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Abstract: The development of white-light-emitting diodes (w-LEDs) makes it meaningful to
develop novel high-performance phosphors excited by blue light. Herein, BiOCl:Pr3+ green-yellow
phosphors were prepared via a high-temperature solid-state reaction method. The crystal structure,
luminescent properties, lifetime, thermal quenching behavior, and quantum yield were studied
in detail. The BiOCl:Pr3+ phosphors presented several emission peaks located in green and red
regions, under excitation at 453 nm. The CIE coordinates could be tuned along with the changed
doping concentration with fair luminescence efficiency. The results also indicated that the optimized
doping concentration of Pr3+ ions was at x = 0.0075 because of the concentration quenching behavior
resulting from an intense exchange effect. When the temperature reached 150 ◦C, the intensity
of the emission peak at 495 nm could remain at 78% of that at room temperature. The activation
energy of 0.20 eV also confirmed that the BiOCl:Pr3+ phosphor exhibited good thermal stability. All
these results indicate that the prepared products have potential to be used as a high-performance
green-yellow-light-emitting phosphor for blue-light-based w-LEDs.
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1. Introduction

White-light-emitting diodes (w-LEDs) are potentially useful solid-state lighting devices because of
their long service life, high luminous efficiency, energy saving, and environmental protection [1]. The
widely used commercial w-LEDs are usually realized by combining blue light LED chips with YAG:Ce3+

yellow phosphors [2]. However, these commercial w-LEDs are not ideal due to their poor color
rendering index, since the YAG:Ce3+ yellow phosphors lack the red-light emission peaks [3]. Many
references have also been reported to improve their optical performance. The most common approaches
are to add red-emitting phosphors [4] such as Mn4+-activated fluoride [5], oxide phosphors [6], and
red-emitting CdSe/ZnS semiconductor quantum dots [7] to YAG:Ce3+ yellow-emitting phosphor.
However, these approaches might result in the reabsorption among different phosphors, potentially
reduce luminous efficiency, and limit their further application for w-LEDs [8]. Therefore, we think it is
still of great significance to explore novel yellow phosphors with emission peaks in the green, yellow,
and red regions under the excitation of blue light [9].
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The Pr3+ ion, with a [Xe] 4f2 configuration, is one of the most special activators for phosphors
due to its complex energy level scheme [10]. Through transition from different energy levels, the Pr3+

ion can emit light from visible to infrared light regions [11]. Thus, various phosphors doped with
Pr3+ were prepared using different host materials, such as the Gd2O2S:Pr3+ [12], CaTiO3:Pr3+ [13],
BaMoO4:Pr3+ [14], LaMgAl11O19:Pr3+ [15], and β-SiAlON:Pr3+ [16]. If it is possible to dope only the
Pr3+ ion—which can emit green and red emission lights simultaneously—into a novel host material,
then the pure white light would be achieved by the excitation of blue light chips. This would be of
great potential for application in w-LEDs [17].

It is also known that the BiOX (X = Cl, Br, I) oxyhalide compounds have been widely used as
catalysts in photocatalysis due to their strong intra-layer bonding force and weak interlayer van der
Waals interaction [18]. These compounds usually consist of unique layered structures, which can
efficiently separate the photogenerated electron–hole pairs through the internal electric fields and
further improve the charge transfer from host to activation center. Thus, the doped rare-earth ions in
BiOX oxyhalides host can absorb the activation more conveniently, and emit more intense emission
peaks [19,20]. Moreover, the radius and charge of Bi3+ ion are like those of Pr3+ [21], suggesting that
the Bi3+ ions could be substituted by Pr3+ ions in the BiOX lattice. All these studies further indicate
that the compounds in BiOX oxyhalides family could be considered as host materials for Pr3+ doping.
Among these oxyhalide-based phosphors, the rare-earth ion-doped BiOCl phosphors have been rarely
prepared. Herein, the green-yellow-emitting phosphors BiOCl:Pr3+ were prepared for the first time.
Their crystal structure, luminescent properties, lifetime, thermal quenching behavior, and quantum
efficiency were studied in detail. Our investigation shows that the prepared products can be used as
green-yellow phosphors for blue-light w-LEDs.

2. Experimental Procedure

2.1. Material Synthesis

Bi1−xOCl:xPr3+ (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.03, 0.05) phosphors were prepared by
a high-temperature solid-state reaction method [22–24]. The stoichiometric ratio was calculated
according to the following reaction equation:

(1−x)Bi2O3 + 2NH4Cl + xPr2O3 → 2Bi1−xOCl:xPr3++ 2NH3 + H2O (1)

Bi2O3 (99.9%), NH4Cl (99.9%), and Pr2O3 (99.9%) were selected as raw materials. Because NH4Cl
volatilizes at high temperature, 20 mol% excess of NH4Cl was needed to compensate for the loss of
volatilization. All these chemicals were evenly mixed in an agate mortar for about 30 min. Afterwards,
the mixed powders were put into an alumina crucible and heated in a muffle furnace at 540 ◦C for
1 h. After natural cooling to room temperature, Bi1−xOCl:xPr3+ phosphors were taken out and ground
into powder for further measurement. In order to verify the potentiality of Bi1−xOCl:xPr3+ phosphors
on w-LEDs, an w-LED device was fabricated, combining a blue GaN chip with the BiOCl:Pr3+ and
self-made K2GeF6:Mn4+ phosphors with a mass ratio of 100:1. Then, the mixed phosphors were
dispersed in epoxy resin and coated on a blue GaN chip with an intense emission peak at 460 nm. The
coated chip was dried in an oven at 100 ◦C for 3 h, and finally the w-LED device was obtained.

2.2. Characterization Methods

The powder X-ray diffraction (XRD) patterns of the samples were recorded by X-ray powder
diffraction (AXS D8 Advance, Bruker, Corporation, Karlsruhe, Germany). The unit cell crystal structure
of BiOCl was plotted by the VESTA program. Microstructure morphology was observed and studied
by a field emission scanning electron microscope (FESEM, Zeiss supra-55, Oberkochen, Germany).
Photoluminescence (PL) emission spectra and excitation (PLE) spectra were characterized by a FL-4600
fluorescence spectrophotometer (Hitachi, Tokyo, Japan), using a 150 W Xe lamp as an excitation source.
The operating voltage of the photomultiplier tube of the spectrophotometer was 400 V. Combining
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the same spectrophotometer with the self-made computer-controlled heating device, the PL spectra
at different temperatures were tested. The decay behavior and lifetimes of PL were recorded by a
time-resolved luminescence spectrometer (FS5, Edinburgh Instruments Ltd., Edinburgh, UK) combined
with microsecond Xe flash and time-correlated single photon counter system. The quantum yield was
characterized by an FLS920 fluorescence spectrophotometer (Edinburgh Instruments Ltd.) with an
integrated sphere, and the absorption was measured with BaSO4 powder as reference.

3. Results and Discussion

3.1. Phase Composition and Crystal Structure

The phase composition of the products was measured by XRD. Figure 1a shows the XRD patterns
of Bi1−xOCl:xPr3+ (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.03, 0.05) samples and the standard pattern of
BiOCl (PDF NO. 82-485). All the diffraction peaks of Bi1−xOCl:xPr3+ samples matched well with
the BiOCl standard card. Almost no impurity peaks were presented. The addition of Pr3+ ions with
different doping concentration had no significant effect on the crystalline structure of BiOCl host. Thus,
it can be concluded that Bi1−xOCl:xPr3+ phosphors with stable structure can be easily prepared by
this method.

The crystal structure of BiOCl is presented in Figure 1b. It is clear that the BiOCl compound was
crystallized in a tetragonal matlockite structure. The Bi3+ atom coordinated to a square antiprism with
four O atoms on one side and four Cl atoms on the other side. The [Cl-Bi-O-Bi-Cl] layers were stacked
together by van der Waals interactions between Cl atoms along the c-axis [25,26]. The interplanar
lattice spacing between two Bi3+ ions in BiOCl layers was found to be 4.85 Å. Since the radius of Bi3+

is similar to that of Pr3+, Pr3+ ions can be easily doped into the lattice and successfully replace the
position of Bi3+ ions without any structural changes. The XRD results and the discussion of crystal
structure indicate that the Pr3+ ion could be doped into the BiOCl host at Bi3+ sites.
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3.2. PL properties of Bi1−xOCl:xPr3+ Phosphors

Figure 2a shows the PLE (λem = 495 nm) and PL (λex = 453 nm) spectra of Bi0.9925OCl:0.0075Pr3+

phosphor at room temperature. By monitoring the emission at 495 nm, the excitation spectrum
consisted of two peaks centered at 320 and 453 nm, respectively. The excitation peak at 453 nm is
attributed to the electron transition from energy level 3H4 to 3P2. The absorption band from 280 to
350 nm might result from the 4f–5d characteristic transition absorption of Pr3+ ions [11]. In addition,
the emission spectrum of Bi0.9925OCl:0.0075Pr3+ phosphor was composed of four peaks at 495, 535,
624, and 655 nm, under excitation at 453 nm. These emission peaks are attributed to the transitions of
3P0→3H4, 3P0→3H5, 1D2→3H4, and 3P0→3F2, respectively [27–30].
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495 nm) spectra of a typical Bi0.9925OCl:0.0075Pr3+ sample at room temperature. (b) Emission spectra
(λex = 453 nm) and the relationship of the emission intensity on the content of Pr3+ of Bi1−xOCl:xPr3+

(x = 0.0025, 0.005, 0.0075, 0.01, 0.03, and 0.05). (c) Linear fitting experiment data of lg(I/x) versus
lg(x) for the Bi1−xOCl:xPr3+ (x = 0.0025, 0.005, 0.0075, 0.01, 0.03, and 0.05) phosphors. (d) Decay
curves of Bi1−xOCl:xPr3+ (x = 0.0025, 0.005, 0.0075, and 0.01) (λex = 453 nm and λem = 495 nm) with
different concentrations.

The emission spectra of Bi1−xOCl:xPr3+ (x = 0, 0.0025, 0.005, 0.0075, 0.01, 0.03, 0.05) with different
doping concentrations are shown in Figure 2b. With different Pr3+ concentrations, the emission spectra
were similar with each other. The emission peaks were at the same position, but their intensities were
different. The inset of Figure 2b illustrates the dependence of emission intensity on Pr3+ concentration.
With the increase of Pr3+ concentration, the emission intensity increased at first, reached the maximum
when the doping concentration of Pr3+ ion was at x = 0.0075, then decreased with further increasing
Pr3+ concentration. This phenomenon resulted from the concentration quenching effect. It is worth
mentioning that the optimized doping concentration x = 0.0075 is actually a very low concentration,
which means that the BiOCl:Pr3+ phosphor could emit light efficiently with fewer activators. This has
also been seldom seen before, which could markedly reduce the cost of phosphors for w-LEDs.
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There are many reasons for concentration quenching, including multipolar interaction or exchange
interaction. The interaction types between the two types of incentives can be calculated by the following
formula [31,32]:

I/x = k(1 + β(x)Q/3)−1 (2)

where x is the concentration of Pr3+ activator, and k and β are constants. I/x is the ratio of the emission
intensity to the doping concentration of activator. The Q value determines the interaction type for
the concentration quenching effect. When the values of Q are 3, 6, 8, and 10, the interaction could be
classified as exchange interactions, dipole–dipole, dipole–quadrupole, and quadrupole–quadrupole
interactions, respectively. Thus, the results of lg(I/x) and lg(x) are presented in Figure 2c to obtain the
Q value. As shown in Figure 2c, the relationship between lg(I/x) and lg(x) was linear. After data fitting,
Q/3 was found to be 1.259. Therefore, the calculated Q value is relatively close to the theoretical value
of 3, which represents that the concentration quenching mechanism for the BiOCl:Pr3+ phosphors is
exchange interaction.

The lifetime reflects the rate of the electron transiting from the maximum energy excited state to the
ground state when the excitation light is removed. Figure 2d shows the decay curves of Bi1−xOCl:xPr3+

(x = 0, 0.0025, 0.005, 0.0075, 0.01) phosphors at 495 nm, when excited at 453 nm. The results show
that the emission intensity decreased as time goes by. However, the decay curves remained stable
with increasing Pr3+ concentration. All the decay curves of Bi1−xOCl:xPr3+ were well fitted by an
exponential function [33]:

It = Ae−
t
τ + I0 (3)

where It and I0 are emission intensities at time t and initial time, respectively, A is a constant, and τ is
the lifetime for exponential components. According to the function, when the concentration x values
were 0.0025, 0.005, 0.0075, and 0.01, the average lifetimes of Bi1−xOCl:xPr3+ phosphors were found to
be 1.12, 1.13, 1.14, and 1.14 ms, respectively. These PL lifetimes of Bi1−xOCl:xPr3+ are relatively stable.

3.3. Thermal Stability of BiOCl:Pr3+ Phosphors

The thermal stability of phosphors is an important factor for their application in w-LEDs [34].
Figure 3a shows the emission spectra of Bi0.9925OCl:0.0075Pr3+ phosphors at different temperatures,
under excitation at 453 nm. As shown in Figure 3a, the PL intensity decreased with the increase
of test temperatures. When the temperature reached 150 ◦C, the emission intensity of the peak at
495 nm remained at about 78% of the intensity at room temperature. Moreover, the central positions of
emission peaks were not changed with increasing temperatures. To further investigate the temperature
dependence of the luminescence property, the activation energy (∆E) was calculated by the Arrhenius
equation [35]:

I(T) =
I0

1 + ce−
∆E
kT

(4)

where I0 is the emission intensity of phosphors at room temperature, I(T) is the intensity at different
temperatures, c is a constant, and k is the Boltzmann constant (8.629 × 10−5 eV). According
to the equation, ∆E could be calculated by Arrhenius fitting of the emission intensity of the
Bi0.9925OCl:0.0075Pr3+ phosphor at different temperatures. Further, the smaller activation energy,
the better thermal stability. As shown in Figure 3b, the relationship between ln [I0/I(T) – 1] and 1/kT
was close to a straight line. The activation energy of Bi0.9925OCl:0.0075Pr3+ phosphor is calculated
to be 0.20 eV, which is comparable to that of the phosphors reported in References [36,37]. All these
results indicate that the prepared Bi0.9925OCl:0.0075Pr3+ phosphor has good thermal stability, which
could have positive effects on its practical application.
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excitation at 453 nm, the CIE coordinates of Bi1−xOCl:xPr3+ phosphor were calculated and dropped in
the green-yellow light region. The CIE coordinate point gradually shifted to the yellow light region
with increasing Pr3+ concentration. The PL quantum yields of the selected samples Bi1−xOCl:xPr3+

(x = 0.0025, 0.005, 0.0075, 0.01) under excitation at 453 nm were measured to be 35.4%, 30.8%,
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24.9%, and 25.1%. Although the quantum efficiency values of BiOCl:Pr3+ phosphors were still lower
than those of commercial phosphors, they could be increased through purification, surface coating
treatment, or doping with other rare earth elements (e.g., Sm, Y, Li, and Bi) prior to further commercial
applications [39–41]. Furthermore, the two insets show the photographs of the fabricated w-LED
device before (left) and after (right) switching on the power. It can be seen that the fabricated w-LED
device could emit white light, combining with a blue light chip and some red phosphors. All these
results indicate the BiOCl:Pr3+ phosphors have good thermal stability, green-yellow spectrum, and
light luminescence efficiency, which indicates that BiOCl:Pr3+ can be used as a green-yellow phosphor
material and widely used in blue-light-based w-LEDs.

4. Conclusions

In conclusion, the BiOCl:Pr3+ phosphors were synthesized by a solid-state reaction method. Under
excitation at 453 nm, the BiOCl:Pr3+ phosphors exhibited a green-yellow light with four emission
peaks at 495, 535, 624, and 655 nm. These emission peaks are attributed to the 3P0→3H4, 3P0→3H5,
1D2→3H4, and 3P0→3F2 transitions, respectively. The optimized Bi0.9925OCl:0.0075Pr3+ phosphor was
obtained with a CIE coordinate (0.2847, 0.4439). In addition, the Bi0.9925OCl:0.0075Pr3+ phosphor could
also maintain a good thermal stability at high temperature. The intensity of emission peaks at 150 ◦C
was about 78% of the initial intensity at room temperature. The quantum yield was measured to be
24.9%. The results show that BiOCl:Pr3+ phosphor is a green-yellow-light-emitting phosphor, which
may be suitable for application in blue-light-based w-LEDs.
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