
molecules

Article

Base-Promoted SNAr Reactions of Fluoro- and
Chloroarenes as a Route to N-Aryl Indoles
and Carbazoles

Muhammad Asif Iqbal, Hina Mehmood, Jiaying Lv and Ruimao Hua *

Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education,
Department of Chemistry, Tsinghua University, Beijing 100084, China; ykb15@mails.tsinghua.edu.cn (M.A.I.);
hinamehmood123@gmail.com (H.M.); jy-lv18@mails.tsinghua.edu.cn (J.L.)
* Correspondence: ruimao@mail.tsinghua.edu.cn; Tel.: +86-10-6279-2596

Received: 3 March 2019; Accepted: 20 March 2019; Published: 22 March 2019
����������
�������

Abstract: KOH/DMSO-promoted C-N bond formation via nucleophilic aromatic substitution
(SNAr) between chloroarenes or fluoroarenes with indoles and carbazole under transition metal-free
conditions affording the corresponding N-arylated indoles and carbazoles has been developed.
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1. Introduction

Development of efficient methods for the formation of C-N bond via the arylation of N-H bonds
is one of the important and perpetual subjects in organic synthetic chemistry. Two major classes
of C−N bond formation processes are well-developed: (1) transition-metal-catalyzed N-arylation
via activation of the C-X bond (X = I, Br, Cl, F) of haloarenes, which have been well-investigated
by Hartwig, Buchwald’s [1–3], and other groups [4–6] and (2) base-promoted nucleophilic aromatic
substitution (SNAr) reactions of electron-deficient fluoroarenes [7–10] and bromoarenes [11] with
amines. On the other hand, KOH/DMSO has shown versatile diverse activity in a variety of organic
transformations developed by Trofimov [12–17], Bolm [18–21] and other groups [22–24]. Recently,
we have also developed the application of KOH/DMSO in the synthesis of five-membered heterocycles
via the cycloaddition of 1,3-butadiynes with H2O, primary amines, Na2S·9H2O [25], and in nucleophilic
fluoroarene substitutions with a variety of nucleophiles to provide an alternative base-promoted SNAr
of C−F bonds [26]. In continuation of our interest in the development of highly atom-economic
reactions through C-Cl bond activation in aryl chlorides and their transformation [27–32], we have
investigated the N-arylation of indoles and carbazole by the nucleophilic aromatic substitution (SNAr)
protocol from chloroarenes and fluoroarenes in the presence of KOH in DMSO. The N-arylation of
indoles and carbazoles through transition- metal-catalyzed catalysis have been well studied [33–38],
and a microwave-assisted N-arylation of indoles via SNAr in the presence of K2CO3 or Cs2CO3

under microwave irradiation in DMSO [39], KOtBu-promoted N-arylations of carbazoles using
diaryliodonium salts [40] have also been reported.

2. Results and Discussion

The initial investigation was carried out by heating a mixture of 3-methylindole (1a) and
1,2-dichlorobenzene (2a, 1.0 equiv.) in the presence of KOH (1.0 equiv.) in DMSO at 100 ◦C under a
nitrogen atmosphere for 24 hours. The reaction produced 1-(2-chlorophenyl)-3-methylindole (3aa) in
25% isolated yield, accompanied by the formation of 1,2-bis(3-methylindolyl)benzene (3’aa, confirmed
by MS, yield <5%) as by-product via double SNAr of the C−Cl bond of 2a (entry 1). By doubling
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the amount of KOH, the yield of 3aa could be increased up to 55% (entry 2), and the yield of 3aa
could be further improved to 71% by using 2.5 equivalents of 2a and 3.0 equivalents of KOH (entry 3).
Base screening using different inorganic bases such as NaOH, Cs2CO3 and K2CO3 in DMSO disclosed
that NaOH can also promote the present SNAr reaction albeit with relatively low efficiency (entry 4),
while Cs2CO3 and K2CO3 are ineffective under similar reaction conditions (entries 5,6). On the other
hand, when other solvents such as dimethyl acetamide (DMAc), THF, DMF and 1,4-dioxane were used
instead of DMSO, no desired product formed at all (entries 7–10).

With the reaction conditions shown in entry 3 of Table 1, the SNAr between chloroarenes or
fluoroarenes and a variety of indoles were then examined, and the obtained results are listed in
Table 2. Among the chloroarenes 2b~2i used, chlorobenzene (2b) and 4-chlorotoluene (2c) showed
relatively low reactivity, while the substitution of 1-chloronaphthalene (2d) and 2-chlorothiophene (2e)
gave the corresponding products 3ad and 3ae in good yields. As expected, the chloroarenes bearing
electron-withdrawing group(s) undergo the nucleophilic substitution smoothly to give N-arylated
indoles in good to high yields. It is worth noting that the reaction of 2d also produced the isomer
of 3-methyl-1-(naphthalen-2-yl)indole in trace amounts, and o-chlorobenzamide (2h), which is an
electron-poor chloroarene, shows moderate reactivity, due possibly to its steric hindrance. As expected,
when fluoroarenes were employed, the corresponding products could be obtained in good to high
yields, owing to the high nucleophilic substitution reactivity exhibited by the C-F bond. In addition,
indole (1b), 5-substituted indoles 1c and 1d, 6-chloroindole (1e) and 3-phenylindole (1f) can be
also used as the nucleophiles, and their nucleophilic substitutions with chloroarenes afforded the
corresponding N-arylated indoles in fair to good yields.

Table 1. Optimizing conditions for the nucleophilic aromatic substitution of 3-methylindole (1a) with
1,2-dichlorobenzene (2a) a.
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Table 2. Substrate scope for N-arylation of indoles with chloro- and fluoroarenes a.
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It can be also concluded from the chemoselective formation of 3am and 3an that C-F bonds shows
much higher nucleophilic substitution reactivity than C-Cl and C-Br ones. The selective formation
of 3ao, 3ap and 3aq indicate that it is difficult for the second SNAr reaction of a C-F bond to take
place in these products under the reaction conditions. The structure of 3aq was confirmed by an x-ray
diffraction study [41].

In order to evaluate the scope of the present SNAr, carbazole was used as nucleophiles under
similar reaction conditions, since N-arylated carbazoles are important N-heterocyclic compounds,
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which have been widely applied as organic materials [42,43]. As shown in Table 3, when the SNAr
reactions were performed at 135 ◦C for 24 h, chloroarenes 2b and 2c show low reactivity, and the
reactions of electron-poor chloroarenes such as 2f and 2g gave the corresponding products 5c and
5d in good yields. Fluorobenzene (2j) and fluoroarenes having electron-withdrawing groups show
good reactivity under the reaction conditions, and the corresponding N-arylated carbazoles could
be obtained in good yields. However, p-fluoroaniline (2w) shows a reactivity similar to that of
p-fluorotoluene (2r). In addition, the selective formation of 5g and 5h indicates that the second SNAr
reaction of C-F bond in the products cannot occur under these reaction conditions.

Table 3. N-Arylation of carbazole with chloro- and fluoroarenes a.
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3. Materials and Methods

3.1. General Methods

All organic starting materials and solvents were analytically pure and used without further
purification. KOH (99.99%) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Nuclear magnetic
resonance (NMR) spectra were recorded on ECA-400 or 600 spectrometers (JEOL, Tokyo, Japan)
using CDCl3 and DMSO-d6 as a solvent at 298 K. 1H-NMR (400 MHz, 600 MHz) chemical shifts
(δ) were referenced to internal standard TMS (for 1H, δ = 0.00 ppm). 13C-NMR (100 MHz,
125 MHz) chemical shifts were referenced to internal solvent (δ = 77.16 ppm in CDCl3; 39.52 ppm in
DMSO-d6). Mass spectra (MS) were obtained on a GCMS-QP2010S system (Shimadzu Kyoto, Japan),
the high-resolution mass spectra (ESI) were obtained with a micrOTOF-Q 10142 spectrometer (Agilent,
California, CA, USA). The melting points are uncorrected.
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3.2. Typical Experiment Procedure for the Synthesis of 3aa

To a 50 mL screw-capped thick-walled Pyrex tube equipped with a magnetic stirrer, 3-methylindole
(1a, 131.0 mg, 1.0 mmol), 1,2-dichlorobenzene (2a, 365.0 mg, 2.5 mmol), KOH (168.2 mg, 3.0 mmol)
and DMSO (5.0 mL) were added sequentially under a nitrogen atmosphere. The tube was then sealed
and stirred at 100 ◦C for 24 h. After removal of the solvent under reduced pressure, purification was
performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient
mixture ratio from 100:0 to 90:10) as eluent to afford N-(2-chlorophenyl)-3-methylindole (3aa, 171.8 mg,
0.71 mmol, 71% yield).

3.3. Typical Experiment Procedure for the Synthesis of 5a

To a 50 mL screw-capped thick-walled Pyrex tube equipped with a magnetic stirrer, carbazole (4a,
167.2 mg, 1.0 mmol), chlorobenzene (2b, 281.4 mg, 2.5 mmol), KOH (168.2 mg, 3.0 mmol) and DMSO
(5.0 mL) were added sequentially under nitrogen atmosphere. The tube was then sealed and stirred at
135 ◦C in an oil bath for 48 h. After removal of the solvent under reduced pressure, purification was
performed by flash column chromatography on silica gel with petroleum ether/ethyl acetate (gradient
mixture ratio from 100:0 to 85:15) as eluent to afford N-phenylcarbazole (5a, 77.8 mg, 0.32 mmol,
32% yield).

3.4. Characterization Data of Products

N-(2-Chlorophenyl)-3-methylindole (3aa): White waxy oil (171.8 mg, 71%); 1H-NMR (400 MHz, CDCl3)
δ 7.66 (d, J = 6.8 Hz, 1H), 7.60 (d, J = 9.4 Hz, 1H), 7.44–7.35 (m, 3H), 7.26–7.12 (m, 3H), 7.06 (s, 1H),
2.43 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 137.2, 137.1, 131.7, 130.9, 129.4, 129.1, 128.7, 127.7, 126.3,
122.3, 119.8, 119.1, 112.6, 110.67, 9.7; HRMS (ESI): m/z Calcd. For: C15H12ClN [M + H]+: 242.0731;
found 242.0721.

3-Methyl-N-phenylindole (3ab) [44]: White waxy oil (from 2b, 64.2 mg, 31%; from 2j, 140.9 mg, 68%);
1H-NMR (400 MHz, CDCl3) δ 7.64 (d, J = 7.6 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.54–7.47 (m, 4H),
7.35–7.31 (m, 1H), 7.24–7.16 (m, 2H), 7.16 (s, 1H), 2.40 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 140.1,
136.0, 129.9, 129.6, 126.0, 125.6, 124.1, 122.4, 119.8, 119.3, 112.9, 110.5, 9.7; GC-MS m/z: 207 (M+).

3-Methyl-N-(p-tolyl)indole (3ac) [38]: White waxy oil (53.1 mg, 24%); 1H-NMR (400 MHz, CDCl3) δ 7.66
(d, J = 7.5 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.26–7.16
(m, 2H), 7.14 (s, 1H), 2.45 (s, 3H), 2.42 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 137.6, 136.2, 135.9, 130.2,
129.7, 125.7, 124.0, 122.3, 119.7, 119.2, 112.5, 110.5, 21.1, 9.7; GC-MS m/z: 221 (M+).

3-Methyl-N-(naphthalen-1-yl)indole (3ad): White waxy oil (146.6 mg, 57%); 1H-NMR (400 MHz, CDCl3)
δ 7.96 (t, J = 8.7 Hz, 2H), 7.70 (d, J = 7.7 Hz, 1H), 7.61–7.50 (m, 4H), 7.43–7.39 (m, 1H), 7.21–7.12 (m,
3H), 7.03 (d, J = 8.1 Hz, 1H), 2.47 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 138.3, 136.4, 134.6, 130.6, 129.0,
128.3, 128.2, 127.5, 126.9, 126.6, 125.6, 125.1, 123.7, 122.2, 119.5, 119.1, 112.2, 110.8, 9.8; HRMS (ESI): m/z
Calcd. For: C19H15N [M + H]+: 258.1277; found 258.1275.

3-Methyl-1-(thiophen-2-yl)indole (3ae): White waxy oil (138.4 mg, 65%,); 1H-NMR (600 MHz, CDCl3) δ
7.60 (dd, J = 13.2, 8.0 Hz, 2H), 7.30–7.25 (m, 1H), 7.23–7.19 (t, J = 7.4 Hz, 1H), 7.16–7.13 (t, J = 4.0 Hz,
1H), 7.10 (s, 1H), 7.05 (d, J = 3.1 Hz, 2H), 2.37 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 142.2, 137.2, 129.7,
126.8, 126.1, 122.9, 121.0, 120.4, 119.5, 119.2, 113.6, 110.6, 9.6; HRMS (ESI): m/z Calcd. For: C13H11NS
[M + H]+: 214.0685; found 214.0681.

3-Methyl-N-(4-nitrophenyl)indole (3af) [45]: Yellow solid (176.4 mg, 70%); 1H-NMR (400 MHz, CDCl3) δ
8.36 (d, J = 8.9 Hz, 2H), 7.68–7.57 (m, 4H), 7.33–7.20 (m, 2H), 7.17 (s, 1H), 2.38 (s, 3H); 13C-NMR (100
MHz, CDCl3) δ 145.5, 144.6, 135.5, 130.9, 125.6, 124.5, 123.6, 122.7, 121.2, 119.8, 115.8, 110.5, 9.7; GC-MS
m/z: 252 (M+).
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3-Methyl-N-(pyrimidin-2-yl)indole (3ag) [46]: White solid (165.3 mg, 79 %); 1H-NMR (400 MHz, CDCl3)
δ 8.77 (d, J = 9.0 Hz, 1H), 8.66 (d, J = 4.8 Hz, 2H), 8.03 (s, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.42–7.19 (m, 2H),
6.98 (t, J = 4.8 Hz, 1H), 2.35 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 158.0, 157.7, 135.7, 132.1, 123.7, 122.9,
121.8, 118.8, 116.3, 116.0, 115.5, 9.8; GC-MS m/z: 209 (M+).

2-(3-Methyl-indol-1-yl)benzamide (3ah) [47]: White waxy oil (140.1 mg, 56%); 1H-NMR (400 MHz,
DMSO-d6) δ 7.67–7.53 (m, 4H), 7.50–7.41 (m, 2H), 7.32 (s, 1H), 7.19–7.05 (m, 4H), 2.29 (s, 3H); 13C-NMR
(100 MHz, DMSO-d6) δ 168.8, 165.0, 136.5, 135.9, 134.8, 130.4, 128.8, 127.3, 127.1, 126.9, 121.8, 119.3,
118.6, 111.0, 110.2. 9.5; GC-MS m/z: 250 (M+).

N-(2-Chloro-4-nitrophenyl)-3-methylindole (3ai): Orange solid (249.4 mg, 87%); mp 125~130 ◦C; 1H-NMR
(600 MHz, CDCl3) δ 8.49 (s, 1H), 8.24 (d, J = 8.7 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 8.7 Hz,
1H), 7.27–7.19 (m, 4H), 7.11 (s, 1H), 2.41 (s, 3H); 13C-NMR (125 MHz, CDCl3) δ 146.2, 142.8, 136.4,
131.3, 129.8, 128.8, 126.8, 125.5, 123.1, 122.9, 120.9, 119.6, 114.6, 110.6, 9.7; HRMS (ESI): m/z Calcd. For:
C15H11ClNO2 [M + H]+: 287.0582; found 287.0576.

N-(2-Bromophenyl)-3-methylindole (3am) [48]: White waxy oil (214.6 mg, 75%); 1H-NMR (400 MHz,
CDCl3) δ 7.80 (d, J = 7.9 Hz, 1H), 7.70–7.64 (m, 1H), 7.50–7.40 (m, 2H), 7.37–7.29 (m, 1H), 7.28–7.19 (m,
2H), 7.17–7.10 (m, 1H), 7.07 (s, 1H), 2.46 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 138.8, 137.1, 134.0, 129.8,
129.2, 129.0, 129.3, 122.3, 121.8, 119.7, 119.1, 112.5, 110.6, 9.8; GC-MS m/z: 287 (M+).

N-(3-Bromo-5-chlorophenyl)-3-methylindole (3an): White solid (221.2 mg, 69 %); mp 142~144 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 7.62 (d, J = 8.4 Hz, 1H), 7.57–7.55 (m, 2H), 7.45–7.44 (m, 2H), 7.29–7.19 (m, 2H),
7.09 (s, 1H), 2.37 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 141.9, 136.0, 135.6, 130.3, 128.4, 124.8, 124.7,
123.4, 123.2, 122.4, 120.7, 119.6, 114.5, 110.2, 9.6; HRMS (ESI): m/z Calcd. For: C15H11BrClN [M + H]+:
319.9836; found 319.9834.

N-(2-Fluoro-3-propylphenyl)-3-methylindole (3ao): White waxy oil (216.5 mg, 81%); 1H-NMR (400 MHz,
CDCl3) δ 7.65 (d, J = 7.4 Hz, 1H), 7.34–7.30 (m, 2H), 7.24–7.15 (m, 4H), 7.10 (s, 1H), 2.74 (t, J = 7.6 Hz,
2H), 2.42 (s, 3H), 1.77–1.68 (m, 2H), 1.03 (t, J = 7.3 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ 155.2 (d, JC-F

= 248.0 Hz), 136.8, 131.4 (d, JC-F = 15.0 Hz), 129.4, 128.9 (d, JC-F = 5.0 Hz), 127.4 (d, JC-F = 13.0 Hz), 126.3
(d, JC-F = 2.0 Hz), 125.2 (d, JC-F = 1.0 Hz), 124.1 (d, JC-F = 5.0 Hz), 122.4, 119.8, 119.2, 112.8, 110.7, 31.3,
23.5, 13.9, 9.7; HRMS (ESI): m/z Calcd. For: C18H18FN2 [M + H]+: 268.1496; found 268.1492.

N-(3-Fluorophenyl)-3-methylindole (3ap): White waxy oil (164.7 mg, 73%); 1H-NMR (400 MHz, CDCl3)
δ 7.66–7.60 (m, 2H), 7.49–7.43 (m, 1H), 7.31–7.20 (m, 4H), 7.14 (s, 1H), 7.05–7.01 (m, 1H), 2.41 (s, 3H);
13C-NMR (100 MHz, CDCl3) δ 164.4 (d, JC-F = 246.0 Hz), 141.6 (d, JC-F = 10.0 Hz), 135.8, 130.9 (d,
JC-F = 10.0 Hz), 130.1, 125.2, 122.8, 120.3, 119.4 (d, JC-F = 13.0 Hz), 113.7, 112.7 (d, JC-F = 21.0 Hz), 111.2,
111.0, 110.4, 9.7; HRMS (ESI): m/z Calcd. For: C15H12FN [M + H]+: 226.1027; found 226.1025.

2-Fluoro-6-(3-methylindol-1-yl)benzamide (3aq): White solid (203.9 mg, 76%); mp 205~208 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 7.61 (d, J = 6.7 Hz, 1H), 7.55–7.47 (m, 1H), 7.34–7.24 (m, 2H), 7.23–7.15 (m, 3H),
7.09 (s, 1H), 5.43 (d, J = 63.2 Hz, 2H), 2.35 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 164.8, 160.2 (d,
JC-F = 251.0 Hz), 138.3, 136.9, 131.5 (d, JC-F = 10.0 Hz), 129.6, 126.3, 123.2, 122.8, 120.3, 119.4, 115.0, 114.8,
113.7, 110.1, 9.7; HRMS (ESI): m/z Calcd. For: C16H13FN2O [M + H]+: 269.1085; found 269.1082.

N-(2-Chlorophenyl)indole (3ba) [49]: White waxy oil (111.5 mg, 49%); 1H-NMR (400 MHz, CDCl3) δ 7.70
(d, J = 6.5 Hz, 1H), 7.61–7.58 (m, 1H), 7.47–7.39 (m, 3H), 7.26–7.13 (m, 4H), 6.71 (d, J = 3.3 Hz, 1H);
13C-NMR (100 MHz, CDCl3) δ 137.0, 136.8, 131.9, 130.9, 129.5, 129.1, 128.8, 128.6, 127.7, 122.4, 121.1,
120.4, 110.7, 103.3; GC-MS m/z: 227 (M+).

N-Phenylindole (3bb) [50]: White solid (from 2j, 98.5 mg, 51%); 1H-NMR (400 MHz, CDCl3) δ 7.70 (d,
J = 8.3 Hz, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.53–7.51 (m, 4H), 7.39–7.33 (m, 2H), 7.25–7.15 (m, 2H), 6.70 (d,
J = 3.3 Hz,1H); 13C-NMR (100 MHz, CDCl3) δ 139.9, 135.9, 129.7, 129.4, 128.0, 126.5, 124.5, 122.4, 121.2,
120.4, 110.6, 103.6; GC-MS m/z: 193 (M+).
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N-(2-Chlorophenyl)indole-5-carbonitrile (3ca): White solid (75.6 mg, 30%); mp 50~54 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 8.04 (s, 1H), 7.63–7.61 (m, 1H), 7.47–7.41 (m, 4H), 7.35 (d, J = 3.3 Hz, 1H),
7.15 (d, J = 8.6 Hz, 1H), 6.78 (d, J = 3.9 Hz, 1H); 13C-NMR (100 MHz, CDCl3) δ 138.4, 135.9, 132.0, 131.2,
131.1, 130.1, 129.4, 128.3, 128.0, 126.7, 125.4, 120.6, 111.6, 104.1, 103.7; HRMS (ESI): m/z Calcd. For:
C15H9ClN2 [M + H]+: 270.0793; found 270.0791.

N-(2-Chlorophenyl)-indole-5-carboxamide (3da): White solid (157.0 mg, 58%); mp 130~134 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 8.21 (s, 1H), 7.69 (d, J = 10.4 Hz, 1H), 7.62–7.60 (m, 1H), 7.45–7.42 (m, 3H), 7.31 (d,
J = 3.3 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 6.77 (d, J = 4.0 Hz, 1H), 6.02 (sbr, 2H); 13C-NMR (100 MHz,
CDCl3) δ 170.5, 138.7, 136.4, 131.9, 131.0, 130.4, 129.7, 129.4, 128.2, 127.9, 125.7, 121.9, 121.3, 110.7, 104.4;
HRMS (ESI): m/z Calcd. For: C15H11ClN2O [M + H]+: 271.0633; found 271.0630.

6-Chloro-N-phenylindole (3eb): Pale yellow waxy oil (59.1 mg, 26%); 1H-NMR (400 MHz, CDCl3) δ
7.62–7.45 (m, 6H), 7.39 (t, J = 7.2 Hz, 1H), 7.33 (d, J = 3.3 Hz, 1H), 7.14 (d, J = 8.4 Hz, 1H), 6.66 (d,
J = 3.0 Hz, 1H); 13C-NMR (100 MHz, CDCl3) δ 139.3, 136.4, 129.9, 128.8, 128.5, 127.8, 127.0, 124.5, 122.0,
121.1, 110.6, 103.7; HRMS (ESI): m/z Calcd. For: C14H10ClN [M + H]+: 228.0575; found 228.0574.

1,3-Diphenylindole (3fb) [51]: White solid (91.5 mg, 34%); 1H-NMR (400 MHz, CDCl3) δ 8.01 (d,
J = 7.3 Hz, 1H), 7.74 (d, J = 7.3 Hz, 2H), 7.62 (d, J = 7.4 Hz, 1H), 7.57–7.46 (m, 7H), 7.42–7.24 (m, 4H);
13C-NMR (100 MHz, CDCl3) δ 139.6, 136.8, 135.2, 129.8, 128.9, 127.7, 127.2, 126.8, 126.3, 125.6, 124.6,
122.9, 121.0, 120.2, 119.2, 110.9; GC-MS m/z: 269 (M+).

N-Phenylcarbazole (5a) [37]: White solid (from 2j, 121.6 mg, 70%); 1H-NMR (400 MHz, CDCl3) δ 8.15 (d,
J = 7.7 Hz, 2H), 7.65–7.54 (m, 4H), 7.47 (t, J = 7.1 Hz, 1H), 7.41 (d, J = 4.0 Hz, 4H), 7.33–7.27 (m, 2H);
13C-NMR (100 MHz, CDCl3) δ 141.0, 137.8, 129.9, 127.5, 127.2, 126.0, 123.4, 120.4, 120.0, 109.8; GC-MS
m/z: 243 (M+).

N-(p-Tolyl)carbazole (5b) [37]: White solid (from 2r, 67.4 mg, 30%,); 1H-NMR (400 MHz, CDCl3) δ 8.15
(d, J = 8.3 Hz, 2H), 7.50–7.36 (m, 8H), 7.29 (t, J = 6.9 Hz, 12), 2.49 (s, 3H),13C-NMR (100 MHz, CDCl3) δ
141.1, 137.5, 135.1, 130.6, 127.1, 125.9, 123.3, 120.3, 119.8, 109.9, 21.3, GC-MS m/z: 257 (M+).

N-(4-Nitrophenyl)carbazole (5c) [52]: Yellow solid (from 2k, 206.6 mg, 70%); 1H-NMR (400 MHz, CDCl3)
δ 8.49 (d, J = 8.8 Hz, 2H), 8.16 (d, J = 7.7 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.48 (m, 4H), 7.36 (t, J = 7.4 Hz,
2H); 13C-NMR (100 MHz, CDCl3) δ 145.9, 143.9, 139.9, 126.8, 126.6, 125.6, 124.3, 121.3, 120.7, 109.7;
GC-MS m/z: 288 (M+).

N-(Pyrimidin-2-yl)carbazole (5d) [53]: White solid (156.9 mg, 64%); 1H-NMR (400 MHz, CDCl3) δ 8.87 (d,
J = 8.5 Hz, 2H), 8.83 (d, J = 4.8 Hz, 2H), 8.09 (d, J = 7.7 Hz, 2H), 7.53 (t, J = 7.8 Hz, 2H), 7.39 (t, J = 7.5 Hz,
2H), 7.10 (t, J = 4.8 Hz, 1H); 13C-NMR (100 MHz, CDCl3) δ 157.9, 139.2, 126.7, 125.9, 122.4, 119.6, 116.3,
116.1; GC-MS m/z: 245 (M+).

N-(3-Fluorophenyl)carbazole (5e) [37]: White solid (177.6 mg, 68%); 1H-NMR (400 MHz, CDCl3) δ 8.11
(d, J = 7.7 Hz, 2H), 7.57–7.47 (m, 1H), 7.46–7.24 (m, 8H), 7.21–7.08 (m, 1H); 13C-NMR (100 MHz, CDCl3)
δ 163.5 (d, JC-F = 246.0 Hz), 140.6, 139.4 (d, JC-F = 10.0 Hz), 131.2 (d, JC-F = 9.0 Hz), 126.2, 123.6, 122.4 (d,
JC-F = 6.0 Hz), 120.5, 120.4, 114.6 (d, JC-F = 7.0 Hz), 114.4 (d, JC-F = 9.0 Hz), 109.8; GC-MS m/z: 261 (M+).

N-(2-Fluorophenyl)carbazole (5f) [37]: White waxy oil (148.9 mg, 57%); 1H-NMR (400 MHz, CDCl3)
δ 8.25 (d, J = 8.2 Hz, 2H), 7.72 (t, J = 7.8 Hz, 1H), 7.68–7.57 (m, 2H), 7.50 (t, J = 7.4 Hz, 1H), 7.43
(t, J = 7.7 Hz, 2H), 7.30 (t, J = 7.4 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H); 13C-NMR (100 MHz, CDCl3) δ
157.6 (d, JC-F = 248.0 Hz), 140.2, 130.5 (d, JC-F = 7.0 Hz), 129.9, 126.4, 125.9 (d, JC-F = 3.0 Hz), 124.0
(d, JC-F = 13.0 Hz), 122.8, 120.5, 120.3, 117.4 (d, JC-F = 19.0 Hz), 109.6; HRMS (ESI): m/z Calcd. For:
C18H12FN [M + H]+: 262.1027; found 262.1025.
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N-(2-Fluoro-3-propylphenyl)carbazole (5g): White waxy oil (151.5 mg, 50%); 1H-NMR (400 MHz,
DMSO-d6) δ 8.24 (d, J = 7.7 Hz, 2H), 7.55–7.35 (m, 5H), 7.29 (t, J = 7.5 Hz, 2H), 7.17 (d, J = 8.2 Hz,
2H), 2.70 (t, J = 7.5 Hz, 2H), 1.68–1.63 (m, 2H), 0.94 (t, J = 7.4 Hz, 3H); 13C-NMR (100 MHz, CDCl3)
δ 155.9 (d, JC-F = 247.0 Hz), 140.2, 131.0 (d, JC-F = 16.0 Hz), 130.8 (d, JC-F = 5.0 Hz), 127.2, 126.3, 125.1
(d, JC-F = 4.0 Hz), 123.9 (d, JC-F = 20.0 Hz), 122.7, 120.5, 120.2, 109.6, 30.2, 22.9, 13.5; HRMS (ESI): m/z
Calcd. For: C21H18FN [M + H]+: 304.1496; found 304.1491.

N-(2-Fluoro-4-nitrophenyl)-9H-carbazole (5h): Orange solid (198.9 mg, 65%); mp 80~85 ◦C; 1H-NMR
(400 MHz, CDCl3) δ 8.33–8.23 (m, 2H), 8.14 (d, J = 7.7 Hz, 2H), 7.84 (t, J = 7.7 Hz, 1H), 7.45 (t,
J = 7.7 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.26 (d, J = 6.0 Hz, 2H); 13C-NMR (100 MHz, CDCl3) δ 157.2 (d,
JC-F = 251.0 Hz), 147.2 (d, JC-F = 8.0 Hz), 140.0, 131.9 (d, JC-F = 12.0 Hz), 129.7 (d, JC-F = 2.0 Hz), 126.6,
124.3, 121.4, 120.7, 120.6 (d, JC-F = 4.0 Hz), 113.8 (d, JC-F = 25.0 Hz), 110.0 (d, JC-F = 9.0 Hz); HRMS (ESI):
m/z Calcd. For: C18H11FN2O2 [M − H]−: 305.0732; found 305.0731.

4-(Carbazol-9-yl)benzamide (5i) [52]: White solid (168.9 mg, 59%); 1H-NMR (400 MHz, CDCl3) δ 8.15 (d,
J = 7.7 Hz, 2H), 8.07 (d, J = 8.3 Hz, 2H), 7.69 (d, J = 8.1 Hz, 2H), 7.45–7.38 (m, 4H), 7.32 (t, J = 7.5 Hz,
2H), 6.14 (sbr, 2H); 13C-NMR (100 MHz, CDCl3) δ 168.6, 141.3, 140.4, 131.9, 129.3, 126.8, 126.3, 123.8,
120.6, 120.5, 109.8; GC-MS m/z: 286 (M+).

4-(Carbazol-9-yl)aniline (5j) [52]: Pale yellow waxy oil (77.5 mg, 30%); 1H-NMR (400 MHz, DMSO-d6) δ
8.20 (d, J = 7.7 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.32–7.15 (m, 6H), 6.80 (d, J = 8.6 Hz, 2H), 5.45 (s, 2H);
13C-NMR (100 MHz, CDCl3) δ 148.5, 140.9, 127.7, 125.9, 124.4, 122.1, 120.3, 119.3, 114.6, 109.6; GC-MS
m/z: 258 (M+).

The charts of 1H- and 13C-NMR are available in Supplementary Materials.

4. Conclusions

In summary, we have investigated the SNAr reactions of chloroarenes and fluoroarenes to
achieve the N-arylation of indoles and carbazole with the use of KOH/DMSO as a medium under
transition-metal-free conditions, providing an alternative and efficient protocol for the synthesis of
N-arylated indoles and carbazoles. The present procedure has the significant advantage of tolerance to
various functional groups, which are important for further synthesis of indole- and carbazole-based
organic materials.

Supplementary Materials: The 1H- and 13C-NMR spectra of the products are available online.
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