
molecules

Article

The Physical Vapor Transport Method for Bulk AlN
Crystal Growth

Wen-Hao Chen † , Zuo-Yan Qin †, Xu-Yong Tian, Xu-Hui Zhong, Zhen-Hua Sun, Bai-Kui Li,
Rui-Sheng Zheng, Yuan Guo and Hong-Lei Wu *

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,
College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China;
chenwenhao2017@email.szu.edu.cn (W.-H.C.); 2176285305@email.szu.edu.cn (Z.-Y.Q.);
tian365xy@163.com (X.-Y.T.); 2160190108@email.szu.edu.cn (X.-H.Z.); szh@szu.edu.cn (Z.-H.S.);
libk@szu.edu.cn (B.-K.L.); rszheng@szu.edu.cn (R.-S.Z.); guoyuanlg@sina.com (Y.G.)
* Correspondence: hlwu@szu.edu.cn; Tel: +86-138-2653-1433
† Both authors contributed equally.

Academic Editor: Hellen Ishikawa-Ankerhold
Received: 19 March 2019; Accepted: 18 April 2019; Published: 19 April 2019

����������
�������

Abstract: In this report, the development of physical vapor transport (PVT) methods for bulk
aluminum nitride (AlN) crystal growth is reviewed. Three modified PVT methods with different
features including selected growth at a conical zone, freestanding growth on a perforated sheet, and
nucleation control with an inverse temperature gradient are discussed and compared in terms of the
size and quality of the bulk AlN crystals they can produce as well as the process complexity. The PVT
method with an inverse temperature gradient is able to significantly reduce the nucleation rate and
realize the dominant growth of only one bulk AlN single crystal, and thus grow centimeter-sized
bulk AlN single crystals. X-ray rocking curve (XRC) and Raman spectroscopy measurements showed
a high crystalline quality of the prepared AlN crystals. The inverse temperature gradient provides an
efficient and relatively low-cost method for the preparation of large-sized and high-quality AlN seed
crystals used for seeded growth, devoted to the diameter enlargement and quality improvement of
bulk AlN single crystals.

Keywords: bulk AlN crystal; inverse temperature gradient; dominant growth; crystalline quality;
physical vapor transport

1. Introduction

In recent years, aluminum nitride (AlN) has attracted increasing attention in the field of electronics
and optoelectronics due to its excellent optical, electrical, mechanical, and piezoelectric properties.
Its high breakdown field strength, high thermal conductivity, high carrier saturation velocity and high
radiation tolerance offer extensive application potential in high temperature-resistance, high-frequency,
anti-radiation, and high-power electronic devices [1,2]. At present, AlN is considered the most
promising substrate material for III-nitride semiconductor devices [3,4]. In contrast with substrates
such as sapphire and silicon carbide (SiC), AlN substrates provide more lattice and a thermal expansion
match with gallium nitride (GaN) and aluminum gallium nitride (AlGaN), leading to a low dislocation
density (DD) in over-grown active layers. A number of studies have confirmed that using AlN as
buffer layers can greatly improve the quality of GaN [5,6]. Furthermore, AlN possesses an extra wide
direct bandgap of 6.2 eV, which presents great potential for application in deep-ultraviolet (DUV)
optoelectronic devices such as light emitting diodes (LEDs), laser diodes (LDs) and photodetectors.
These devices have very wide application prospects in air disinfection, water purification, ultraviolet
curing, fire detection and other relevant technologies. Yoshitaka Taniyasu et al. reported an AlN-based
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LED with an emission wavelength of 210 nm in 2006 [7], which greatly promoted the development
of solid-state DUV light sources. Wei Zheng et al., reported a vacuum-ultraviolet (VUV)-sensitive
(λ < 200 nm) photodetector based on high-quality AlN nanowires [8]. To realize further performance
improvement of DUV or VUV optoelectronic devices, large-sized and high-quality bulk AlN single
crystals and reliable preparation methods are necessary.

AlN is a synthetic mineral that doesn’t exist naturally. In the past six decades, different methods
have been developed to prepare bulk AlN single crystals, including direct-nitridation of aluminum,
hydride vapor phase epitaxy (HVPE) [9] and physical vapor transport (PVT) [10–13]. The AlN single
crystal with a diameter of 0.03 mm was first synthesized in 1956 [14]. In 1976, bulk AlN crystals, 10 mm
in thickness and 3 mm in diameter, were prepared by the sublimation-recondensation method [10],
which laid the foundation for the PVT growth of bulk AlN crystals. PVT is the most suitable and widely
used method for bulk AlN crystal growth. The largest AlN wafer prepared by PVT is approximately
up to 2-inches in diameter so far [15,16]. Nowadays the diameter enlargement of AlN single crystals
is the most crucial requirement. On the other hand, the size and structural properties of grown AlN
crystals are significantly affected by growth conditions such as temperature, ambient pressure, crucible
material and the type of seed. This work investigates different modified PVT growth strategies and
particularly analyzes the attributes of the inverse temperature-gradient method in terms of the size
and crystal quality of the grown AlN crystals.

2. Mechanism

The growth process of AlN crystals by PVT method is summarized in the following three steps:
(I)In a nitrogen atmosphere, the AlN powder sublimate in a closed or semi-closed crucible with
certain temperature and pressure, producing gaseous Al and N2; (II)The vapor species transfer along a
temperature gradient from the higher-temperature source zone to the lower-temperature crystalline
zone; (III)The collision, diffusion, absorption and desorption of vapor species on the substrate promote
the crystallization of AlN. The sublimation and recondensation process can be briefly described by the
following formula

2AlN(s)
 2Al(g) + N2(g) (1)

Other than the main species (gaseous Al and N2), AlnN(g)(n = 2,3,4) possibly exists in spite of its
much low concentration. Al3N presents an obvious advance in mole fraction and growth rate among
AlnN vapor species [17]. It might play an important role in the deposition of AlN because the higher
pressure of nitrogen leads to a lower concentration of Al3N, which is related to the decrease of the
growth rate [18]. However, further influences of AlnN(g)(n = 2,3,4) on AlN crystal growth has not
been determined in the experiment.

The growth rate of AlN crystals is sensitive to the mass transport of gaseous Al and N2, both of
which are the main gas-phase species in the PVT growth system. There have been different models
developed to describe the impact of vapor phase transports on growth rate [19–24]. The AlN crystals are
grown in a nitrogen environment. With a high ambient pressure (~a nitrogen atmosphere), the vapor
phase transport is dominated by the diffusion mechanism. But in a vacuum (≈10−4Torr), the drift
mechanism of transport plays a predominant role [19]. The proper ambient pressure needs to be
considered in terms of growth rate. Under an excessively high ambient pressure, the sublimation rate
of the source material would be sharply limited.

According to the models based on vapor diffusion (Ptot~600Torr) [20,21], in a usual N-rich PVT
growth system where partial pressure of nitrogen is considerably higher than that of gaseous Al,
the growth rate is largely limited by the supply of Al species to the growth surface at temperatures above
2000 ◦C. Considering the surface kinetics, the adsorption behavior of N2 on the growth surface will also
limit the growth rate due to the high dissociation energy of N2, especially at Al-rich conditions [22].
The sticking coefficient of N2, an important factor in the adsorption process, can be increased at higher
temperature. High growth temperature and nitrogen pressure contribute to the adsorption of N2 on
the crystalline surface, and thus comparatively increase the growth rate. Under the N-rich condition
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the growth rate limitation caused by surface kinetics mechanism is insignificant, but the suppression
of N2 adsorption cannot be ignored at a nearly stoichiometric vapor phase [19,23,24]. Therefore,
the determinant factor influencing the growth rate will be either the gaseous Al transport or the N2

adsorption on the AlN surface, depending on the specific growth conditions.
In order to prepare bulk AlN crystals with a sufficiently low nucleation rate and a high enough

growth rate (>100 µm/h) by PVT method, adequate supersaturation should be realized. Based on the
thermodynamic properties of species in the Equation (1), the supersaturation value at the growing
region is defined as [13,23]

S =
(pAl)

2
·

(
pN2

)
K(T)

− 1 (2)

where pAl is the vapor pressure of Al, pN2 the vapor pressure of N2, and K(T) the equilibrium constant.
The supersaturation value reflects the crystallization rate at the growing surface. The equilibrium is
reached between crystallization and decomposition when S = 0. The crystallization rate increases with
the supersaturation value when S > 0. For AlN growth by spontaneous nucleation, an excessively
low local supersaturation will suppress the nucleation and lead to a low growth rate, whereas an
excessively high local supersaturation will result in a high nucleation density or even polycrystallization.
The neighboring grains are detrimental to both diameter enlargement and structural quality perfection
of growing AlN single crystals.

Figure 1 shows the rising trends of the vapor pressure of major species with increasing temperature
in the AlN-N2 system [25]. The significant increase of Al vapor pressure largely contributes to the
supersaturation increase. Note that the temperature difference between the source and crystalline zone
(∆T) motivates the species to transport to the growth surface. Therefore, with a considerable excess
of N2 species in the growth system that has a dominant diffusion mechanism, the supersaturation
and growth rate climb with the increasing growth temperature (TG) and especially the increasing ∆T.
A proper axial temperature gradient plays a key role in the control of supersaturation. According to
Equation (2) and numerical simulations of the thermal field, the supersaturation value at the range
of 0.25~0.3 [26] is adequate for both growing bulk AlN single crystals with growth rates of above
100 µm/h and realizing low nucleation densities. Furthermore, the defect generation such as dislocation
and small angle grain boundary (LAGB) during growth is significantly influenced by the temperature
gradient. Except for the axial temperature gradient, an appropriate radial temperature gradient
around the growing AlN crystal can also improve the crystal quality by suppressing the polycrystalline
nucleation and reducing the thermal-elastic stresses in crystals [27].
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colored area highlights the suitable temperature window for growth of bulk AlN crystals. The red
colored area reflects the limitation of the AlN decomposition point.
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In a nitrogen atmosphere, with temperatures over 2150 ◦C, the growth anisotropy (partial to
c-direction) of wurtzite AlN is weakened, promoting the diameter enlargement of bulk AlN single
crystals. It is worth mentioning that the upper growth temperature is limited by the decomposition
point at around 2430 ◦C with a nitrogen pressure of 1 bar [10], as shown in the red colored area in
Figure 1. Upon reaching the decomposition temperature, AlN decomposes into gaseous species. A lot
of generated gaseous Al and even liquid Al can cause corrosion to the crucible (e.g., tungsten crucible)
and decrease its lifetime. In view of the adequate supersaturation, the endurance of crucible and the
demand of large-sized AlN crystals with high structural quality, the growth temperature and axial
temperature gradient should be appropriately controlled at the range of 2150~2300 ◦C and 5~20 ◦C/mm
in a nitrogen atmosphere. Correspondingly the suitable growth window for AlN bulk growth is
highlighted with a yellow color in Figure 1.

3. Different PVT Methods

The growth of AlN crystals is considerably influenced by the temperature distribution and
growing anisotropy, which make it difficult to achieve further diameter enlargement of bulk AlN
single crystals. AlN-seeded growth is the best way to realize further enlargement of diameter and
improvement of crystalline perfection of AlN crystals. However, large-scale and high-quality AlN
seeds are difficult to obtain, which only can be acquired from the previously grown AlN crystals.
Self-seeding growth is still playing an indispensable role in AlN bulk growth. At present, there are
three modified PVT methods for AlN growth by spontaneous nucleation: (i) selected growth at a
conical zone, (ii) freestanding growth on a perforated sheet, and (iii) nucleation control with an inverse
temperature gradient. Mastering the efficient and low-cost method to prepare acceptable AlN seed
crystals is necessary for seeded growth. The inverse temperature-gradient method is designed for our
PVT growth experiments.

3.1. Selected Growth at Conical Zone

Owing to the influence of anisotropic growth on AlN crystal enlargement, the AlN single crystals
grown on a planar crucible lid generally sustain the stress from surrounding crystallites in the nucleation
region, which limits the further expansion of crystal size and generates structural defects. In view of
the adverse impacts between neighboring AlN crystals during growth, a conical zone was designed
as the nucleation region in a tungsten (W) crucible [28], as shown in Figure 2a. The tip of the conical
crucible allows a single crystal to grow in a dominant position. Additionally, the tip filled with an AlN
single crystal can be cut off and then employed as a seed portion in seeded growth to achieve diameter
enlargement. Using this technology, AlN wafers up to 2-inch in diameter with a usable area of ~85%
and a low average etch pit density (EPD < 104 cm−2) were obtained [29].

3.2. Separate Freestanding Growth on Perforated Sheet

For low-density nucleation and crystallization, a perforated sheet is designed as a nucleation
area between the bottom source zone and crucible lid in the TaC crucible [26], as shown in Figure 2b.
During growth, the nucleation and crystallization proceed on both the perforated sheet and the crucible
lid, producing separate freestanding AlN single crystals and a polycrystalline AlN layer, respectively.
The local supersaturation at nucleation area is controlled in a suitable range to obtain low nucleation
density and large-sized unstressed single AlN crystals with a growth rate of up to 200 µm/h. Bulk AlN
single crystals of 9 × 9 × 14 mm3 were prepared by this setup, which have high structural quality with
low dislocation densities (DD ≤ 104 cm−2) and no LAGBs [13,26].

3.3. Inverse Temperature-Gradient Growth on Crucible Lid

For AlN bulk growth by spontaneous nucleation, further improvement of size and crystalline
quality cannot be achieved without nucleation control. A proper temperature field is necessary to control
the supersaturation at nucleation area and acquire a sufficiently low nucleation rate. As mentioned
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above, temperature difference is a major impetus for vapor transport and crystal deposition. Therefore,
an inverse temperature gradient can be used for nucleation control [12]. A three-zone heated furnace,
including three heaters (main/top/bottom heater) and their respective infrared thermometers for
temperature measurement, has been designed to prepare bulk AlN single crystals, as shown in
Figure 2c. The AlN powder as source material is preliminarily sintered to remove the oxygen impurity
and the purity of it can be above 99.9%. In such a growth setup, as shown in Figure 2d, a vertical
thermal gradient is established in a W crucible and AlN is deposited on the crucible lid where thermal
equilibrium forms. Bulk AlN single crystals are prepared at a growth temperature of 2250 ◦C with
a growth rate >200 µm/h by this method. The typical crystals prepared through this technique are
evaluated in the next section. During the experiment process with a high purity nitrogen atmosphere
(99.999%) of 800Torr, the regulation of temperature in crystalline zone (Tc) and source zone (Ts) can be
mainly divided into three steps:

(1) During heating, Tc > Ts, the inverse temperature gradient (∆T < 0) is established to suppress
the nucleation at relatively low growth temperature (<2150 ◦C).

(2) During the holding period, Tc < Ts, the positive temperature gradient (∆T > 0) promotes the
growth of AlN single crystals on the nucleation area with proper ∆T of 5~20 ◦C/mm.

(3) During cooling, before the temperature of source zone falls below 1750 ◦C, at which time the
source AlN material stops subliming, an inverse temperature gradient is maintained to suppress the
recrystallization on the surfaces of AlN crystals.
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Figure 2. Schematic diagrams of three different growth setups: (a) A tungsten crucible with a conical
tip designed for selected growth [28]. (b) A TaC crucible with a perforated sheet designed for separate
freestanding growth [26]. (c) A growth unit with three heated zones. (d) A tungsten crucible deposited
in setup (c) for the inverse temperature-gradient method.

4. Results and Discussion

4.1. Method Comparison

Three modified PVT methods for AlN bulk growth all present prominent effects on the control of
nucleation rate and the comparison of them is summarized in Table 1. Both of the other two strategies
aim at reducing the nucleation rate by adjusting the environment of nucleation, which is realized by
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changing the shape of crucible or setting up a growth site with suitable supersaturation. For inverse
temperature-gradient method, the nucleation can be effectively controlled by the temperature gradient.

Table 1. Comparison of three strategies for AlN bulk growth.

Method Selected Growth Separate Freestanding Growth Inverse Temperature-
Gradient Growth

Crucible material W TaC W
Nucleation position Conical tip Perforated sheet Planar crucible lid

Key element Nucleation site Supersaturation Temperature gradient

Advantages Conical zone for
dominant growth

Low nucleation rate, N-polar
growth

Single dominant growth,
relative low cost

Disadvantages Complicated process Carbon contamination, high
manufacturing cost

High requirement of
thermometry

Compared with the spontaneous nucleation on a planar crucible lid, the dominant single crystal
at the conical tip is more capable of expanding into a large-sized single crystal. However, it is hard to
guarantee the growth of only one single crystal in the conical portion. Furthermore, such a crucible
needs a high enough joint quality between the conical portion and the source portion due to its special
construction, leading to a high process complexity. Both precise cutting of the conical tip and separation
of the AlN single crystal and the tip will also increase the production cost.

The structural design of separate freestanding growth aims at creating a proper single-crystal
growth environment by regulating the distributions of temperature and supersaturation. In particular,

the c-facet wafers cut from the freestanding AlN crystals contain a large N-polar (00
−

1) facet, which
presents a step-flow growth mode [30]. Compared with the Al-polar growth direction, the N-polar
growth direction is preferable in favor of diameter enlargement and superior structural quality [30,31].

The c-facet wafers from (00
−

1) grown AlN crystals with a low defect density are suitable as seeds for
further N-polar seeded growth. The carbon impurities from the TaC crucible can be pumped out by
forming CO with the residual oxygen to reduce the threat to the structural quality of AlN crystals.
At the cooling stage of growth, the large difference of thermal expansion coefficient between TaC and
AlN may produce compressive stress on AlN crystals and lead to cracks and defects. Furthermore, there
probably exists interfacial reactions between TaC and vapor Al, producing Al4C3 and TaAl3 [32]. In fact,
the major problem is the manufacture process because the machining of sintered TaC crucibles [33] is so
complicated that the manufacturing cost is higher than other frequently-used crucibles like W crucibles.

The biggest advantage of inverse temperature-gradient method is the dominant growth of only
one bulk AlN single crystal on the W substrate during one growth period. Under a nitrogen pressure of
1 bar, the AlN powder begins to sublimate when the temperature reaches around 1800 ◦C, so heating-up
stage is the critical period for nucleation control. Figure 3 shows the temperature control process in the
positive temperature gradient (∆T > 0) and the inverse temperature gradient (∆T < 0), respectively.
During heating, a positive temperature gradient easily led to a lot of nucleation points, which caused
polycrystallization as shown in Figure 3a,b. By establishing an inverse temperature gradient in
the heating stage, the nucleation could be suppressed, and as a result, the nucleation density was
remarkably reduced. As shown in Figure 3c,d, only one centimeter-sized AlN single crystal grown
by spontaneous nucleation can be clearly observed on the center of the crucible lid. With a single
dominant growth mode, the center AlN single crystals can avoid being affected by the neighboring
grains, and thus realize the diameter enlargement and the reduction of defects. Besides, the orientation
of AlN crystal growth with either c- or a-orientation can be controlled by a thermal field in this setup.
At growth temperatures of 2200~2250 ◦C, a relatively low ∆T (approaching the radial temperature
difference on the substrate) can promote the lateral transfer of gas-phase species on growth surfaces
and contribute to the growth of nonpolar plane (like a-facet) AlN crystals despite of a low growth rate.
As such, both polar and nonpolar plane used for specific-surface seeded growth can be obtained with
a large size by using this method. More details were shown in ref [12]. The most vital factor of the
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inverse temperature-gradient method is the accuracy of the temperature control, which is the major
reason why the furnace has three infrared thermometers for different zones.
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Figure 3. The temperature control process of heating with a positive temperature gradient (∆T > 0)
and an inverse temperature gradient (∆T < 0). Images (a,b) and (c,d) on the right side respectively
show the crystallization of AlN without and with inverse temperature-gradient method.

In addition, the most used crucible materials are W and TaC at present. The W crucible used
for the inverse temperature-gradient method is assembled by a rounded lid and a cylindrical body,
which can be recycled in a W/Molybdenum (Mo)- based unit. Compared with the conical structure
and high cost sintering of TaC crucible, the straight W crucible largely reduces the production cost and
offers a higher operational flexibility for the method. Considering that W will react with C to form
WC at temperatures of 1400~1800 ◦C [34], graphite materials should be forbidden in this growth unit.
The use of W material avoids the carbon impurities that are harmful to the quality of the AlN crystals
and W hardly exists in the bulk AlN crystals.

According to the above comparison and analysis, the inverse temperature-gradient method
applied with the straight W crucible presents a more obvious effect on the nucleation control and
provides a strategy with a lower cost for production of AlN seed crystals.

4.2. Characterization

Hexagonal AlN single crystals can be grown on the W substrate by inverse temperature-gradient
method in the PVT process. The prepared crystals are evaluated by X-ray Diffraction (XRD) with Cu
Kα radiation on a Philips X-ray diffractometer at 40 kV and 40 mA. A strong diffraction peak at 36.06◦

can be obtained which corresponds to the (002) lattice plane in parallel with the substrate, indicating
the c-axis growth direction of the crystal. Rocking curves were taken in different areas on the (002) facet
with a beam diameter of around 0.1mm and full-width at half maximum (FWHM) values of <70 arcsec
were obtained. Figure 4 presents only one narrow peak with a FWHM close to 66 arcsec, showing a
high crystalline quality of the typical c-plane bulk AlN single crystal. A small tail following the left side
of curve indicates the probable existence of edge dislocation. The upper inset in Figure 4 is an optical
photo image of the AlN sample exhibiting a yellow (amber) color. The yellow coloration is ascribed to
optical absorption at around 2.7~2.9 eV, which is related to the aluminum vacancy (VAl)3−/2− states
and the presence of oxygen impurities [35–37]. The lower inset in Figure 4 is a low-magnification SEM
image of the AlN sample with a scale bar of 500 µm, revealing excellent hexagonal morphology of
the bulk c-plane crystal. In addition, the FWHM of around 144 arcsec for the (110) rocking curve is
also obtained.
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In order to further evaluate the crystalline quality, the prepared bulk AlN crystals were analyzed
by Raman spectroscopy. Micro-Raman experiments were performed at room temperature (300 K)
using a Raman Spectrometer (sourced from Zolix, Beijing, China) with 785nm laser as excitation source
in backscattering geometry. Spectra were taken on c-facet and m-facet of the AlN single crystals
under nearly normal incidence. Figure 5 shows the Raman spectrum obtained on (002) facet and (100)
facet. For (002) facet, the E2(low) mode at 239 cm−1, the A1(TO) mode at 610 cm−1, the E2(high) mode
at 658 cm−1 and the A1(LO) mode at 892 cm−1 are allowed while the E1(TO) mode and the E1(LO)
mode are forbidden. For (100) facet, the E2(low) mode at 239 cm−1, the A1(TO) mode at 610 cm−1,
the E2(high) mode at 658 cm−1, the E1(TO) mode at 670 cm−1 and the E1(LO) mode at 914 cm−1 are
observed but the A1(LO) mode is not allowed. It should be clear that the phonon energies of TO and
LO modes are influenced by different crystallographic facets, which is consistent with the result in
ref [38]. The Raman phonon energies (frequencies) of all the observed modes are in good agreement
with the results reported for nearly unstrained AlN [39,40] (see Table 2). The FWHMs of the E2(high)
modes are 11 cm−1 and 12 cm−1, respectively.
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Table 2. Raman phonon energies (cm−1) of the prepared AlN at room temperature.

Phonon Symmetry Raman Phonon Energy
(cm−1) for (002) Facet a

Raman Phonon Energy
(cm−1) for (100) Facet a

Raman Phonon
Energy (cm−1) b

Raman Phonon
Energy (cm−1) c

E2(low) 239 239 249 249
A1(TO) 610 610 611 610
E2(high) 658 658 657 656
E1(TO) - 670 671 669
A1(LO) 892 - 890 891
E1(LO) - 914 912 912

a This work. b Ref.39 AlN grown on α-Al2O3 by chloride-hydride–vapor-phase epitaxy (CHVPE). c Ref.40 AlN
grown by a direct reaction of aluminum vapor with nitrogen.

Variations of Raman phonon energies between these AlN samples can be largely attributed to
the stress caused by thermal expansion and lattice mismatch. The stress from lattice mismatch can be
relieved by the formation of defects such as threading dislocations during growth. Due to the high
growth temperature and the difference of thermal expansion coefficient between AlN and W, stress is
introduced into both AlN crystals and W substrate during cooling. The frequency shifts of the E2(high)
mode and the E1(TO) mode have been used to analyze the stress [41,42]. There exists a Raman stress
factor (k) to link the shift of frequency (∆ω) with the biaxial stress (σ), which can be described by the
equation [41]

∆ω = kσ (3)

As k is −6.3 ± 1.4 cm−1/GPa for E2(high) phonon, and ∆ω is approximately 1 cm−1 (the E2(high)
phonon energy is 657.4 cm−1

± 0.2 cm−1 for unstressed AlN), a compressive stress of 0.16 ± 0.04 GPa can
be obtained using Equation (3) for the hexagonal AlN sample. Meanwhile, the E1(TO) phonon energy
of the sample reveals a slight blueshift compared to the unstressed bulk AlN grown by spontaneous
nucleation [42], which also reflects the slight compressive stress at the growing surface. The slight
stress and narrow FWHM of mode phonon energy for E2(high) indicates a high crystalline quality
of the AlN sample. The thickness of the AlN samples is around 2 mm. Note that the stress can be
reduced by increasing thickness, thus the further improvement of crystalline quality can be realized in
AlN-seeded growth.

5. Conclusions

For the past several decades, the PVT technology has been developed for AlN bulk growth.
However, the harsh growth conditions, especially the narrow growth-temperature window, provide
challenges for preparing high-quality AlN single crystals with a diameter of ≥2 inch. To explore
the technology improvement of AlN bulk growth, three modified self-seeding PVT growth methods
are discussed.

In comparison to the selected growth and separate freestanding growth, the inverse
temperature-gradient method shows more advantages in terms of the diameter enlargement and
quality improvement of bulk AlN single crystals as well as the process complexity. The inverse
temperature-gradient method is able to reduce the nucleation rate and realize the single dominant
growth on the crucible lid. Centimeter-sized bulk AlN single crystals used for seeded growth can be
obtained by spontaneous nucleation using this method. X-ray rocking curve and Raman spectroscopy
show high crystalline quality of the prepared AlN crystals. The inverse temperature-gradient method
reveals a promising potential for the preparation of large-sized and high-quality AlN seed crystals
used for seeded growth by virtue of its high efficiency, flexibility and cost-effectiveness.
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