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Abstract: Finite or periodic structures containing the cube motif can be synthesized and transformed
into a variety of structures both at the theoretical and real, experimental level. The rhombellation
topo-geometric operation may be used to transform the cube-shape into larger units and then build
light (spongy) structures with larger voids. Hyper-clusters are polyhedral structures which nodes
are polyhedral structures (the same or different ones). The paper presents some hypothetical spongy
structures related to the cubic primitive pcu-net, with defects induced by cutting-off some atoms
and/or bonds so that only corners are shared between two cubes. A diamondoid hyper-structure
containing cube-coalesced corners was proposed for an eventual synthesis. The discussed
structures are described in topological terms, particularly by sequential vertex connectivity and
ring environment.
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1. Introduction

Nanoscience is a general term used to specify the level of knowledge about structures with
nanometer dimensions (1 nanometer = 10−9 m). Together with the technology enabling the application
of nanoscience, in a variety of fields, including science, technique, health, society and culture (also
termed nanotechnology), they collectively define the “nanoera” a new time of unprecedented progress
in human life related to nanoscience [1]. Research for new materials with applications in technology or
health care is an important task nowadays. The efforts are justified by the need for special properties,
e.g., light and strong, biodegradable and low polluting materials and processes.

Out of the natural or synthesized materials like diamond, diamond-like carbon, metal oxides,
etc., used for their high density/hardness or other physico-chemical properties, zeolites [2] and
metal-organic frameworks (MOFs) [3–5] are appreciated for their light structures, with voids inside
that can be occupied by appropriate guests, or remain empty. In this article, such light structures are
termed “spongy” ones.

Rhombellanes are mathematical structures, introduced by us in 2017 [6]. A rhombellane was
defined [7–10] as a structure with the following characteristics: (1) all strong rings are rhombs/squares;
(2) its vertex class consists of all non-connected vertices; (3) the omega polynomial has a single term:
1X|E(G)|; (4) the line graph of the parent graph shows a Hamiltonian circuit; (5) it haa at least one
rbl.5, the smallest rhombellane. Rombellanes originate from real molecules, such as propellanes [11]
and polymeric staffanes [12]. The smallest rhombellane, rbl.5 is the realization of K2,3—a complete
bipartite graph (Figure 1, left). By accepting larger even-sized polygonal faces (with respect to the
Omega criterion) and tiles other than rbl.5, one may define related quasi-rhombellanes.

The aim of this paper is to introduce some spongy nets related to corner coalesced cubic nets and,
on this basis, to propose possible synthesizable networks, candidates to biodegradable polymers.
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rh3.5 = K2.3 = rbl.5 rh12.14 (rdo [4^12]) rh24.26 (mtp [4^24]) 

Figure 1. Rhomb tessellated units. 

2. Results 

Cube-shape-containing structures can be modified by using topo-geometric operations, 
particularly the rhombellation operation. Out of the smallest rhombic shape, rh6.8 (i.e., the shape of 
cube – RCSR symbol [13]: cub [4^6])), other polyhedral shapes can be obtained, like those shown in 
Figure 1: rh12.14 (rdo [4^12]—middle) and rh24.26 (mtp [4^24]—right). These shapes result by 
iterating the rhombellation on the cube-shape-containing structures; the number of rhombs/squares 
in the actual generation, is twice that in the previous one. The number suffixing the name of a 
structure counts its vertices/atoms (Remark: in the above examples, this number is larger by 2 than 
the number of rhombs, a consequence of the Euler characteristic for the structures embedded in the 
sphere, by performing such operations, see [14]). Note that “shape” is used here instead of the 
corresponding polyhedron, since, in this topological view, angles and bond lengths are disregarded 
[15].  

2.1. Cube-Shape Corner Coalesced Nets 

The interest here was focused on finding structures made by constructing polyhedral shapes 
having coalesced corners and no edges or faces shared by two cells/shapes. In this respect, a domain 
consisting of 14 cubic shapes was cut off from the cubic primitive pcu-net. Its translation along the 
xyz axes led to two nets, denoted here as A and B (Figure 2, middle and right), where the B-net 
resulted from translating the domain/unit (T1A—Figure 2, left; Table 1, entry 1) by using an inclined 
(by 60°) z-coordinate [16,17]. Capital letters will be assigned for the hereafter discussed nets, except 
for the known ones. Rhombellation of these two nets led to the corresponding nets shown in Figure 
3; the units of the rhombellated nets are shown in Figure 4 (see also Table 1, entries 3 and 4).  

   
T1A; Hyp[rh12.14](rh6.1.8).88 A-net (ortho) B-net (inclined) 

Figure 2. Corner-coalesced cube nets. 
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Figure 3. Rhombellated nets of Figure 2. 
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2. Results

Cube-shape-containing structures can be modified by using topo-geometric operations,
particularly the rhombellation operation. Out of the smallest rhombic shape, rh6.8 (i.e., the shape of
cube–RCSR symbol [13]: cub [4ˆ6])), other polyhedral shapes can be obtained, like those shown in
Figure 1: rh12.14 (rdo [4ˆ12]—middle) and rh24.26 (mtp [4ˆ24]—right). These shapes result by iterating
the rhombellation on the cube-shape-containing structures; the number of rhombs/squares in the
actual generation, is twice that in the previous one. The number suffixing the name of a structure
counts its vertices/atoms (Remark: in the above examples, this number is larger by 2 than the number
of rhombs, a consequence of the Euler characteristic for the structures embedded in the sphere, by
performing such operations, see [14]). Note that “shape” is used here instead of the corresponding
polyhedron, since, in this topological view, angles and bond lengths are disregarded [15].

2.1. Cube-Shape Corner Coalesced Nets

The interest here was focused on finding structures made by constructing polyhedral shapes
having coalesced corners and no edges or faces shared by two cells/shapes. In this respect, a domain
consisting of 14 cubic shapes was cut off from the cubic primitive pcu-net. Its translation along the
xyz axes led to two nets, denoted here as A and B (Figure 2, middle and right), where the B-net
resulted from translating the domain/unit (T1A—Figure 2, left; Table 1, entry 1) by using an inclined
(by 60◦) z-coordinate [16,17]. Capital letters will be assigned for the hereafter discussed nets, except
for the known ones. Rhombellation of these two nets led to the corresponding nets shown in Figure 3;
the units of the rhombellated nets are shown in Figure 4 (see also Table 1, entries 3 and 4).
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Table 1. Names of structures, assumed letter, shape, symbol and tile topology.

# Net Name Letter Shape (Symbol) Tile (Topology)

1 Corner coalesced pcu (ortho) A rh6.8
(cub [4ˆ6])

T1A: (14(rh6.1.8)); (v = 88; e = 168; r4 = 84; r6 = 48; r10 = 96; r12 = 998).
T2A: (rh6.e.8@6(rh6.8)); (v = 32; e = 48; r4 = 6; r6 = 12).

2 Corner coalesced
pcu (inclined) B rh6.8

(cub [4ˆ6]) T1A: Hyp[rh12.14](rh6.1.8).88.

3 Rhombellated-A;
rbl(A (ortho)) C rh12.14

(rdo [4ˆ12])
T1C: (14(rh12.1.14)); (v = 172; e = 336; r4 = 168; r8 = 300).
T2C: 12(rh12.1.14); (v = 152; e = 288; r4 =1 44; r8 = 232).

4 Rhombellated-B;
rbl(B (inclined)) D rh12.14

(rdo [4ˆ12]) T1C: Hyp[rh12.14](rh12.1.14).172

5 Corner coalesced flu
(spongy; ortho) E rh12.14

(rdo [4ˆ12])
T1E: (rh12.1.14); (v = 14 ([6(4ˆ4).8(4ˆ3)]); e = 24; r4 = 12; r8 = 18).

T2E: Void = T1E.

6 Rhombellated-E;
rbl(E (spongy; ortho)) F rh24.26

(mtp [4ˆ24])
T1F: (rh24.1.26); (v = 26 ([6(4ˆ4).12(4ˆ4).8(4ˆ3)]); e = 48; r4 = 24; r8 =

15; r10 = 109). T2F: Void = T1F.

7 Corner coalesced pcu
(spongy; inclined) G rh24.26

(mtp [4ˆ24]) T1F; T2F

8 Deffect (mtp) pcu
(spongy; ortho) H rh24.26

(mtp [4ˆ24]) T1H: (rh24.9.26).

9 Etheric hyper-diamond Y CC.60
T1Y: (10CC.60); (v = 528; e = 648; r6 = 68; r16 = 60). CC.60 (v = 60;

e = 72; r6 = 8; r16 = 6). T1Y: Hyp[ada.10](CC.60).528T1Ys:
Hyp[ada.10](CC.156)).1270

The shapes making up these nets are indicated in Table 1 (fourth column), while the tiles (with
subscript numbers and letters) are listed in the last column; tiles are repeating units, building blocks,
etc. (for a more complete definition see [9,18,19]).

2.2. Spongy Corner Coalesced Nets

Other nets were built by using direct translation of appropriate units (Figure 5, left and right) or
the rhombellation operation (Figure 5, middle). Details are found in Table 1, entries 5 to 7.
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2.3. Hyper-Diamondoid Nets

A triple periodic hyper-network, denoted here as Y-net was designed by using as the repeating
unit a hyper-adamantane Hyp[ada.10](CC.156)).1270, (Figure 6, left, top); it is made from etheric
cuboids CC.156, formally derived from hexahydroxycyclohexane, hhc. The suffixing numbers include
here both the cyclohexane substituents and hydrogen atoms; for the sake of simplicity, these are
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further omitted, e.g., CC.156 becomes CC.60 (see Figure 6, the right column and Table 1, entry 9). A
corresponding rod-like net is shown in Figure 6 (left, bottom).
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The topology of the structures above presented is basically characterized by sequences of
connectivity (LC) and rings around a vertex (LR) [20–22]. The LR matrix provided different values
for different ring domains, e.g., for (rmin.rmin) (corresponding to the ring symbol) and (rmin.r), r-being
a chosen value; these values are indicated in the tables listing LC and LR sequences (Appendix A,
Tables A1–A4).

3. Discussion

Crystals are highly ordered structures, with periodically repeating atomic clusters in three
independent directions of space, and showing an essentially discrete diffraction diagram [23];
the symmetry of infinite crystal lattices is completely described by the 230 space symmetry groups.

3.1. Cube-Shape Containing Structures

Rhombellation operation applied to the pcu-net (tile rh6.8, i.e., the cube or better a cuboid shape)
leads to a net where the shape has twice the number of rhombs, namely rh12.14. Iterating the operation,
rbl(rbl(pcu)) results in a network with the shape rh24.26 [24].

Hyper-clusters are those polyhedral structures of which the nodes are polyhedral structures
(the same or different ones). There are few convex polyhedra that are true fillers of 3D space [10],
e.g., the cube, the rhombic dodecahedron, rdo, etc. Then, a hyper-cluster of rdo (better of its shape,
rh12.14), like Hyp[rh12.14](rh6.1.8).88 (i.e., the tile T1A of A- and B- nets), may be viewed as a filler of a
“hyper-space”. The square brackets give information about the “host” cluster, of which vertices consist
of the second cluster (round brackets). The name of shapes, being the “bricks” of the host cluster are
eventually amended by the number of vertices/atoms shared by two shapes/cells in the realization of
the hyper-cluster, e.g., “rh6.1.8” means corner-coalesced cubic shapes. The herein discussed hyper-tiles:
T1A, T1C and T1Y, are listed in Table 1 (entries 2, 4 and 9) and also shown in Figures 2, 4 and 6. The tile
T2A: (rh6.e.8@6(rh6.8).32), is in fact a void; the letter “e” indicates the core, a “cube with no edges”.

3.2. Spongy Corner Coalesced Nets

The vertex/atom coalescence of cells is a fact well-known from fullerenes. If, in a net, there is
one tile and one void (complementary ones), both of which can be used to generate the same net.
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The flu-net may be generated both by ortho and inclined units; there is a third way, using the same
unit (i.e., rh12.14) to give the corner-coalesced E-net (Table 1, entry 5). The inclined coordinates lead to
the same net in the case of simple units (see the flu-net) while different nets result when the units are
more complex (see the B- and G- nets). The F-net (Table 1, entry 6) was designed by rhombellating the
E-net. The sequences for the flu- and pcu-nets are given in Table A3.

In the both E- and F- nets one may cut-off domains of eight shapes/cells that can be viewed
as hyper-structures: Hyp[rh6.8](rh12.1.14) (Figure 5, left); Hyp[rh6.8] (rh24.1.26) (Figure 5, middle).
The inside void is the same as the corresponding shape; translating the E-net to fit with its voids, and
identifying the superposed vertices, one obtains the well-known flu-net Table A3 (entry 2). In the case
of the F-net, the “entanglement” with itself leads to a (spongy) pcu-net with defects (namely the shape
rh24.9.26–Table A3, entry 3), the H-net (Table 1, entry 8). The design of the “half”-nets, E and F, of
the flu- and pcu-(defect) nets, respectively, may be useful in understanding the structural details and
relatedness of nets, apparently very different.

3.3. Spongy Diamond Nets

In a previous paper [17] we designed a spongy-diamond net, of which the hyper-unit is
Hyp[ada.10](ada.10).100. In the actual paper, the topology of the new diamondoid hyper-net Y
(Table 1, entry 9) was established on the simplified tile T1Y: Hyp[ada.10](CC.60).528 (for the sequences
LC and LR see Table A4) but the most important is the possible real triple periodic network built
by T1Ys: Hyp[ada.10](CC.156)).1270 and finally by the cuboid CC.156 shapes. A synthesis may start
from 1,2,3,4,5,6-hexahydroxycyclohexane, hhc, that may form an ether with itself: if the molecule
conformation is all-axial, the polyether will be a linear rod-like structure (see Figure 6, left, bottom)
while in the all-equatorial conformation, the triple-periodic Y-net may be formed, by means of
Hyp[ada.10](CC.156)).1270 and the cuboid shape CC.156. Energetic aspects, computed at the DFT level
of theory, and pharmacological properties of a double-shell cluster built from CC.156, were published
in a previous paper of Topo Group Cluj [25]. Substructures of this double-shell rhombellanic cuboid
were tested for virtual docking with two indolizine derivatives, with good results [26]. Also, the linear
hypothetical polymer, [n]hhc, (Figure 6, left, bottom) was docked to the enzyme glucose oxidase, GOX
(3QVR) [27]. These results are a promise for the design and synthesis of cuboid-based molecules.
In recent years, several research groups have reported hyper-structures, both as hypothetical and
realized molecules [28–36]. For cubanes, see refs. [37–39]. The paper is an attempt to describe possible
ways to access new, finite or periodic structures, in topological terms, rather than crystallographic ones.
The relation with synthetic chemistry was established by the diamondoid Y-net.

4. Methods

Cube-shape containing structures were modified by using topo-geometric operations, particularly
the rhombellation operation. In addition to the smallest rhombic shape, rh6.8 (i.e., the shape of cube),
there appear other polyhedral shapes, like rh12.14, rh24.26, etc. These shapes result by iterating the
rhombellation on the cube-shape-containing structures. Rhombellation [24] starts by diagonalizing
each face of an all-rhomb map rh0 by a joint point (called “rbl-point”); then, new vertices are added,
opposite to the parent vertices and joined, each of them, with the rbl-vertices lying in the proximity of a
parent vertex, thus local rh-cells are formed. The process can be iterated, considering the envelope/shell
rhn as “rh0” for rhn+1, and in this way shell by shell are added to the precedent structure. Since the two
diagonals of a rhomb may be topologically different, each new generation may provide two isomers.
Here, rhombellation was used to achieve the doubling of the number of rhombs in a cell, included in
a periodic net. Finding the vertex (subgraph) classes in a graph is related to topological symmetry;
they are calculated as centrality classes, by using the centrality index, C, developed at Topo Group
Cluj [20]. It is calculated on layer/shell matrices [21,22], by the formula:
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C(LM\ShM)i =

[
ecci

∑
k=1

(
[LM\ShM]2k

ik

)1/(ecci)
2
]−1

; C(LM\ShM) = ∑
i

C(LM\ShM)i

This index allows one to find the graph center and provides an ordering of vertices according to
their centrality [38]. All computations have been using our original Nano Studio software package [39].

5. Conclusions

Atom coalescence of cells is a fact already known in fullerenes [40]. Structures like those discussed
above may appear at the impact of mater with an ion beam, laser, etc., while the experimentalist needs
models for structure identification and properties checking. Corner-coalesced structures can be viewed
as light/spongy materials, related to zeolites or MOFs. Cuboid structures were modeled at the Topo
Group Cluj in an attempt to design rhombellanic real molecules, of which pharmacological properties
were simulated [25]. The six-connected vertex of a corner-coalesced cuboid may be obtained from
the hexahydroxy-cyclohexane. The rod-like structure and the etheric triple periodic net, possible to
be synthesized from the CC.156 cuboid, represent polymers that may undergo biodegradation in
environment, if ever synthesized. The topology of the discussed structures was given in terms of
substructure composition, atom connectivity LC and rings around RC sequences.
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Appendix A

Table A1. Corner coalesced cubic pcu network: unit/tile; vertex connectivity classes; ring domain;
population; degree; point symbol; LM sequence: connectivity (LC) and atom surrounding rings (LR).

Cn Cls Network Letter and Vertex Classes LM

1 A (ortho) T1: (v = 88; e = 168; r4 = 84; r6 = 48; r10 = 96; r12 = 998)

1.1 deg = 3; {40}; 4ˆ3

1.1.1 (4.4); {8}; deg = 3; 4ˆ3
(4.6); {8}; deg = 3; 4ˆ3

LC: {8}; 3.3.10.30.45.54.90.145.169.196.
LR(4.4): {8}; 3.9.18.57.117.171.261.405.552.696.921.

LR(4.6); {8}; 3.15.42.135.255.357.561.885.1170.1452.1983.

1.1.2 (4.4); {24}; deg = 3; 4ˆ3
(4.6); {24}; deg = 3; 4ˆ3.6ˆ2

LC: {24}; 3.9.23.35.47.82.127.153.194.277.
LR(4.4): {24}; 3.15.45.90.141.225.354.495.657.885.1137.

LR(4.6); {24}; 5.31.103.198.297.487.772.1047.1385.1907.2427.

1.1.3 (4.4); {8}; deg = 3; 4ˆ3
(4.6); {8}; deg = 3; 4ˆ3.6ˆ6

LC: {8}; 3.12.31.45.54.90.145.169.196.286.
LR(4.4): {8}; 3.18.63.120.171.261.405.552.696.921.1218.

LR(4.6): {8}; 9.42.141.258.357.561.885.1170.1452.1983.2628.

1.2 deg = 6; {48}; 4ˆ6

1.2.1 {4.4}; {48}; deg = 6; 4ˆ6
{4.6}; {48}; deg = 6; 4ˆ6.6ˆ8

LC: {48}; 6.15.24.39.68.98.126.177.242.283.
LR(4.4): {48}; 6.27.60.105.177.279.402.558.762.975.1161.

LR(4.6); {48}; 14.61.130.225.385.601.852.1192.1636.2063.2437.

2 B (inclined) T1: (v = 88; e = 168; r4 = 84; r6 = 48; r10 = 96; r12 = 998)

2.1 deg = 3; {32}; 4ˆ3

2.1.1 (4.4); {32}; deg = 3; 4ˆ3
(4.6); {32}; deg = 3; 4ˆ3.6ˆ6

LC: {32}; 3.12.31.45.60.109.166.181.205.306.
LR(4.4): {32}; 3.18.63.123.189.324.519.660.789.1056.1413.

LR(4.6): {32}; 9.54.189.369.567.972.1557.1980.2367.3168.4239.

2.2 deg = 6; {56}; 4ˆ6
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Table A1. Cont.

Cn Cls Network Letter and Vertex Classes LM

2.2.1 (4.4); {56}; deg = 6; 4ˆ6
(4.6); {56}; deg = 6; 4ˆ6.6ˆ12

LC: {56}; 6.15.26.48.84.112.135.190.262.303.
LR(4.4): {56}; 6.27.63.126.234.360.480.648.894.1131.1323.

LR(4.6): {56}; 18.81.189.378.702.1080.1440.1944.2682.3393.3965.

3 C (ortho) T1: 14(12.1.14); (v = 172; e = 336; r4 = 168; r8 = 300);
T2: 12(12.1.14); (v = 152; e = 288; r4 = 144; r8 = 232).

3.1 deg = 3; {40}; 4ˆ3

3.1.1
(4.4); {16}; deg = 3; 4ˆ3

(4.8); {8}; deg = 3; 4ˆ3.8ˆ9
(4.8); {8}; deg = 3; 4ˆ3.8ˆ9

LC: {16}; 3.6.12.19.60.93.105.111.264.374.
LR(4.4): {16}; 3.12.27.48.111.240.369.420.594.1056.1446.

LR(4.8): {8}; 12.48.132.252.588.1140.1716.2040.3072.4992.6648.
LR(4.8): {8}; 12.60.132.240.588.1140.1716.2040.3072.4992.6648.

3.1.2 (4.4); {24}; deg = 3; 4ˆ3
(4.8); {24}; deg = 3; 4ˆ3.8ˆ9

LC: {24}; 3.6.9.13.44.72.93.106.224.315.
LR(4.4): {24}; 3.12.24.36.78.176.297.372.534.896.1263.

LR(4.8): {24}; 12.52.112.184.416.844.1404.1800.2712.4252.5900.

3.2 deg = 4; {84}; 4ˆ4

3.2.1 (4.4); {24}; deg = 4; 4ˆ4
(4.8); {24}; deg = 4; 4ˆ4.8ˆ12

LC: {24}; 4.10.16.45.72.93.106.224.315.337.
LR(4.4): {24}; 4.15.28.54.112.210.312.459.688.984.1236.

LR(4.8): {24}; 16.68.136.280.548.1024.1500.2260.3288.4728.5912.

3.2.2 (4.4); {24}; deg = 4; 4ˆ4
(4.8); {24}; deg = 4; 4ˆ4.8ˆ16

LC: {24}; 4.7.10.28.47.78.100.172.229.309.
LR(4.4): {24}; 4.18.40.87.180.297.372.534.896.1263.1348.

LR(4.8): {24}; 20.88.200.452.860.1404.1800.2712.4252.5900.6492.

3.2.3 (4.4); {24}; deg = 4; 4ˆ4
(4.8); {24}; deg = 4; 4ˆ4.8ˆ16

LC: {24}; 4.16.28.45.60.128.184.205.216.442.
LR(4.4): {24}; 4.24.64.120.180.300.512.744.820.1080.1768.

LR(4.8): {24}; 20.128.312.576.876.1520.2432.3488.3956.5472.8376.

3.2.4 (4.4); {24}; deg = 4; 4ˆ4
(4.8); {12}; deg = 4; 4ˆ4.8ˆ20

LC: {12}; 4.16.28.41.52.104.148.197.228.390.
LR(4.4): {12}; 4.24.64.120.164.252.416.624.788.1068.1560.

LR(4.8): {12}; 24.128.304.576.792.1264.1984.2976.3784.5296.7408.

3.3 deg = 6; {48}; 4ˆ6

3.3.1 (4.4); {48}; deg = 6; 4ˆ6
(4.8); {48}; deg = 6; 4ˆ6.8ˆ26

LC: {48}; 6.12.30.48.78.100.172.229.309.352.
LR(4.4): {48}; 6.24.60.120.213.312.459.688.984.1236.1578.

LR(4.8): {48}; 32.120.304.580.1036.1500.2260.3288.4728.5912.7704.

4 D (inclined) T1: 14(12.1.14); (v = 172; e = 336; r4 = 168; r8 = 300).

4.1 deg = 3; {32}; 4ˆ3

4.1.1 (4.4); {32}; deg = 3; 4ˆ3
(4.8); {32}; deg = 3; 4ˆ3.8ˆ9

LC: {32}; 3.6.12.19.63.96.141.154.345.410.
LR(4.4): {32}; 3.12.27.48.114.252.432.564.834.1380.1746.

LR(4.8): {32};12.60.144.276.684.1308.2304.3156.4824.7116.9048.

4.2 deg = 4; {84}; 4ˆ4

4.2.1 (4.4); {48}; deg = 4; 4ˆ4
(4.8); {48}; deg = 4; 4ˆ4.8ˆ16

LC: {48}; 4.10.16.48.76.126.146.304.360.420.
LR(4.4): {48}; 4.18.40.90.192.354.504.762.1216.1578.1680.

LR(4.8): {48}; 20.96.224.528.1008.1920.2784.4344.6336.8304.9280.

4.2.2 (4.4); {36}; deg = 4; 4ˆ4
(4.8); {36}; deg = 4; 4ˆ4.8ˆ20

LC: {36}; 4.16.28.53.72.168.216.273.272.542.
LR(4.4): {36}; 4.24.64.132.212.384.672.960.1092.1416.2168.

LR(4.8): {36}; 24.144.336.720.1176.2208.3504.5088.6040.8064.11248.

4.3 deg = 6; {56}; 4ˆ6

4.3.1 (4.4); {56}; deg = 6; 4ˆ6
(4.8); {56}; deg = 6; 4ˆ6.8ˆ30

LC: {56}: 6.12.33.53.105.132.240.277.399.407.
LR(4.4): {56}; 6.24.63.132.261.420.648.960.1290.1596.1926.

LR(4.8): {56}; 36.132.360.708.1452.2268.3600.5112.6996.8580.10524.
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Table A2. Spongy corner coalesced networks: unit/tile; vertex connectivity classes; ring domain;
population; degree; point symbol; LM sequence: connectivity (LC) and atom surrounding rings (LR).

Cn Cls Network Letter and Vertex Classes LM

1 E (ortho) T1: (rh12.1.14); (v = 14 ([6(4ˆ4).8(4ˆ3)]); e = 24; r4 = 12; r8 = 18).
T2: Void = T1.

1.1 deg = 3; {8}; 4ˆ3

(4.4); {8}; deg = 3; 4ˆ3
(4.8); {8}; deg = 3; 4ˆ3.8ˆ33

LC: {8}; 3.18.15.67.45.166.90.305.150.478.
LR(4.4): {8}; 3.24.54.120.201.360.498.720.915.1200.1434.

LR(4.8): {8}; 36.288.648.1440.2412.4320.5976.8640.10980.14400.17208.

1.2 deg = 8; {8}; 4ˆ8

(4.4); {6}; deg = 8; 4ˆ8
(4.8); {6}; deg = 8; 4ˆ8.8ˆ88

LC: {6}; 8.8.40.30.120.68.240.126.400.180.
LR(4.4): {6}; 8.24.64.120.240.360.544.720.1008.1200.1440.

LR(4.8): {6}; 96.288.768.1440.2880.4320.6528.8640.12096.14400.17280.

2 F (ortho)
T1: (rh24.1.26); (v = 26 ([6(4ˆ4).12(4ˆ4).8(4ˆ3)]); e = 48; r4 = 24; r8 = 15; r10

= 109).
T2: Void = T1.

2.1 deg = 3; {8}; 4ˆ3

2.1.1 (4.4); {8}; deg = 3; 4ˆ3
(4.8); {8}; deg = 3; 4ˆ3

LC: {8}; 3.6.18.30.84.112.225.256.420.455.
LR(4.4): {8}; 3.12.33.72.165.336.561.900.1218.1680.2115.

LR(4.8): {8}; 3.30.105.180.525.840.1641.2250.3378.4200.5715.

2.2 deg = 4; {12}; 4ˆ4

2.2.1 (4.4); {12}; deg = 4; 4ˆ4
(4.8); {12}; deg = 4; 4ˆ4.8ˆ6

LC: {12}; 4.14.24.68.96.206.230.372.426.670.
LR(4.4): {12}; 4.22.56.132.272.488.824.1090.1488.2008.2680.

LR(4.8): {12}; 10.70.140.420.680.1448.2060.3010.3720.5512.6700.

2.3 deg = 8; {6}; 4ˆ8

2.3.1 (4.4); {6}; deg = 8; 4ˆ8
(4.8); {6}; deg = 8; 4ˆ8.8ˆ24

LC: {6}; 8.16.48.70.160.188.320.366.584.580.
LR(4.4): {6}; 8.32.88.192.360.640.904.1280.1728.2336.2640.

LR(4.8): {6}; 32.80.280.480.1080.1600.2536.3200.4752.5840.6960.

3 G (inclined) T1: (rh24.1.26); (v = 26 ([6(4ˆ4).12(4ˆ4).8(4ˆ3)]); e = 48; r4 = 24; r8 = 15;
r10 = 109). T2: Void = T1.

3.1 (4.4); 6 | deg = 4 | 4ˆ4
(4.8); 6 | deg = 4 | 4ˆ4.8ˆ10

LC: {6}; 4.8.20.29.64.81.140.154.236.242.
LR(4.4): {6}; 4.16.40.80.148.256.396.560.744.944.1168.

LR(4.8): {6}; 14.44.104.220.374.704.1062.1540.2028.2596.3188.

3.2 (4.4); 12 | deg = 4 | 4ˆ4
(4.8); 12 | deg = 4 | 4ˆ4.8ˆ7

LC: {12}; 4.12.20.45.58.105.120.190.200.298LR(4.4): {12};
4.20.48.100.180.284.420.580.760.964.1192.

LR(4.8): {12}; 11.52.132.260.495.760.1155.1580.2090.2636.3278.

3.3 (4.4); 8 | deg = 6 | 4ˆ6
(4.8); 8 | deg = 6 | 4ˆ6.8ˆ6

LC: {8}; 6.12.30.42.78.92.150.162.246.252.
LR(4.4): {8}; 6.24.60.120.204.312.444.600.780.984.1212.

LR(4.8): {8}; 12.66.156.330.552.858.1212.1650.2136.2706.3306.

Table A3. Corner coalesced pcu, flu and deffect (mtp) pcu networks: unit/tile; vertex connectivity
classes; ring domain; population; degree; point symbol; LM sequence: connectivity (LC) and atom
surrounding rings (LR).

Cn Cls Network Letter and Vertex Classes LM

1 pcu (ortho) T1: (v = 8; e = 12; r4 = 6)

1.1 deg = 6; {8}; 4ˆ12

1.1.1 (4.4); {8}; deg = 6; 4ˆ12 LC: {8}; 6.18.38.63.84.92.84.63.38–18
LR(4.4): {8}; 12.72.216.444.696.864.867.708.465.240.93

2 flu (ortho) T1: (12.4.14); (v = 14([6(4ˆ4).8(4ˆ3)]); e = 24; (r4 = 12; r8 = 18).

deg = 4; {8}; 4ˆ6

2.1 (4.4); {8}; deg = 4; 4ˆ6
(4.8); {8}; deg = 4; 4ˆ6.8ˆ36

LC: {8}; 4.22.24.82.64.182.124.322.204.502.304.
LR(4.4): {8}; 6.48.132.288.492.768.1092.1488.1932.2448.3012.3648.

LR(4.8): {8}; 42.336.924.2016.3444.5376.7644.10416.13524.17136.21084.

2.2 (4.4); {6}; deg = 8; 4ˆ12
(4.8); {6}; deg = 8; 4ˆ12.8ˆ72

LC: {6}; 8.12.48.42.128.92.248.162.408.252.608.
LR(4.4): {6}; 12.48.144.288.504.768.1104.1488.1944.2448.3024.3648.

LR(4.8): {6}; 84.336.1008.2016.3528.5376.7728.10416.13608.17136.21168.
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Table A3. Cont.

Cn Cls Network Letter and Vertex Classes LM

3 H (ortho) T1H: (rh24.9.26). (v = 26 ([6(4ˆ4).12(4ˆ4).8(4ˆ3)]); e = 48; r4 = 24; r8 = 15;
r10 = 109).

3.1 deg = 4; {6}; 4ˆ4

(4.4); {6}; deg = 4; 4ˆ4
(4.8); {6}; deg = 4; 4ˆ4.8ˆ20

LC: {6}; 4.16.28.66.76.146.148.258.244.402.
LR(4.4): {6}; 4.32.96.224.392.608.872.1184.1544.1952.2408.

LR(4.8): {6}; 24.112.336.784.1392.2128.3072.4144.5424.6832.8448.

deg = 6; {8}; 4ˆ12

3.2 (4.4); {8}; deg = 6; 4ˆ12 LC: {8}; 6.18.30.66.78.146.150.258.246.402.

(4.8); {8}; deg = 6; 4ˆ12 LR(4.4): {8}; 12.48.120.240.408.624.888.1200.1560.1968.2424.

LR(4.8): {8}; 12.168.360.840.1368.2184.3048.4200.5400.6888.8424.

3.3 deg = 6; {12}; 4ˆ8

(4.4); {12}; deg = 6; 4ˆ8 LC: {12}; 6.14.38.50.102.110.198.194.326.302.

(4.8); {12}; deg = 6; 4ˆ8.8ˆ20 LR(4.4): {12}; 8.40.112.232.400.616.880.1192.1552.1960.2416.

LR(4.8): {12}; 28.120.392.792.1400.2136.3080.4152.5432.6840.8456.

Table A4. Etheric hyper-diamond (no substituents) network: unit/tile; vertex connectivity classes; ring
domain; population; degree; point symbol; LM sequence: connectivity (LC) and atom surrounding
rings (LR).

Cn Cls Network Letter and Vertex Classes LM

1 Y (hyper-ada) T1: (v = 528; e = 648; r6 = 68; r16 = 60).

1.1 (6.16); {120}; deg = 2; 16ˆ2; (120 free) LC: {120}; 2.4.3.5.9.12.18.22.26.22.
LR: {120}; 2.6.8.11.18.28.36.44.58.57.69.

1.2 (6.16); {120}; deg = 2; 6.16; (168 free) LC: {120}; 2.4.6.8.9.13.20.20.24.28.
LR: {120}; 2.7.12.18.20.24.39.52.58.68.82.

1.3 (6.16); {120}; deg = 3; 6.16ˆ2; (168 free) LC: {120}; 3.3.5.6.9.15.19.24.23.29.
LR: {120}; 3.6.10.14.20.30.40.51.54.66.77.

1.4 (6.16); {168}; deg = 3; 6.16ˆ3; (72 free) LC:{168}; 3.5.7.9.12.14.16.20.23.28.
LR:{168}; 4.10.15.18.22.29.36.50.66.70.71.
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