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Abstract: With methylsilsesquioxane (MSQ) aerogels synthesized by the sol-gel method as a raw
material and Si-Ti sol as a binder, an alcohol-based aerogel slurry consisting of only MSQ aerogel and
Si-Ti sol was prepared and coated on expanded polytetrafluoroethylene (ePTFE) to form an MSQ
aerogel coating layer, followed by low-temperature heat treatment. The effect of Si-Ti sol content
on the microstructure of the MSQ aerogel coating layer was investigated, and the properties of a
typical MSQ aerogel-layer-coated ePTFE film were evaluated. The results show that Si-Ti sol has
an important role in terms of film-forming capability, surface smoothness, flexibility, and powder
dropping of the MSQ aerogel coating layer. With a Si-Ti sol of 10.5 wt.% content as a binder and
after heat treatment at 170 ◦C for 30 min, the coated ePTFE flexible thin film with a layer thickness of
30 µm shows high uniformity, integrity, and electrical insulation properties, with an elongation at
break decrease over 130%, a thermal conductivity of 0.1753 W/(m·K) at 25 ◦C, a dielectric constant of
16.5674, and a dielectric loss of 0.06369, which can be promisingly applied in cable sheaths.
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1. Introduction

In modern society, cables have been applied extensively in electronic devices, enabling the transfer
of electrical signals or power. Thus, it is vital for cables to survive and perform reliably, whether used
in systems operating on land, in the ocean, in the air, or even in space. For durable cables, cable sheaths
play a crucial role in protecting weak central cores, requesting stability, flexibility, and high electrical
properties [1]. Many materials, such as polyurethane, polyethylene, polyimide, and fluoropolymers,
are applied as cable sheaths. Expanded Polytetrafluoroethylene (ePTFE) [2–7] cable sheath material
shows outstanding stability, mechanical, electrical, and thermal properties with low density, and
has been regarded as a potential rival for high-performance cables. For high-performance ePTFE
material, composites with other materials are a promising approach, such as CeO2 [8], SrTiO3 [9],
and CaTiO3 [10]. Introduced inorganic materials, however, are harmful to flexibility and increase the
density of the sheath, and the fabrication process is complex and high-cost, which is not suitable for a
cable sheath.

Aerogels are randomly interconnected nanoscale clusters of metal oxides containing micro- and
meso-porous networks, and thus exhibit unique physical properties, such as low density, optical
transparency, a high surface area, high porosity, low thermal conductivity, a low refractive index,
and a low dielectric constant [11–14]. In recent years, different kinds of aerogels have been investigated
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widely, including silica aerogel, zirconia aerogel [15–18], graphene aerogel [19–21], carbon aerogel [22,23],
and cellulose aerogel [24–27]. Among these aerogels, silica aerogel was the first created (more than
80 years ago), but due to the low cost and outstanding properties, many extended applications have
been developed for it, such as low-k materials, electrodes, thermal insulators, and transparent thermal
insulators [11]. However, silica aerogels lack mechanical durability, which limits their application. To
resolve this problem, organic–inorganic hybridization [28–30] using organotrialkoxysilanes, especially
methyltrimethoxysilane (MTMS), as co-precursors with tetra alkoxysilane is a promising way to
promote mechanical durability and flexibility. Methylsilsesquioxane (MSQ) aerogel is a kind of
methyl hybrid SiO2 aerogel monolith synthesized via a sol-gel process [28,29]. Due to the methyl
groups, the microstructure of MSQ aerogel tends to noncontiguous networks of bead chains rather
than conventional three-dimensional space network structures [31]. This unique structure results in
better flexibility, lipophilicity, and hydrophobicity [28,29]. However, for monolithic silica aerogels,
the mechanical properties, such as elastic modulus and flexibility, are still not satisfactory and the
fragile monolith may drop powder during transportation and application. Aerogel films show similar
properties. Monolithic silica aerogel is suitable as a coating on other kinds of substrates, avoiding
the drop of powder and promoting mechanical properties [32–36]. Traditionally, aerogel films were
synthesized via coating precursor solutions onto substrates, especially glass, by dip coating, spin
coating, spray coating, or other methods, before application and a supercritical drying process. Because
of the low thickness, a solvent atmosphere was required, especially in spin coating [37–39]. It is obvious
that these methods are costly and laborious, and not suitable for the fabrication of a flexible and even
elastic film with an aerogel coating.

In this work, we firstly report an MSQ aerogel coating layer on ePTFE thin film for a cable
sheath. MSQ aerogel was synthesized via a sol-gel process followed by ambient drying, showing a
high specific surface area of 681.64 m2/g with an average pore diameter of 37 nm. The MSQ aerogel
coating layer was fabricated on ePTFE thin film by a blade coating of alcohol-based aerogel slurry with
MSQ aerogel powder as a raw material, Si-Ti sol as a binder, and ethanol as a solvent. The Si-Ti sol
enhances the connection between MSQ aerogel powder and hydrophobic ePTFE film effectively to
form a smooth aerogel film and eliminate the drop of MSQ powder. With 10.5 wt.% Si-Ti sol as binder,
an MSQ aerogel coating layer on thin ePTFE film with a thickness of 30 µm exhibited high flexibility,
uniformity, and integrity, with an elongation at break decrease, high thermal conductivity, and a low
dielectric constant and dielectric loss. As described above, the uniform coating layer utilizing MSQ
aerogel slurry is fabricated via a simple blade coating process, without harmful solvents or a costly
high temperature process, which is suitable for a large-scale roll-to-roll process. Compared with hard
and dense PTFE-ceramic material composite film, the aerogel layer-coated ePTFE film is flexible and
lightweight with a similar dielectric property and a higher electrical insulation property, which implies
that the aerogel-layer-coated ePTFE film has a wide range of applications.

2. Results

2.1. Characteristics of Monolithic MSQ Aerogel

The MSQ aerogel monolith was synthesized via a sol-gel process with MTMS as the procedure,
hydrochloric acid (HCl) as catalyst, water and methanol as solvents, hexadecyltrimethylammonium
chloride (CTAC) as a surfactant and template, propylene oxide (PO) as a gelation agent, and 2-propanol,
hexamethyldisilane/n-heptane, and heptane for multistage solvent replacement followed by ambient
drying. According to the previous report [28,31], the MSQ aerogel monolith shows a unique structure
in that nanoparticles form a “string-of-pearls”-type structure owing to the introduced Si-CH3 groups
as shown in Figure 1a. The porous structure of the synthesized MSQ aerogel monolith is uniformly
constructed by small spherical nanoparticles with an average diameter below 10 nm.
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Figure 1. (a) SEM image of the synthesized methylsilsesquioxane (MSQ) aerogel and the N2

adsorption–desorption isotherm (b) and Barrett-Joyner-Halenda (BJH) mesopore size distribution
(c) of the synthesized MSQ aerogel monolith.

The pore structures of the as-prepared MSQ aerogel powder were further measured, and the
N2 adsorption–desorption isotherm and BJH mesopore size distribution are shown in Figure 1.
The N2 adsorption–desorption isotherm of the MSQ aerogel powder after ball milling belongs
to type IV according to the classification of IUPAC, proving that synthesized MSQ aerogels have
uniform ampulliform mesopores. As mentioned above, the skeletons of MSQ aerogels are formed by
point-connected spherical nanoparticles rather than conventional three-dimensional space network
structures, resulting in the unique ampulliform mesopores. Finally, the MSQ aerogel powder exhibits
a high specific surface area of 681.64 m2/g with an average pore diameter of 37 nm.

2.2. Characteristics and Microstructure of the MSQ Aerogel Coating Layer on ePTFE Thin Film

Fabricated monolithic MSQ aerogel shows a high porosity; however, for industrial application,
the problems of dropped powder and poor mechanical properties and flexibility need to be solved.
Thus, ePTFE film was chosen as a substrate, because it has great mechanical strength and flexibility.
While ePTFE is chemically inert and hydrophobic, showing high stability, these properties also result
in poor adhesion between MSQ aerogel and ePTFE. The precursor solution of MSQ aerogel can hardly
gelatinize on the ePTFE film and form MSQ aerogel. The fabrication process for an MSQ aerogel
coating layer on ePTFE film is shown in Figure 2a. Firstly, MSQ aerogel powder was fabricated using
a milling process until the particle size was <5000 mesh. Then, the MSQ aerogel powder was mixed
with Si-Ti sol and, after high-speed stirring for 30 min, an alcohol-based aerogel slurry was fabricated.
Compared with other binders, such as polyvinyl alcohol (PVA) and Polyacrylic acid (PAA), the Si-Ti
sol is more suitable for the hydrophobic ePTFE film. The slurry was poured onto the surface of ePTFE
film. With the scraper sliding the film, a uniform MSQ aerogel film formed. The dried MSQ aerogel
film was further heat-treated at 170 ◦C for 30 min to cure the binder and eliminate solvent. A digital
photo of the fabricated MSQ aerogel coating layer on ePTFE thin film is shown in Figure 2b. The blade
coating process is suitable for large-scale fabrication of an MSQ coating layer on ePTFE film with high
uniformity and low costs.

Figure 3 displays low-magnification SEM images and digital photos of an MSQ aerogel coating
layer on ePTFE thin film with a different content of Si-Ti sol. Due to the low surface energy of
ePTFE, the adhesion between MSQ aerogel and ePTFE film is poor. Thus, Si-Ti sol was chosen as an
adhesive to bind MSQ aerogel powder and ePTFE thin film. MSQ aerogel was coated on the surface
of ePTFE film via the blade coating method to form an MSQ aerogel layer. With the increase of the
Si-Ti sol content, the cracks on the aerogel layer gradually decrease and the surface of the coating
layer becomes smoother. With 4.5 wt.% Si-Ti sol, the MSQ aerogel layer cracks, resulting in high
roughness and poor adhesion. Moreover, for the lower content of Si-Ti sol, the MSQ aerogel layer is
white and flexible, according to the color of MSQ aerogel powder, but aerogel powders may easily
drop from the MSQ aerogel coating layer. The color of the coating layer transfers from white to
transparent and the dropping powder is eliminated, even bending or twisting with the increasing Si-Ti



Molecules 2019, 24, 1246 4 of 10

sol. However, the high content of Si-Ti sol is harmful to the flexibility of the cured Si-Ti sol, forming
brittle ceramic materials. With the addition of the 16.5 wt.% Si-Ti sol, the ePTFE thin film coated with
an MSQ aerogel layer is white and highly flexible with no powder dropping, demonstrating the best
film-forming properties.
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Figure 2. (a) The fabrication process for an MSQ aerogel coating layer on Polytetrafluoroethylene
(ePTFE) thin film; (b) a digital photo of the fabricated large-scale MSQ aerogel coating on ePTFE
thin film.
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With the lower content of Si-Ti sol, the porous structure of MSQ aerogel is visible as shown in
Figure 4a. With the increase in the content of Si-Ti sol, the pores of MSQ aerogel are gradually filled
with cured Si-Ti sol, resulting in poor flexibility. The filled pores also result in an increase in the thermal
conductivity and dielectric constant. As shown in the cross-section SEM images, the ePTFE thin film
coated with an MSQ aerogel layer with different Si-Ti sol contents shows a similar thickness of about
30 µm. The cured Si-Ti sol forms a binding layer between ePTFE film and MSQ aerogel. During the
fabrication process, some Si-Ti sol infiltrates into the surface of the porous ePTFE layer and cures in
the heat treatment to form a compact layer. In other areas, Si-Ti sol covers the surface of MSQ aerogel
powders and eventually binds the MSQ aerogel powders. With the lower content of Si-Ti sol, the
thickness of the Si-Ti sol layer and the joining force between MSQ aerogel powders are insufficient,
resulting in powder dropping and a rough surface. When the content of Si-Ti sol increases to 16.5 wt.%,
MSQ aerogel powders are bound firmly with no powder dropping, even with repeated bending or
twisting. They show high mechanical stability, and the porous structure of MSQ aerogel powder is
preserved. The increasing Si-Ti sol also affects the density of the coating layer. For the 16.5 wt.% Si-Ti
sol, the density is 0.18 g/cm3—even lower than that of monolith aerogel—and increases to 0.92 g/cm3

for 28.5 wt.% Si-Ti sol.
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sheaths. The resulting mechanical property shows a slight increase in tensile strength from 0.86 MPa 
for the pristine ePTFE film to 0.91 MPa for the ePTFE film coated with 4.5 wt.% Si-Ti sol. The tensile 
strength of the coated ePTFE film gradually increases with increasing content of Si-Ti sol. However, 
a high content of Si-Ti sol (over 16.5 wt.%) would make the coated ePTFE film brittle and lower the 
mechanical properties, and the elongation at break decreases from over 130% for pristine ePTFE film 
to 70% (22.5 wt.% Si-Ti sol) and 61% (28.5 wt.% Si-Ti sol). In the MSQ coating layer, the content of Si-
Ti sol significantly affects the mechanical properties. The Si-Ti sol forms a brittle and compact binding 
layer on the boundary between ePTFE film and the MSQ aerogel layer, which results in a change in 
mechanical properties. With the addition of a lower content of Si-Ti sol, the binding layer is thin and 
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different Si-Ti sol contents. (a) 4.5 wt.%, (b) 10.5 wt.%, (c) 16.5 wt.%, (d) 22.5 wt.%, (e) 28.5 wt.%

Figure 5 exhibits the AFM image of an MSQ aerogel coating layer on ePTFE film with 16.5 wt.%
Si-Ti sol. The results show that the MSQ coating layer has a high level of roughness, and the root mean
square (RMS) value reaches 558 nm. It can be seen from the AFM image that the MSQ aerogel layer
has been formed by an accumulation of MSQ aerogel powders. The size of the MSQ aerogel particles is
about 2 µm, according to the size of 5000 mesh. With the lower content of Si-Ti sol of 16.5 wt.%, MSQ
aerogel powders form a uniform layer without cracks or dropped powder, but the pores of the MSQ
aerogel are not completely filled by cured Si-Ti sol, resulting in a high RMS value.
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2.3. Mechanical, Thermal, and Dielectric Properties of ePTFE Thin Film Coated with an MSQ Aerogel
Coating Layer

For application in cable sheaths, the mechanical and dielectric properties and the thermal
conductivity of an MSQ aerogel coating on ePTFE thin film were tested. The pristine ePTFE film
shows satisfactory mechanical properties. The mechanical properties after the ePTFE film was coated
with an aerogel layer are shown as Figure 6. As mentioned above, for a lower content of Si-Ti sol,
MSQ aerogel powders drop from the coating layer, which is not suitable for application in cable
sheaths. The resulting mechanical property shows a slight increase in tensile strength from 0.86 MPa
for the pristine ePTFE film to 0.91 MPa for the ePTFE film coated with 4.5 wt.% Si-Ti sol. The tensile
strength of the coated ePTFE film gradually increases with increasing content of Si-Ti sol. However,
a high content of Si-Ti sol (over 16.5 wt.%) would make the coated ePTFE film brittle and lower the
mechanical properties, and the elongation at break decreases from over 130% for pristine ePTFE film
to 70% (22.5 wt.% Si-Ti sol) and 61% (28.5 wt.% Si-Ti sol). In the MSQ coating layer, the content of Si-Ti
sol significantly affects the mechanical properties. The Si-Ti sol forms a brittle and compact binding
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layer on the boundary between ePTFE film and the MSQ aerogel layer, which results in a change
in mechanical properties. With the addition of a lower content of Si-Ti sol, the binding layer is thin
and shows a slight effect. With the increase of Si-Ti sol content, the thickness of the binding layer
increases, which reinforces the mechanical properties. However, when too much Si-Ti sol is added, the
mechanical properties of the coated ePTFE film decrease, owing mainly to the brittle binding layer
formed by the cured Si-Ti sol rather than the ePTFE film. This leads to the poor elongation at break
and high tensile strength. The MSQ coating layer does not affect the flexibility of the ePTFE film, but
enhances its mechanical properties, which is more suitable for application in cable sheaths.
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Due to the small size of Si-Ti sol nanoparticles (about 4 nm), the pores of MSQ aerogel are
filled with the cured Si-Ti sol. According to previous reports, MSQ aerogel exhibits a lower thermal
conductivity because of the small fraction of solid silica and the unique pore size. However, pores filled
with Si-Ti sol increase the solid silica rate and result in high thermal conductivity, as shown in Figure 7.
With increasing temperature, the thermal conductivity of MSQ aerogel coating on ePTFE thin film
increases, owing to the higher gas mean free path. The pristine ePTFE film shows the lowest thermal
conductivity of 0.1447 W/(m·K) at 25 ◦C. After being coated with an MSQ aerogel layer, the thermal
conductivity increases with increasing content of Si-Ti sol. As mentioned above, small nanoparticles in
Si-Ti sol can fill the micropores between aerogel nanoparticles. With increasing content, the solid silica
rate of the MSQ aerogel layer increases and more pores are filled, resulting in a gradual increase in
thermal conductivity from 0.1551 W/(m·K) (4.5 wt.% Si-Ti sol at 25 ◦C) to 0.2019 W/(m·K) (28.5 wt.%
Si-Ti sol at 25 ◦C). Additionally, for the coated ePTFE film with the best mechanical properties with
10.5 wt.% Si-Ti sol, the thermal conductivity increases from 0.1753 W/(m·K) at 25 ◦C to 0.1826 W/(m·K)
at 65 ◦C. The high thermal conductivity compared with PTFE or polyvinyl chloride (PVC) is beneficial
to decrease the cable temperature, especially for power cables.



Molecules 2019, 24, 1246 7 of 10

Molecules 2019, 24, x FOR PEER REVIEW  6 of 10 

 

shows a slight effect. With the increase of Si-Ti sol content, the thickness of the binding layer increases, 
which reinforces the mechanical properties. However, when too much Si-Ti sol is added, the 
mechanical properties of the coated ePTFE film decrease, owing mainly to the brittle binding layer 
formed by the cured Si-Ti sol rather than the ePTFE film. This leads to the poor elongation at break 
and high tensile strength. The MSQ coating layer does not affect the flexibility of the ePTFE film, but 
enhances its mechanical properties, which is more suitable for application in cable sheaths. 

 
Figure 6. The stress-strain curve of MSQ aerogel layer coating on ePTFE thin films with different Si-
Ti sol contents. 

Due to the small size of Si-Ti sol nanoparticles (about 4 nm), the pores of MSQ aerogel are filled 
with the cured Si-Ti sol. According to previous reports, MSQ aerogel exhibits a lower thermal 
conductivity because of the small fraction of solid silica and the unique pore size. However, pores 
filled with Si-Ti sol increase the solid silica rate and result in high thermal conductivity, as shown in 
Figure 7. With increasing temperature, the thermal conductivity of MSQ aerogel coating on ePTFE 
thin film increases, owing to the higher gas mean free path. The pristine ePTFE film shows the lowest 
thermal conductivity of 0.1447 W/(m·K) at 25 °C. After being coated with an MSQ aerogel layer, the 
thermal conductivity increases with increasing content of Si-Ti sol. As mentioned above, small 
nanoparticles in Si-Ti sol can fill the micropores between aerogel nanoparticles. With increasing 
content, the solid silica rate of the MSQ aerogel layer increases and more pores are filled, resulting in 
a gradual increase in thermal conductivity from 0.1551 W/(m·K) (4.5 wt.% Si-Ti sol at 25 °C) to 0.2019 
W/(m·K) (28.5 wt.% Si-Ti sol at 25 °C). Additionally, for the coated ePTFE film with the best 
mechanical properties with 10.5 wt.% Si-Ti sol, the thermal conductivity increases from 0.1753 
W/(m·K) at 25 °C to 0.1826 W/(m·K) at 65 °C. The high thermal conductivity compared with PTFE or 
polyvinyl chloride (PVC) is beneficial to decrease the cable temperature, especially for power cables. 

 
Figure 7. The thermal conductivity of MSQ aerogel-layer-coated ePTFE film with different Si-Ti
sol contents.

Electrical properties are important for the application of the cable sheath. As mentioned above, an
MSQ aerogel coating on ePTFE thin film with 16.5 wt.% Si-Ti sol as a binder shows the best mechanical
property, and the one with 28.5 wt.% Si-Ti sol shows the best thermal conductivity. Figure 8 shows the
dielectric constant and loss of the two coated ePTFE films. It can be observed that the MSQ aerogel
coating on ePTFE thin film with 28.5 wt.% Si-Ti sol shows a higher dielectric constant and dielectric
loss. As the frequency increases from 100 Hz to 100 kHz, the dielectric constant decreases from 23.8
to 18.7 for 28.5 wt.% Si-Ti sol and from 16.6 to 13.9 for 10.5 wt.% Si-Ti sol. The ePTFE film and MSQ
aerogel show a lower dielectric constant, which indicates that the high dielectric constant of coated
ePTFE thin film is caused by cured Si-Ti sol. For a cable sheath, the lower dielectric constant can
promote the stability of cables, which shows that an aerogel coating layer with 10.5 wt.% Si-Ti sol and
a dielectric loss of 0.06369 is the best. As is well-known, the introduced TiO2 exhibits a high dielectric
constant of over 40. With the increase of Si-Ti sol content, the higher contact surface area decreases the
carrier mobility, resulting in interfacial polarization, a high dielectric constant, and high dielectric loss
compared with PTFE or PVC, which have a low dielectric constant. The MSQ aerogel coating layer
enhances the electrical insulation property of ePTFE film, such that the breakdown voltage changes
form lower than 500 V for pristine ePTFE thin film to 1020 V for an MSQ aerogel coating layer with
16.5 wt.% Si-Ti sol and even 1330 V for a coating layer with 28.5 wt.% Si-Ti sol. MSQ aerogel-coated
ePTFE thin films with high insulation properties show great potential for application in cable sheaths.
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3. Materials and Methods

3.1. Synthesis of the MSQ Aerogel Monolith

The MSQ aerogel monolith was synthesized by a sol-gel process followed by ambient drying
in an oven at 40 ◦C for 12 h. For hydrolysis and polymerization, Methyltrimethoxysilane (MTMS,
Aladdin, Shanghai, China, 98%) was added into a mix of hexadecyltrimethylammonium chloride
(CTAC, Aladdin, 97%), methanol, and HCl solution, with vigorous stirring and an ice-bath for
30 min. Propylene oxide (PO, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China, ≥99.5%)
was then added as a gelation agent into the mixed solution and stirred for 2 min. The fabricated
mix solution was closed and placed into an oven at 40 ◦C for the gelation process for about 40 min
and a further aging process for 40 min. The gel was further solvent-exchanged with 2-propanol,
hexamethyldisilane/n-heptane, and heptane (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China,
≥99.5%) to eliminate CTAC and water. Finally, the solvent-exchanged gels were dried at 40 ◦C for 24 h
to prepare the monolith of MSQ aerogel.

3.2. Fabrication of an MSQ Aerogel Coating Layer on ePTFE Thin Film

The MSQ aerogel powder was ball-milled for 8 h, and the aerogel powder was added to a mixture
of Si-Ti sol as a binder and ethyl alcohol as a solvent. After 30 min of stirring, an alcohol-based
aerogel slurry was prepared for coating. An automatic coating machine (FA 202D, Shanghai Xianpu
Industrial Co., Ltd., Shanghai, China) equipped with a scraper was utilized to coat the slurry on
ePTFE film. Finally, heat treatment at 170 ◦C for 30 min was carried out to cure the Si-Ti sol, and MSQ
aerogel-coated ePTFE thin films were fabricated.

3.3. Characterization

The MSQ aerogel and coated ePTFE film were observed with an SU8010high resolution microscope
with an accelerating voltage of 3 kV. The pore structures of the MSQ aerogel powder after ball-milling
were measured by an N2 adsorption–desorption apparatus (BET, ASAP2020HD88, Micromeritics
Instruments Corporation, Norcross, GA, USA), and the sample was degassed at 120 ◦C under
vacuum before each N2 adsorption–desorption measurement. A Veeco instrument was utilized
to produce atomic force microscopy (AFM) images. The mechanical properties were tested by a
nanoelectromechanical universal testing machine (CMT4202). The thermal conductivity was obtained
from a Hot Disk TPS 2500S. An LCR Bridge Meter was used to test the dielectric properties of MSQ
aerogel coating on ePTFE thin film. The breakdown voltage was tested via a withstand voltage tester
(CC2674-4, Nanjing Changchuang Science and Technology Ltd., Jiangsu, China).

4. Conclusions

MSQ aerogel-coated ePTFE thin films were fabricated successfully through a coating process for
alcohol-based aerogel slurry containing only MSQ aerogel and Si-Ti sol, followed by heat treatment at
170 ◦C for 30 min. The MSQ aerogel synthesized via a sol-gel process exhibits a high specific surface
area of 681.64 m2/g and an average pore diameter of 37 nm. The introduction of Si-Ti sol as a binder
enhanced the combination between the MSQ aerogel layer and ePTFE film to eliminate the drop of
aerogel powders and form a uniform aerogel layer without cracks. However, excess Si-Ti sol was
found to fill the pores of the MSQ aerogel, resulting in poor elongation at break and high thermal
conductivity. Finally, the ePTFE flexible thin film coated by an MSQ aerogel layer with 10.5 wt.% Si-Ti
sol exhibits an elongation at break decrease of over 130%, a thermal conductivity of 0.1753 W/(m·K) at
25 ◦C, a dielectric constant of 16.5674, and a dielectric loss of 0.06369. The resultant ePTFE flexible thin
film coated by an MSQ aerogel layer has high flexibility, uniformity, and integrity and a good electrical
insulation property. It is a promising competitor for application in cable sheaths.
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