Supporting Information for

Cu-Catalyzed Oxidative 3-Amination of Indoles via Formation of Indolyl(aryl)iodonium Imides Using o-Substituted (Diacetoxyiodo)arene as a High-Performance Hypervalent Iodine Compound

Kazuhiro Watanabe and Katsuhiko Moriyama *
Department of Chemistry, Graduate School of Science, and Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; cars9s66@chiba-u.jp
* Correspondence: moriyama@faculty.chiba-u.jp; Tel.: +81-43-290-3693

Table of contents

1. X-ray Diffraction Analysis of 2a. S2
2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Materials. S3

1. X-ray Diffraction Analysis of 2a.

Crystal data for 2a: Formula $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, colorless, crystal dimensions $0.30 \times 0.20 \times 0.20$ mm^{3}, Triclinic, space group $\mathrm{P}-1, a=9.475(2) \AA, b=10.144(2) \AA, c=13.660(3) \AA, \alpha=$ 98.118(3) ${ }^{\circ}, \beta=91.348(3)^{\circ}, \gamma=100.871(3)^{\circ}, V=1274.7(5) \AA^{3}, Z=2, \rho_{\text {calc }}=1.367 \mathrm{~g} \mathrm{~cm}^{-3}, \mathrm{~F}(000)$ $=552, \mu(\mathrm{MoK} \alpha)=0.250 \mathrm{~mm}^{-1}, T=173 \mathrm{~K} .7413$ reflections collected, 5602 independent reflections with $I>2 \sigma(I)\left(2 \theta_{\max }=27.572^{\circ}\right)$, and 330 parameters were used for the solution of the structure. The non-hydrogen atoms were refined anisotropically. $R_{1}=0.0508$ and $w R_{2}=0.1031$. GOF $=1.015$. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1860598. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: int. code +44 (1223)336-033; E-mail: deposit@ccdc.cam.ac.uk].

Figure S1. ORTEP drawing of 2a. The ellipsoids correspond to 50% probability.

