Supplementary Materials:

Enzymatic synthesis of tri-deuterated sialosides

Zhi P. Cai, Louis P. Conway, Ying Y. Huang, Wen J. Wang, Pedro Laborda, Ting Wang, Ai M. Lu, Hong L. Yao, Kun Huang, Sabine L. Flitsch, Li Liu and Josef Voglmeir

Position	Non-deuterated X-Gal-Neu5Ac				Deuterated X-Gal-Neu5Ac			
	$^{1}\mathrm{H}$	¹³ C	COSY	НМВС	$^{1}\mathrm{H}$	¹³ C	COSY	HMBC
I2	7.19 (s)	113.41	-	I7a,I3,I3a	7.19 (s)	113.47	-	I7a,I3,I3a
13	-	138.51	-	-	-	138.43	-	-
I3a	-	119.56	-	-	-	119.57	-	-
I4	-	125.54	-	-	-	125.51	-	-
15	-	113.95	-	-	-	114.09	-	-
I6	7.27 (d)	127.09	I7	I7a,I4	7.27 (d)	127.09	I7	I7a,I4
I7	7.12 (d)	112.61	I6	I5,I3a	7.12 (d)	112.61	I6	I5,I3a
I7a	-	135.06	-	-	-	135.08	-	-
G1	4.79 (d)	105.68	G2	I3,G5	4.79 (d)	105.64	G2	I3
G2	3.89 (m)	70.88	G1,G3	G1,G3	3.92 (m)	70.84	G1,G3	G1
G3	3.51 (dd)	69.60	G2	G4	3.54 (d)	62.26	G2	G4
G4	3.62 (m)	74.98	-	G3,G2	3.67 (m)	74.93	-	-
G5	3.62 (m)	77.07	G6	G6	3.67 (m)	76.63	G6	G6
G6	3.81 (m)	62.92	G5	G5	3.83 (m)	61.26	G5	G5
	3.74 (m)				3.77 (dd)			
S1	-	175.51	-	-	-	175.57	-	-
S2	-	101.26	-	-	-	101.57	-	-
S 3	2.88 (dd)	42.23	S4	S5,S4,S2	-	28.20	-	-
	1.78 (t)							
S 4	3.74 (m)	70.15	S3	-	3.83 (m)	69.81	-	-
S5	3.74 (m)	54.05	-	S4	-	54.61	-	-
S′5	-	175.18	-	-	-	175.57	-	-
S‴5	2.01 (s)	22.70	-	S′5	2.02 (s)	22.78	-	S′5
S 6	4.14 (dd)	77.87	S7	S7,S2	4.14 (dd)	77.81	S7	S7,S2
S 7	3.89 (m)	73.04	S6	S8	3.92 (m)	73.08	S6	-
S 8	4.00 (d)	69.14	-	S7	4.06 (d)	67.56	-	-
S 9	3.81 (m)	64.54	-	-	3.83 (m)	62.91	-	-
	3.62 (m)				3.67 (m)			

 Table S1. NMR signals and correlations of X-Gal-Neu5Ac and tri-deuterated X-Gal-Neu5Ac (9a).

Position	Non-deuterated X-Gal-Neu5Gc				Deuterated X-Gal-Neu5Gc			
	$^{1}\mathrm{H}$	¹³ C	COSY	НМВС	$^{1}\mathrm{H}$	¹³ C	COSY	НМВС
I2	7.19 (s)	113.45	-	I7a,I3,I3a	7.19 (s)	113.41	-	I7a,I3,I3a
I3	-	138.49	-	-	-	138.56	-	-
I3a	-	119.59	-	-	-	119.59	-	-
I4	-	125.55	-	-	-	125.59	-	-
I5	-	114.02	-	-	-	113.91	-	-
I6	7.27 (d)	127.09	I7	I7a,I4	7.27 (d)	127.09	I7	I7a,I4
I7	7.12 (d)	112.61	I6	I5,I3a	7.12 (d)	112.61	I6	I5,I3a
I7a	-	135.08	-	-	-	135.08	-	-
G1	4.79 (d)	105.69	G2	13	4.79 (s)	105.71	G2	13
G2	3.90 (m)	70.86	G1,G3	G1	3.89 (m)	70.87	G1,G3	G1
G3	3.52 (d)	69.34	G2	G4,G2	3.50 (dd)	70.17	G2	G4
G4	3.75 (m)	74.71	-	-	3.70 (s)	74.67	-	G5,G3
G5	3.63 (m)	76.86	G6	G6	3.64 (dd)	77.10	G6	G6
G6	3.83 (m)	64.42	G5	-	3.82 (m)	62.95	G5	G5
	3.75 (m)				3.73 (dd)			
S1	-	177.24	-	-	-	180.39	-	-
S2	-	101.49	-	-	-	101.19	-	-
S3	2.87 (dd)	41.96	S4	S5,S4,S2	-	24.23	-	-
	1.82 (t)							
S 4	3.90 (m)	70.11	S3	-	3.82 (m)	69.24	S5	S5
S5	3.83 (m)	53.81	S6	-	-	49.95	-	S4
S′5	-	175.64	-	-	-	177.31	-	-
S‴5	4.06 (s)	62.70	-	S′5	4.06 (s)	62.69	-	
S 6	4.15 (dd)	77.85	S5,S7	S2	4.15 (dd)	77.90	S7	S2
S 7	3.90 (m)	73.15	S6	S6	3.89 (m)	73.11	S6	S6
S 8	4.04 (d)	69.34	-	S7,S6	4.04 (d)	69.14	-	-
S 9	3.83 (m)	62.93	-	S8	3.82 (m)	64.63	-	-
	3.63 (m)				3.61 (dd)			

Table S2. NMR signals and correlations of X-Gal-Neu5Gc and tri-deuterated X-Gal-Neu5Gc (9b).

Figure S1. ¹H NMR spectrum of X-Gal-Neu5Ac. The spectrum was collected in a Bruker Avance AV400 using the deuterated methanol residual signal as internal standard.

Figure S2. ¹³C NMR spectrum of X-Gal-Neu5Ac. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S3. COSY NMR spectrum of X-Gal-Neu5Ac. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S4. HSQC NMR spectrum of X-Gal-Neu5Ac. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S5. ¹H NMR spectrum of tri-deuterated X-Gal-Neu5Ac (**9a**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S6. ¹³C NMR spectrum of tri-deuterated X-Gal-Neu5Ac (**9a**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S7. COSY NMR spectrum of tri-deuterated X-Gal-Neu5Ac (**9a**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S8. HSQC NMR spectrum of tri-deuterated X-Gal-Neu5Ac (**9a**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S9. ¹H NMR spectrum of X-Gal-Neu5Gc. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S10. ¹³C NMR spectrum of X-Gal-Neu5Gc. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S11. COSY NMR spectrum of X-Gal-Neu5Gc. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S12. HSQC NMR spectrum of X-Gal-Neu5Gc. The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S13. ¹H NMR spectrum of tri-deuterated X-Gal-Neu5Gc (**9b**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S14. ¹³C NMR spectrum of tri-deuterated X-Gal-Neu5Gc (**9b**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S15. COSY NMR spectrum of tri-deuterated X-Gal-Neu5Gc (**9b**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.

Figure S16. HSQC NMR spectrum of tri-deuterated X-Gal-Neu5Gc (**9b**). The spectrum was collected in a Bruker Avance AV400 using deuterated methanol residual signal as internal standard.