Supplementary Material

Boosting Electrochemical Nitrogen Reduction Performance over Binuclear Mo Atoms on N-doped Nanoporous Graphene: A Theoretical Investigation

Ruijie Guo, Min Hu, Weiqing Zhang, Jia He*

Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

*E-mail: hejia@tjut.edu.cn

Figure S1. Different possible structures of SAC and BAC for the Mo atoms.

Figure S2. PDOS of Mo atoms on OH pre-adsorbed Mo-N-C catalysts.

Figure S3. PDOS of Mo atoms on OH pre-adsorbed Mo₂-N-C catalysts.

Figure S4. PDOS of Mo atoms on Mo (001) catalysts.

Figure S5. Free-energy diagrams for the NRR on Mo-N-C (a) and Mo₂-N-C (b) catalysts under different

potentials via distal pathway.

Table S1. The adsorption energy (Eads, eV) and the cohesive energy (Ecoh, eV) of the corresponding SAC andBAC for the Mo atoms in Figure S1.

	Eads	Eads + Ecoh
а	-6.37	0.45
b	2.72	9.54
с	-18.32	-4.68
d	7.53	21.17
e	4.66	18.30

Table S2. The adsorption energy (E_{ads} , eV) and the cohesive energy (E_{coh} , eV) of the different transition metalsdoped on N-C nanosheets.

SAC	Eads	$E_{ads} + E_{coh}$
Cr	-6.84	-2.74
Fe	-7.76	-3.48
Ni	-7.93	-3.49
Cu	-5.22	-1.73
Zn	-3.60	-2.25
Мо	-6.37	0.45
Rh	-7.60	-1.85
BAC	Eads	$E_{ads} + E_{coh}$

Cr	-15.55	-7.35
Fe	-16.51	-7.95
Ni	-13.10	-4.22
Cu	-11.24	-4.26
Zn	-6.79	-4.09
Мо	-18.32	-4.68
Rh	-16.61	-5.11

Table S3. Calculated values of $E^{o}_{M^{z^+}/M\text{-}N\text{-}C}$ (V).

SAC			
metal	$E^{o}_{M^{z^{\star}}/M}$	Z	$E^{o}_{M^{z+}/M-N-C}$
Cr	-0.74	3	0.173
Fe	-0.44	2	1.299
Ni	-0.25	2	1.494
Cu	0.337	2	1.202
Zn	-0.7618	2	0.363
Мо	no data		
Rh	0.76	3	1.376
	В	AC	
metal	$E^{o}_{M^{z\ast}/M}$	Z	$E^o_{M^{z\scriptscriptstyle +}/M\text{-}N\text{-}C}$
Cr	-0.74	3	1.709
Fe	-0.44	2	3.533
Ni	-0.25	2	1.859
Cu	0.337	2	2.466
Zn	-0.7618	2	1.282
Мо	no data		
Rh	0.76	3	2.463

	SAC			BAC		
	N2	NNH	NH ₂	N2	NNH	NH ₂
Cr	-0.35	0.25	-1.02	0.48	0.05	-1.72
Fe	-0.73	1.02	-0.69	-0.58	-0.01	-1.16
Ni	-0.15	1.74	0.66	-0.13	1.67	0.37
Cu	-0.42	1.84	1.01	-0.49	2.24	1.04
Zn	-0.38	2.03	0.06	-0.26	1.71	-0.28
Мо	-1.29	-1.43	-2.78	-0.82	-1.07	-2.25
Rh	-0.09	0.42	-0.69	-0.15	2.01	0.45

Table S4. Adsorption energy (eV) of N2, NNH, and NH2 intermediates on the different N-C monolayers.

Table S5. Atomic configurations and corresponding adsorption energy and free energy correction of each elementary steps, along the different pathways for Mo-N-C.

Distal				
Specie	configuration	$\Delta E (eV)$	$\Delta ZPE - T\Delta S + fCpdT (eV)$	
S	s			
NN		-1.25	0.16	
NNH		-1.1	0.46	
NNH2		-2.14	0.74	
N		-1.44	0.11	

NH		-2.58	0.34
NH2	*	-2.78	0.6
		Alternating	
species	configuration s	$\Delta E (eV)$	ΔZPE – TΔS +ʃCpdT (eV)
NN		-1.25	0.16
NNH		-1.1	0.46
NHN H		-0.68	0.74
NHN H2		-2.06	1.01
NH2N H2		-1.53	1.43
NH2		-2.78	0.6

7 / 11

Enzymatic			
species	configuration s	$\Delta E (eV)$	$\Delta ZPE - T\Delta S + \int CpdT (eV)$
NN		-1.29	0.19
NNH		-1.43	0.45
NHN H		-1.5	0.74
NHN H2		-2.37	1.08
NH2N H2		-1.7	1.42
NH2		-2.78	0.6

Distal			
species	configuration	$\Delta E (eV)$	$\Delta ZPE - T\Delta S + \int CpdT$
	S		(eV)
NN		-0.82	0.11
NNH		-0.6	0.42
NNH2		-1.11	0.72
N		-0.31	0.05
NH		-1.41	0.32
NH2		-2.25	0.64
		Alternating	
species	configuration s	$\Delta E (eV)$	$\Delta ZPE - T\Delta S + \int CpdT$ (eV)
NN		-0.82	0.11
NNH	-	-0.60	0.42

Table S6. Atomic configurations and corresponding adsorption energy and free energy correction of each elementary steps, along the different pathways for Mo₂-N-C.

NHN H		-0.54	0.73
NHN H2		-1.67	1.08
NH2N H2	₿ ³	-1.61	1.38
NH2		-2.25	0.64
		Enzymatic	
species	configuration s	$\Delta E (eV)$	$\Delta ZPE - T\Delta S + \int CpdT$ (eV)
NN		-0.32	0.19
NNH	đ.	-1.07	0.53
NHN H	÷	-1.92	0.85
NHN H2		-1.59	1.13
NH2N H2		-0.98	1.34
NH2		-2.25	0.64

Electrocatalysts	ΔG [*NH2-NH3(g)]	References
	(eV)	
Mo-B-N	~ 0.98	J. Am. Chem. Soc. 2017, 139, 12480-12487.
BC ₃	~ 2.13	Joule 2018, 2, 1–13
NPC-pyridinic N	~ -0.15	ACS Catal. 2018, 8, 1186-1191.
Bint-doped C2N	3.03	J. Mater. Chem. A 2019, 7, 2392-2399.
Ru/Ba	0.26	J. Mater. Chem. A 2019, 7, 4771-4776.
Boron Antisites of BNNT	1.53	Phys. Chem. Chem. Phys. 2017, 19,
		15377-15387.
Mo ₂ -N-C	1.05	This work

 Table S7. Different two-dimensional NRR electrocatalysts reported in the literature.