ELECTRONIC SUPPORTING INFORMATION

Synthesis and Spectroscopic Analysis of *Piperine* and *Piperlongumine*-Inspired Natural Product Scaffolds and their Molecular Docking with IL-1 β and NF- κ B proteins

Gabriel Zazeri,^{1,2} Ana Paula R. Povinelli,^{1,2} Cécile S. Le Duff,³ Bridget Tang,³ Marinonio L. Cornelio,^{1*} and Alan M. Jones^{2*}

¹ Departamento de Física – IBILCE, Rua Cristovão Colombo, 2265 CEP 15054-000 São José do Rio Preto - São Paulo, Brazil

² School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, United Kingdom

³ School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, United Kingdom

*corresponding authors: MLC (<u>m.cornelio@unesp.br</u>) and AMJ (<u>a.m.jones.2@bham.ac.uk</u>)

CONTENTS

¹ H NMR spectrum of 2 (300 MHz, CDCl ₃)	page S3
¹³ C NMR spectrum of 2 (101 MHz, CDCl ₃)	page S4
¹ H NMR spectrum of 3a (300 MHz, CDCl ₃)	page S5
¹³ C NMR spectrum of 3a (101 MHz, CDCl ₃)	page S6
Mass Spectrometry of 3a	page S7
¹ H NMR spectrum of 3b (400 MHz, CDCl ₃)	page S8
¹³ C NMR spectrum of 3b (101 MHz, CDCl ₃)	page S9
Mass Spectrometry of 3b	page S10
¹ H NMR spectrum of 3c (300 MHz, CDCl ₃)	page S11
¹³ C NMR spectrum of 3c (101 MHz, CDCl ₃)	page S12
Mass Spectrometry of 3c	page S13
¹ H NMR spectrum of 4a (300 MHz, CDCl ₃)	page S14
¹³ C NMR spectrum of 4a (126 MHz, CDCl ₃)	page S15
¹ H- ¹ H COSY NMR spectrum of 4a	page S16
¹ H- ¹³ C HSQC NMR spectrum of 4a	page S17
¹ H- ¹³ C HMBC NMR spectrum of 4a	page S18
¹ H- ¹⁵ N HSQC NMR spectrum of 4a	page S19
¹ H- ¹⁵ N HMBC NMR spectrum of 4a	page S20
Mass Spectrometry of 4a	page S21
¹ H NMR spectrum of 4c (500 MHz, DMSO-d ₆)	page S22
13 C NMR spectrum of 4c (126 MHz, DMSO-d ₆)	page S23
¹ H- ¹ H COSY NMR spectrum of 4c	page S24
¹ H- ¹³ C HSQC NMR spectrum of 4 c	page S25
¹ H- ¹³ C HMBC NMR spectrum of 4c	page S26
¹ H- ¹⁵ N HSQC NMR spectrum of 4 c	page S27
¹ H- ¹⁵ N HMBC NMR spectrum of 4c	page S28
Mass Spectrometry of 4c	page S29
¹ H NMR spectrum of 7a (300 MHz, CDCl ₃)	page S30
¹³ C NMR spectrum of 7a (101 MHz, CDCl ₃)	page S31
Mass Spectrometry of 7a	page S32
¹ H NMR spectrum of 7b (300 MHz, CD ₃ OD)	page S33
¹ H NMR spectrum of 8a (300 MHz, CDCl ₃)	page S34
¹ H NMR spectrum of 8b (300 MHz, CD ₃ OD)	page S35
¹ H NMR spectrum of 9a (300 MHz, CDCl ₃)	page S36
¹ H NMR spectrum of 9b (300 MHz, CDCl ₃)	page S37
¹ H NMR spectrum of 10 (300 MHz, CDCl ₃)	page S38
Computational models	page S39
Ab initio Calculation of selected dihedral torsional angles	page S40
References	page S48

S3

S6

¹³C NMR spectrum of **3c** (101 MHz, CDCl₃)

Mass Spectrometry of 3c

S14

¹³C NMR spectrum of **4a** (126 MHz, CDCl₃)

¹H-¹H COSY NMR spectrum of **4a**

¹H-¹³C HSQC NMR spectrum of **4a**

¹H-¹³C HMBC NMR spectrum of **4a**

¹H-¹⁵N HSQC NMR spectrum of 4a

¹H-¹⁵N HMBC NMR spectrum of 4a

¹H NMR spectrum of **4c** (500 MHz, DMSO-d₆)

¹³C NMR spectrum of **4c** (126 MHz, DMSO-d₆)

¹H-¹H COSY NMR spectrum of **4**c

¹H-¹³C HSQC NMR spectrum of **4c**

¹H-¹³C HMBC NMR spectrum of **4c**

¹H-¹⁵N HSQC NMR spectrum of **4c**

$^{1}\text{H-}^{15}\text{N}$ HMBC NMR spectrum of 4c

Mass Spectrometry of 4c

Mass Spectrometry of $\mathbf{7a}$

Computational Models

Molecular docking

cation- π interaction between Lys77 of IL-1B and **3a**, **3c** and **9b**.

Dihedral	Torsional angle
14-15-16-17	0.228
18-13-12-11	168.513
19-12-11-10	-5.721
10-5-6-1	179.978
7-8-9-2	-8.186
2-3-4-5	0.087

Dihedral	Torsional angle
21-15-22-20	-0.036
22-20-15-16	-2.658
16-17-18-13	0.112
18-13-12-19	-0.218
18-13-12-11	179.987
11-10-5-6	178.969
6-1-7-8	177.766
8-9-2-3	-177.792

Dihedral	Torsional angle
20-15-16-17	-179.849
16-17-18-13	0.012
18-13-12-19	-0.793
18-13-12-11	179.225
11-10-5-6	179.596
5-6-1-7	-179.991
8-9-2-3	-179.961

Torsional angle of the dihedral of 4a simulated in H₂O

Torsional angle
-0.067
177.810
0.626
-1.407
-0.950
-178.286
-74.257
-2.859
176.492
-176.820

Torsional angle of the dihedral of 5-membered ring of 4a simulated in CDCl₃

Dihedral	Torsional angle
13-14-10-11	4.838
14-11-13-10	-3.046
12-13-14-10	-2.841

4a

Dihedral	Torsional angle
21-17-18-19	176 732
20-15-12-11	-172.194
12-13-14-10	0.626
13-10-14-11	-1.407
13-14-10-11	102.997
6-1-7-8	173.361
8-9-2-3	-178.833
6-5-4-3	0.268

4c

Dihedral	Torsional angle
20-21-22-16	-48.558
22-16-15-17	9.655
16-15-14-13	-173.008
13-5-6-1	179.762
10-7-1-2	73.431
11-8-2-3	-119.435
9-12-3-4	-134.562
15-16-22-21	-167.467

9a

Dihedral	Torsional angle
19-14-15-16	-173.441
17-18-10-9	-168.002
13-9-8-7	12.815
5-5-1-2	0.191
12-11-2-3	-179.427
8-7-5-6	179.783
19-14-15-16	-173.441
17-18-10-9	-168.002

Dihedral	Torsional angle
18-19-20-21	28.591
41-22-16-15	1.471
17-15-14-13	-5.019
15-14-13-5	179.702
10-7-1-2	72.840
11-8-2-3	-106.728
12-9-3-4	112.209
14-15-16-22	176.508

References

- 1. Williams, D.B.G.; Lawton, M. Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants. *J. Org. Chem.* **2010**, *75*, 8351-8354.
- 2. Sun, L.-D.; Wang, F.; Dai, F.; Wang, Y.-H.; Lin, D.; Zhou, B. Development and mechanism investigation of new piperlongumine derivative as a potent anti-inflammatory agent. *Biochem. Pharmacol.* 2015, *95*, 156-169.
- **3.** Mathew, A.; Sheeja T. L., M.; Kumar T., A.; Radha, K. Design, Synthesis and Biological Evaluation of Pyrazole analogues of Natural Piperine. *Hygeia J. D. Med.* **2011**, *3*, 48-56.