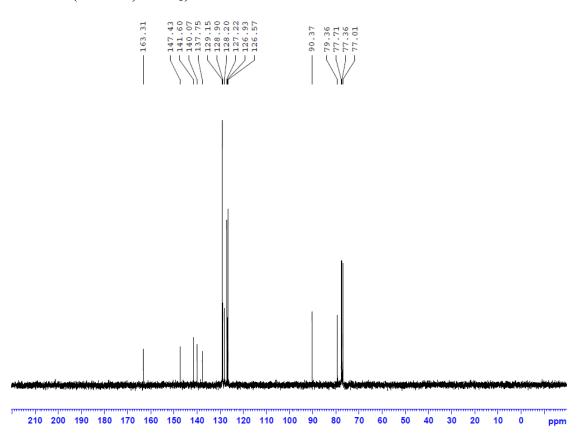


IR (ATR)




¹H NMR (250 MHz, CDCl₃)


¹³C NMR (63 MHz, CDCl₃)


| 164.42 | 167.55 | 138.08 | 137.08 | 138.08 | 137.08 | 138.08 | 1

¹H NMR (250 MHz, CDCl₃)

