Design, synthesis and mechanism of novel dihydroartemisinin-coumarin hybrids as potential anti-cancer and anti-inflammatory agents

Haonan Yu^{1#}, Zhuang Hou^{1#}, Xiaoguang Yang¹, Yanhua Mou^{2*} and Chun Guo^{1*}

¹School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China;

² School of life sciences and biological pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;

[#]Haonan Yu and Zhuang Hou contributed equally to this work.

*Correspondence to

Chun Guo, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang, 110016, Liaoning Province, China. Tel: +86-24-4352-0226, Email: chunguo@syphu.edu.cn; Yanhua Mou, School of life sciences and biological pharmacy, Shenyang Pharmaceutical University, No. 103 Wenhua Road, Shenyang 110016, Liaoning Province, China. Email: mu hua jj@sina.com

Authors' emails

yhna380@hotmail.com (HY) houzhuang8@sina.com (ZH) 1012041601@qq.com (XY); mu_hua_jj@sina.com (YM) chunguo@syphu.edu.cn (CG) ¹H and ¹³C NMR Spectrum of intermediates and new compounds

Intermediates

¹H NMR (600 MHz, Chloroform-d) δ 5.40 (s, 1H), 4.96 (d, J = 3.5 Hz, 1H), 4.30 (d, J = 2.3 Hz, 2H), 2.70-2.62 (m, 1H), 2.41-2.30 (m, 2H), 2.05-1.99 (m, 1H), 1.90-1.84 (m, 1H), 1.79-1.71 (m, 2H), 1.63 (dd, J = 13.2, 3.4 Hz, 1H), 1.53-1.46 (m, 2H), 1.42 (s, 3H), 1.38-1.29 (m, 1H), 1.26-1.19 (m, 1H), 0.94 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 7.3 Hz, 3H), 0.90-0.83 (m, 1H).

¹H NMR (600 MHz, Chloroform-d) δ 5.47 (s, 1H), 4.83 (d, J = 3.5 Hz, 1H), 3.95-3.91 (m, 1H), 3.57-3.53 (m, 1H), 2.64-2.61 (m, 1H), 2.47-2.45 (m, 2H), 2.37 (td, J = 14.1, 4.0 Hz, 1H), 2.03 (d, J = 14.6 Hz, 1H), 1.94 (s, 1H), 1.90-1.85 (m, 2H), 1.77-1.71 (m, 1H), 1.63 (dd, J = 13.3, 3.5 Hz, 1H), 1.53-1.45 (m, 2H), 1.43 (s, 3H), 1.35-1.30 (m, 1H), 1.26-1.19 (m, 1H), 0.95 (d, J = 6.3 Hz, 3H), 0.91 (d, J = 7.3 Hz, 3H), 0.90-0.87 (m, 1H).

¹H NMR (600 MHz, Chloroform-d) δ 5.46 (s, 1H), 4.82 (d, J = 3.5 Hz, 1H), 4.12-4.06 (m, 1H), 3.79-3.73 (m, 1H), 3.49 (t, J = 5.6 Hz, 2H), 2.66-2.58 (m, 1H), 2.34 (td, J = 14.0, 3.9 Hz, 1H), 2.04-1.98 (m, 1H), 1.89-1.81 (m, 2H), 1.76-1.70 (m, 1H), 1.65-1.59 (m, 1H), 1.54-1.42 (m, 2H), 1.40 (s, 3H), 1.36-1.28 (m, 1H), 1.25-1.17 (mi, 1H), 0.92 (t, J = 6.9 Hz, 6H), 0.88-0.84 (m, 1H).

¹H NMR (600 MHz, Chloroform-d) δ 5.42 (s, 1H), 4.80 (d, J = 3.4 Hz, 1H), 4.02-3.97 (m, 1H), 3.52-3.45 (m, 3H), 2.65-2.61 (m, 1H), 2.40-2.32 (m, 4.0 Hz, 1H), 2.13-2.00 (m, 2H), 2.05-1.98 (m, 1H), 1.91-1.83 (m, 1H), 1.77-1.71 (m, 2H), 1.65-1.59 (m, 1H), 1.55-1.44 (m, 2H), 1.44 (s, 3H), 1.37-1.30 (m, 1H), 1.27-1.18 (m, 1H), 0.95 (d, J = 6.3 Hz, 3H), 0.90 (d, J = 7.4 Hz, 3H), 0.89-0.86 (m, 1H).

Compound 1a

Compound 1b

Compound 1c

Compound 1d

Compound 1e

Compound 2a

Compound 2b

Compound 2c

Compound 2d

Compound 2e

$\text{Compound} \; \mathbf{3f}$

Compound 3g

Compound 3h

Compound 3i

$\text{Compound} \ 4f$

Compound 4g

Compound 4h

Compound 4i

Compound 5j

Compound 51

Compound 5m

Compound 5n

Compound 50

Compound 6j

Compound 6k

Compound 6l

Compound 6m

Compound 6n

Compound 60

Compound 6p

