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Abstract: The chemical synthesis of modified oligoribonucleotides represents a powerful approach to
study the structure, stability, and biological activity of RNAs. Selected RNA modifications have been
proven to enhance the drug-like properties of RNA oligomers providing the oligonucleotide-based
therapeutic agents in the antisense and siRNA technologies. The important sites of RNA
modification/functionalization are the nucleobase residues. Standard phosphoramidite RNA
chemistry allows the site-specific incorporation of a large number of functional groups to the
nucleobase structure if the building blocks are synthetically obtainable and stable under the conditions
of oligonucleotide chemistry and work-up. Otherwise, the chemically modified RNAs are produced
by post-synthetic oligoribonucleotide functionalization. This review highlights the post-synthetic
RNA modification approach as a convenient and valuable method to introduce a wide variety of
nucleobase modifications, including recently discovered native hypermodified functional groups,
fluorescent dyes, photoreactive groups, disulfide crosslinks, and nitroxide spin labels.

Keywords: phosphoramidite chemistry; RNA solid-phase synthesis; post-synthetic RNA modification;
convertible nucleoside

1. Introduction

Recently, a significant interest has been observed in the use of modified oligoribonucleotides
in the fields of molecular biology, biochemistry, and medicine [1–3]. The representative sites of
RNA modifications are the 5′- and 3′-ends of oligoribonucleotides, and the 2′-positions of the
ribose, phosphodiester residues, and nucleobase moieties. Notably, among 150 modified nucleosides
identified in cellular RNA sequences, more than 95% of functional groups are installed in the nucleobase
heterocycles (Figure 1) [4,5]. Improved mass spectrometry approaches and highly sensitive chemical
screens in cellular RNA isolation are still extending this list with new base-modifying units, e.g., cyclic
N6-threonylcarbamoyladenosines (ct6A, ms2ct6A) [6,7], 2-methylthiomethylenethio-N6-isopentenyl
adenosine (msms2i6A) [8], uniquely lipophilic 5-substituted 2-geranylthiouridines (mnm5ges2U,
cmnm5ges2U) [9] and 2-methylthiocytidine (ms2C) [10]. RNA modifications affect the structure, stability,
and biological activity of RNA biomolecules, particularly the translation process [11]. Experiments of the
site-specific incorporation of nucleic base modifications have proved to be a particularly useful method
for precisely assessing the role of various functional groups in the structure, function, and biosynthesis
of RNA molecules [12–17].
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Figure 1. Modified positions distributed in naturally existing RNA nucleobases; Rb: ribose. 

Valuable data on RNA structure and cellular activity can be also extracted from biochemical, 
biophysical, and structural studies involving unnatural base-modified RNA constructs. The insertion 
of artificial purine/pyrimidine in the place of naturally existing nucleosides may change the local 
hydrogen bonding system, stacking interactions, or puckering of ribose residues, giving answers as 
to which modifications or interactions are essential for the functional RNA structure [18–20]. 
Important details on RNA structure, conformational dynamics, and RNA’s homo- and heterotropic 
interactions can be provided by oligoribonucleotides site-specifically labeled with fluorescent dyes, 
nitroxide radicals, disulfide crosslinks, or photolabile groups [21–28].  

For years, chemically modified oligonucleotides have been extensively studied for the development 
of new antisense and siRNA therapeutics [1,29–31]. Several nucleobase modifications were found to 
improve the drug-like properties of oligonucleotides such as cellular uptake, stability in the cell, target 
specificity, and binding affinity [31–33], and reduce undesirable protein binding and immune stimulation 
[34,35]. Gratifyingly, the incorporation of the first-generation internucleotide linkage modifications and 
second-generation sugar modifications resulted in the current approval of two RNAi-based therapeutics, 
Onpattro (patisiran) and Givlaari (givosiran) [31]. 

Growing interest in the modified RNA oligomers creates the need to develop chemistry that 
permits the site-specific introduction of functionalizable groups into RNA. The most general way to 
address the issue of site selectivity is through the use of solid-phase synthesis phosphoramidite 
chemistry, which involves two strategies: (1) classical modified monomer approach via the 
preparation of a modified phosphoramidite building block and its subsequent incorporation into the 
RNA chain; and (2) a post-synthetic RNA modification approach based on selective chemical 
reaction(s) of precursor unit(s) in the full-length oligonucleotide prepared by the classical method.  

This review for the first time summarizes the methods of site-specific incorporation of 
nucleobase-modified units into RNA oligomers via the post-synthetic strategy. We focused on the 
nucleobase functionalization due to the high abundance of nucleobase modifications in the nature 
and the high convenience of the post-synthetic strategy to construct the nucleobase-labeled chemical 
or biophysical probes. The scope of post-synthetically reactive precursor oligonucleotides has been 
limited to RNA oligomers prepared by the phosphoramidite chemistry. To facilitate the selection of 
post-synthetic methods best suited to the assumed chemical–biological objectives, a large number of 
experimental details have been included.  

2. Solid-Phase Synthesis of Modified RNA Oligomers via Phosphoramidite Chemistry 

The most current method for the incorporation of a modified nucleoside into a site-specific 
position of oligoribonucleotides is the phosphoramidite chemistry, which was introduced by 
Caruthers in 1981 [36,37]. The preparation of RNA oligomers by this strategy involves a four-step 
reaction cycle including 5′-deblocking, coupling, capping, and oxidation steps (Scheme 1). The 
synthesis takes the 3′→5′ direction and starts from the 5′-deprotection of fully protected 
ribonucleoside attached to a solid support (in standard, controlled-pore glass, or polystyrene resins) 
via the 3′-hydroxyl group. In the second step, activation and coupling, the nucleoside deprived of the 
5′-protecting group reacts with a suitably protected phosphoramidite building block activated by the 
5-substituted 1H-tetrazole or imidazole derivatives, yielding an unstable phosphite triester linkage. 
Since a small number of unreacted 5′-hydroxyl sites remain active after coupling, in the third step, 
capping, the acylating reagent is introduced to prevent them from reacting with the next monomeric 
unit and elongating the missense strands. In the oxidation step, the support-linked dinucleoside 
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Valuable data on RNA structure and cellular activity can be also extracted from biochemical,
biophysical, and structural studies involving unnatural base-modified RNA constructs. The insertion of
artificial purine/pyrimidine in the place of naturally existing nucleosides may change the local hydrogen
bonding system, stacking interactions, or puckering of ribose residues, giving answers as to which
modifications or interactions are essential for the functional RNA structure [18–20]. Important details
on RNA structure, conformational dynamics, and RNA’s homo- and heterotropic interactions can be
provided by oligoribonucleotides site-specifically labeled with fluorescent dyes, nitroxide radicals,
disulfide crosslinks, or photolabile groups [21–28].

For years, chemically modified oligonucleotides have been extensively studied for the development
of new antisense and siRNA therapeutics [1,29–31]. Several nucleobase modifications were found
to improve the drug-like properties of oligonucleotides such as cellular uptake, stability in the cell,
target specificity, and binding affinity [31–33], and reduce undesirable protein binding and immune
stimulation [34,35]. Gratifyingly, the incorporation of the first-generation internucleotide linkage
modifications and second-generation sugar modifications resulted in the current approval of two
RNAi-based therapeutics, Onpattro (patisiran) and Givlaari (givosiran) [31].

Growing interest in the modified RNA oligomers creates the need to develop chemistry that
permits the site-specific introduction of functionalizable groups into RNA. The most general way
to address the issue of site selectivity is through the use of solid-phase synthesis phosphoramidite
chemistry, which involves two strategies: (1) classical modified monomer approach via the preparation
of a modified phosphoramidite building block and its subsequent incorporation into the RNA chain;
and (2) a post-synthetic RNA modification approach based on selective chemical reaction(s) of precursor
unit(s) in the full-length oligonucleotide prepared by the classical method.

This review for the first time summarizes the methods of site-specific incorporation of
nucleobase-modified units into RNA oligomers via the post-synthetic strategy. We focused on
the nucleobase functionalization due to the high abundance of nucleobase modifications in the nature
and the high convenience of the post-synthetic strategy to construct the nucleobase-labeled chemical
or biophysical probes. The scope of post-synthetically reactive precursor oligonucleotides has been
limited to RNA oligomers prepared by the phosphoramidite chemistry. To facilitate the selection of
post-synthetic methods best suited to the assumed chemical–biological objectives, a large number of
experimental details have been included.

2. Solid-Phase Synthesis of Modified RNA Oligomers via Phosphoramidite Chemistry

The most current method for the incorporation of a modified nucleoside into a site-specific position
of oligoribonucleotides is the phosphoramidite chemistry, which was introduced by Caruthers in
1981 [36,37]. The preparation of RNA oligomers by this strategy involves a four-step reaction cycle
including 5′-deblocking, coupling, capping, and oxidation steps (Scheme 1). The synthesis takes
the 3′→5′ direction and starts from the 5′-deprotection of fully protected ribonucleoside attached to
a solid support (in standard, controlled-pore glass, or polystyrene resins) via the 3′-hydroxyl group.
In the second step, activation and coupling, the nucleoside deprived of the 5′-protecting group reacts
with a suitably protected phosphoramidite building block activated by the 5-substituted 1H-tetrazole
or imidazole derivatives, yielding an unstable phosphite triester linkage. Since a small number of
unreacted 5′-hydroxyl sites remain active after coupling, in the third step, capping, the acylating
reagent is introduced to prevent them from reacting with the next monomeric unit and elongating
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the missense strands. In the oxidation step, the support-linked dinucleoside phosphite triester P(III)
is converted to the more stable phosphate triester P(V) with an oxidation agent, typically iodine or
tert-butylhydroperoxide solutions.

Molecules 2020, 25, x FOR PEER REVIEW 3 of 37 

phosphite triester P(III) is converted to the more stable phosphate triester P(V) with an oxidation 
agent, typically iodine or tert-butylhydroperoxide solutions. 

 
Scheme 1. General scheme of RNA solid-phase synthetic cycle. R1, R2, R4: protecting groups for 5′-OH, 
2′-OH, and phosphate residue, respectively; B(R3): protected nucleobase; R5: capping group. 

The removal of the 5′-protecting group initiates the next chain extension cycle. Repeating the 
synthetic cycle provides a full-length oligonucleotide (prepared in the trityl-on or trityl-off mode), 
which can be released from the solid support and deprotected.  

For successful solid-phase RNA synthesis, the phosporamidite monomeric units must be 
protected with a combination of orthogonal R1 transient and R2, R3, R4 permanent protecting groups. 
Several synthetic protocols, systems of protecting groups, and deprotection strategies have been 
demonstrated so far [38]. In practice, the building blocks are protected by employing one of the five 
most common strategies: (1) 5’-O-DMTr-2’-O-TBDMS [39–41]; (2) 5’-O-DMTr-2’-O-TOM [42]; (3) 5’-
O-DMTr-2’-O-Fpmp [43]; (4) 5’-O-DMTr-2’-O-TC [44], and (5) 5’-O-DOD(BzH)-2’-O-ACE [45,46] 
(Figure 2).  

 
Figure 2. The most common ribonucleoside phosphoramidite building blocks for solid-phase RNA 
synthesis; (a) 5′-O-DMTr–2′-O-TBDMS–3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite); (b) 5′-

Scheme 1. General scheme of RNA solid-phase synthetic cycle. R1, R2, R4: protecting groups for 5′-OH,
2′-OH, and phosphate residue, respectively; B(R3): protected nucleobase; R5: capping group.

The removal of the 5′-protecting group initiates the next chain extension cycle. Repeating the
synthetic cycle provides a full-length oligonucleotide (prepared in the trityl-on or trityl-off mode),
which can be released from the solid support and deprotected.

For successful solid-phase RNA synthesis, the phosporamidite monomeric units must be
protected with a combination of orthogonal R1 transient and R2, R3, R4 permanent protecting
groups. Several synthetic protocols, systems of protecting groups, and deprotection strategies have
been demonstrated so far [38]. In practice, the building blocks are protected by employing one of
the five most common strategies: (1) 5’-O-DMTr-2’-O-TBDMS [39–41]; (2) 5’-O-DMTr-2’-O-TOM [42];
(3) 5’-O-DMTr-2’-O-Fpmp [43]; (4) 5’-O-DMTr-2’-O-TC [44], and (5) 5’-O-DOD(BzH)-2’-O-ACE [45,46]
(Figure 2).

Most of the synthetic approaches involve 3′-O-β-cyanoethyldiisopropylphosphoramidites
containing the transient, acid-labile 5′-O-dimethoxytrityl group (DMTr) and permanent 2′-protection
such as silyl blockage (TBDMS or TOM, Figure 2a,b), the acetal masking group (Fpmp, Figure 2c)
or carbothioate (TC, Figure 2d). The deprotection of trityl-off RNA oligomers prepared via
TBDMS/TOM and Fpmp chemistry starts from the removal of base-labile protecting groups from the
phosphotriester backbone and exoamino functions of nucleobases (usually acyl or aminomethylene
blockage (Figure 2g). Typically, ammonolytic conditions are used such as aqueous (aq.) ammonia or
aq. ammonia–methylamine solution (AMA). This alkaline step of deprotection runs simultaneously
with the support cleavage. Optionally, the removal of β-cyanoethyl phosphate groups can be
performed separately before the alkaline deprotection step using a weak base in an organic solvent
(e.g., TEA/acetonitrile, 1:1 v/v or 10% diethylamine in acetonitrile). Separation of the released
acrylonitrile by-product prevents the formation of 2-cyanoethyl-containing oligomer adducts observed
when the strong basic conditions of RNA deprotection are used. Removal of the 2′-protecting groups
is performed as a final step of oligomer deprotection in the presence of fluoride agent (TBAF or
TEA·3HF) for 2′-silyl groups or under acidic conditions (AcOH) when 2′-Fpmp acetal blockage is used.
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The deprotection of the TC-blocked support-bound oligonucleotide is carried out on a synthesizer
column in one step by filling the column with neat ethylenediamine. After TC removal, the “free”
oligomer is washed from the column using a small volume of water.
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Figure 2. The most common ribonucleoside phosphoramidite building blocks for solid-phase
RNA synthesis; (a) 5′-O-DMTr–2′-O-TBDMS–3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite);
(b) 5′-O-DMTr–2′-O-TOM–3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite); (c) 5′-O-DMTr–2′-
O-Fpmp–3′-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite); (d) 5′-O-DMTr–2′-O-TC-3′-O-(2-
cyanoethyl-N,N-diisopropylphosphoramidite); (e) 5′-O-DOD–2′-O-ACE–3′-O-(methyl-N,N- diisopropyl)
phosphoramidite; (f) 3′-O-DMTr-2′-O-TBDMS-5′-O-(2-cyanoethyl-N,N-diisopropylphosphor-amidite)
-reverse RNA phosphoramidite; (g) commonly used nucleobase protecting groups.

An alternative approach for the orthogonal protection of the 5′- and 2′-hydroxyl groups
of monomeric units (prepared as methyl diisopropylphosphoramidites) is based on fluoro-labile
5′-O-silyl protecting groups (DOD or BzH) and acid-labile 2′-O-bis(2-acetoxyethoxy)methyl ortoester
protection (ACE, Figure 2e) [45,46]. The exocyclic amino functions of nucleobases are masked
with base-labile acyl protecting groups. After 5′-O-DOD/BzH removal (HF/TEA), the oligomer
is subjected to a three-step deprotection protocol involving the release of phosphate groups by
disodium-2-carbamoyl-2-cyanoethylene-1,1-dithiolate (S2Na2), the removal of base-labile protecting
groups, including acetyl groups from 2′-O-ACE blockage using methylamine solution with
simultaneous resin cleavage, and finally, the removal of acid-labile 2′-O-bis(2-hydroxyethoxy)methyl
orthoesters with AcOH/TEMED.

In addition to the classical phosphoramidite approach proceeding in a 3′→5′ direction, interest has
also been focused on the RNA synthesis in the reverse direction (5′→3′) [47,48]. This approach
utilizes 5′-O-phosphoramidites (Figure 2f) with a suitable N-protecting group (Bz for adenine,
cytosine, Ac for cytosine, and iBu for guanine) and a 3′-O-DMTr-2′-O-TBDMS blockage of sugar
residue. Activated 5′-O-phosphoramidite is coupled with a nucleoside bearing a 5′ succinate of
ribonucleoside attached to a solid support leading (after oxidation) to the dimer formation with
phophodiester linkage and a 3′-O-DMTr-protecting group. The removal of DMTr opens the next
synthetic cycle. Oligonucleotide deprotection is performed using the same standard TBDMS chemistry
currently utilized in the conventional 3′→5′ synthesis. Although the reverse RNA synthesis is used to
a lesser extent than the conventional strategy, it offers a facile route to the assembly of 3′-conjugated
RNA constructs of long and medium lengths. Importantly, it was demonstrated that the use of
3′-O-DMTr-5′-phosphoramidites enhances the coupling efficiency, which surpassed 99% per step
leading to high-purity RNA products [48]. These distinct advantages of 5′→3′ direction synthesis
made the reverse 3′-O-DMTr-5′-phosphoramidites commercially available.
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After deprotection, synthetic oligomers (obtained in both conventional and reverse strategies)
are purified using polyacrylamide gel electrophoresis (PAGE) or high-performance liquid
chromatography (RP HPLC, IE HPLC) and identified by electrospray ionization mass spectrometry
(ESI), matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF),
and enzymatic digestion analysis.

The solid-phase phosphoramidite method is limited to synthesizing RNA oligomers with lengths of
50–100 nucleotides (longer RNAs molecules can be synthesized by the enzymatic ligation of chemically
modified RNA fragment(s) using T4 DNA or T4 RNA ligases [49–51] or DNA-zymes [52]). In response
to the clinical and commercial success of the therapeutic oligonucleotides, the classical phosphoramidite
protocols were translated for use in the large-scale synthesis [53]. Using automated computer-controlled
synthesizers, the incorporation of several modifications (phosphorothioate internucleotide linkage,
2′-O-methoxyethyl, 2′-O-Me, 2′-F, locked-, morpholino- and Spiegelmer building blocks) was scaled
up from gram- to kilogram-scale production under Current Good Manufacturing Practice (cGMP).

3. Post-Synthetic Strategy for Nucleobase RNA Modifications

First protocols for the post-synthetic functionalization of nucleobases were elaborated for DNA
oligomers about three decades ago [54–59]. The general concept of post-synthetic RNA modification
approach relies on the preparation of an easily convertible/reactive precursor oligonucleotide by the
chemical method, e.g., phosphoramidite chemistry, and its subsequent derivatization through chemical
reaction(s) involving the reactive center(s) of precursor nucleoside(s). The representative sites of
post-synthetic modifications are 5′- and 3′-ends of RNA oligomers, the 2′-position of sugar, phosphate
linkage, and nucleobase moieties (Figure 3). The derivatization of nucleobases attends the C-4, C-5,
and N-3 positions of uracil, the C-5 position of cytosine, the C-2 position of adenine, and the C-8
and N-7 sites of guanosine (Figure 3). Some of the functional groups have also been attached to the
exocyclic amino functions of C, A, and G as well as the thiocarbonyl group of thiouridines (Figure 3).
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Figure 3. Representative sites of post-synthetic modifications present in sugar–phosphate backbone
and nucleobase residues with the highlighting of uridine and thiouridine (a); cytidine (b); adenosine (c);
and guanosine (d).

Post-synthetic conversions of RNA oligomers can be performed in the solid or liquid
phase (Scheme 2). The “in solid-phase” approach involves a fully protected, support-attached
oligoribonucleotide as a substrate for the post-synthetic reaction (Scheme 2A). After conversion,
the oligomer is released from the resin and deprotected. Notably, the use of basic conditions for the
transformation process can promote the simultaneous removal of exoamino and phosphate-protecting
groups as well as the support cleavage. In these cases, the post-synthetic reaction is carried out in
a one-step conversion–deprotection process. Occasionally, the separate deprotection of the phosphate
groups is performed prior to post-synthetic conversion to avoid any side reactions of the oligomer
with acrylonitrile released during removal of the β-cyanoethyl groups.
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Alternatively, the post-synthetic RNA modification can be carried out in the liquid phase
(Scheme 2B). This “in-solution” approach involves a fully deprotected and released precursor
oligoribonucleotide. After purification, the “free” oligomer is converted to the target product and
repurified to remove the excess of reagents. It is imperative that the presence of free 2′-hydroxyl groups
excludes the use of highly alkaline conversion conditions that could promote the strand cleavage or
phosphate migration.

Correct incorporation of the final modified unit should be verified by careful analysis of the
isolated product by MALDI-ToF, ESI-MS, and/or enzymatic digestion.

The post-synthetic strategy of RNA modification has several important advantages in comparison
to the classical modified monomer approach. Firstly, one single modified precursor oligoribonucleotide
can provide several sequentially homologous, variously modified RNA fragments [60–62].
Such a strategy significantly reduces the cost of synthesis compared to preparing each modified
monomeric unit separately. Secondly, hypermodified monomeric units containing highly reactive
groups e.g., –COOH, -SO3H, -CHO can be replaced by structurally convenient, easy convertible
precursor phosphoramidites deprived of problematic functional groups [62]. Finally, the post-synthetic
strategy permits introducing nucleosides/labels that are sensitive to the conditions of solid-phase
synthesis and/or oligomer deprotection [63–65]. In some cases, the use of post-synthetic protocol
proved to be the method of choice [63,64].

The key to an effective post-synthetic RNA modification strategy is the reactivity of the precursor
nucleoside, which should ensure almost quantitative conversion without any perturbation of RNA
structure. In addition, the precursor nucleoside should offer an easy approach to afford the
phosphoramidite building block and its effective incorporation into the RNA chain. Therefore,
the choice of precursor compounds is limited to nucleosides that are fully compatible with the protocols
of RNA synthesis and deprotection.

The limited stability and hydrophilic character of oligoribonucleotides significantly reduce
the number of organic reactions that can be used in post-synthetic transformations of precursor
RNA oligomers. In practice, the conditions of post-synthetic reactions are restricted to polar
solvents, moderate temperatures (less than 60 ◦C), and reaction times shorter than 24 h. Despite the
above-mentioned restrictions, the conversions attending the heterocyclic bases represent the highest
chemical diversity demonstrated by several types of reactions, including nucleophilic aromatic
substitution, allylic substitution, carbon–carbon bond-forming reaction via Sonogashira and Stille
couplings, cycloaddition reactions, the derivatization of aliphatic amino groups by the formation of
amide bonds, and finally, the functionalization of thiouridines via desulfuration, the formation of
thioether bonds, and disulfide bridges. All of the above-mentioned post-synthetic conversions are
discussed in the following chapters.
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3.1. Nucleophilic Aromatic Substitution

Nucleophilic aromatic substitution (SNAr) is the most common post-synthetic reaction utilized in
the synthesis of nucleobase-modified oligoribonucleotides. It involves a convertible RNA oligomer
equipped with a nucleoside containing a good leaving group(s) directly attached to the heterobase
and easily displaced by nucleophile(s). The post-synthetic SNAr reaction enables synthesizing single-
or multiple-modified target oligonucleotides, including double-derivatized products yielded by the
attachment of bifunctional nucleophile and designed for further derivatization with a chemical probe.
The literature provides several examples of convertible ribonucleosides subjected to post-synthetic
SNAr transformations (Figure 4). Most of them contain aryl ether leaving groups (1–3, 6) directly
attached to the C4 position of pyrimidine and the C6 position of purine heterobases. Others contain
a triazolyl group directly linked to the C4 position of the pyrimidine ring (5) or sulfonate residue
installed in the C6 position of purine nucleoside (7). The representative leaving groups are also halides
attached to the C5 atom of uridine (4) and C2 or C6 atoms of purine nucleosides (8, 9).
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via nucleophilic aromatic substitution. The leaving groups are indicated in the frames.

The first convertible oligoribonucleotides were reported by Verdine and co-workers in 1995 [66,67].
The post-synthetic strategy attended the exocyclic amino groups of A, C, and G nucleosides and was an
extension of earlier Verdine’s lab studies on the convertible nucleoside approach in the derivatization
of DNA oligomers [54,55,57,58,68]. Developed chemistry permits the site-specific incorporation of
N-functionalizable nucleobases of A, C, and G into RNA and its further derivatization to e.g., crosslinked
nucleic acids (see Scheme 27A). The authors demonstrated the use of 4-O-(4-chlorophenyl)uridine
(1, see Figure 4), 6-O-(4-chlorophenyl)inosine (6), and 2-fluoro-6-O-(4-nitrophenylethyl)inosine (9)
prepared as 5′-O-DMTr-2′-O-TBDMS-protected phosphoramidites to the synthesis of 11-nt precursor
oligonucleotides 10–12 by standard 1 µmol phosphoramidite chemistry (Scheme 3). For use in the
automated RNA synthesis, the convertible Verdine’s phosphoramidites were applied as 0.1 M solutions
in acetonitrile, while the coupling time was extended to 12 min. Syntheses proceeded with average
stepwise yields of ca. 97%. The following conversion–deprotection step of resin-bound oligonucleotides
with primary alkylamines resulted in the substitution of chlorophenyl groups in aryl ethers (oligomers
10, 11) as well as 2-fluoride leaving groups in O6-protected inosine (oligomer 12) with amines providing
N4-alkylcytidine-(14a–h), N6-alkyladenosine-(15a–h) and N2-alkylguanosine-modified RNAs (16a–h).
To eliminate the base-promoted RNA degradation, the post-synthetic transformations were performed
under anhydrous conditions using 7 M methanolic ammonia, 8 M solution of methylamine in ethanol,
or 2 M methanolic solutions of other amines such as ethylenediamine, 1,4-diaminobutane, cystamine,
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ethanolamine, benzylamine, and 2-(methylthio)ethylamine. Reactions were performed at 42 ◦C for
12–18 h. After displacement, the mixture of oligomer and remaining amine reagent was separated from
the support and then evaporated or eluted through a Dowex cation exchange column (NH4

+ form).
Subsequent desilylation involved TEA·3HF or 1 M TBAF/THF treatment. Target oligonucleotides were
purified by denaturing PAGE, affording oligomers 14–16 in the relative conversion yields above 65%.
Measurements of thermal stability of modified duplex RNA oligomers have revealed that in most
cases, the presence of N-alkyl modification slightly reduces duplex stability. The exceptions were
oligonucleotides carrying a tether with a “free” amine group (oligomers 14c–e, 15c–e and 16c–e) for
which increased duplex stability was observed.
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Scheme 3. General scheme for the introduction of N-alkyl modifications via the post-synthetic
modification of support-linked convertible oligomers modified with 4-O-(4-chlorophenyl)uridine (10),
6-O-(4-chlorophenyl)inosine (11), 2-fluoro-6-O-(4-nitrophenylethyl)inosine (12), and 5-bromouridine
(13). Reagents and conditions: (1) 7 M NH3/MeOH (14a–16a), 8 M MeNH2/EtOH (14b–16b),
2 M methanolic solution of all other amines: H2NCH2CH2NH2 (14c–17c), H2N(CH2)4NH2

(14d–16d), H2N(CH2)2SS(CH2)2NH2 (14e–16e), HOCH2CH2NH2 (14f–16f), PhCH2NH2 (14g–16g),
H3CS(CH2)2NH2 (14h–16h); 45 ◦C, 18 h (12 h for 16a–h); (2) TEA·3HF, 1 h, rt for 14a–h, 15a–h and 17c,
TBAF/THF, 24 h, rt for 16a–h.

Currently, the convertible phosphoramidites introduced by Verdine and co-workers are
commercially available as 5′-O-DMTr-2′-O-TBDMS-protected building blocks.

Based on the Verdine’s strategy, Babaylova and co-workers introduced an ethylenediamine linker
to the C5 position of uridine employing 5-bromouridine 4 (see Figure 4) as a convertible nucleoside [69].
The CPG-bound 5′-O-DMTr-2′(3′)-O-acetyl-C5-bromouridine was employed for the synthesis of a 10-nt
RNA oligomer 13 (Scheme 3) at the 0.4 µmol scale followed by treatment with 2 M solution of
ethylenediamine in methanol (42 ◦C, 18 h). After the desilylation process, amino-oligomer 17c was
isolated by denaturating PAGE electrophoresis. The attachment of a bifunctional ethylenediamine
nucleophile in this fashion provided a convenient substrate for further functionalization with
nitroxide radicals.

The next exploration of Verdine’s ribonucleosides 1, 6, and 9 (see Figure 4) was demonstrated
by the Höbartner group to install the nitroxide spin labels on exocyclic amino groups of RNA
nucleobases of C, G, and A (Schemes 4 and 5) and evaluate the potential of TEMPO- and proxyl-labeled
nucleobases for probing RNA secondary structures by PELDOR experiments [52,70], and construct,
among others, riboswitches of the correct regulatory function [52]. The commercially available
5′-O-DMTr-2′-O-TBDMS-protected Verdine’s phosphoramidites were incorporated into RNA by
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solid-phase synthesis using a polystyrene support in combination with 5′-O-DMTr-2′-O-TOM-protected
canonical monomeric units (products were prepared as single or double-modified 12-, 13- or 20-nt
oligomers) [70].
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Scheme 5. Preparation of oligomers 24a–b and 25a–b containing TEMPO- or proxyl-labeled
cytidine/2′-O-methylcytidine nucleotide. Reagents and conditions: (1) 2 M solution of 18a–b in
methanol, 42–55 ◦C, 24–48 h; (2) 8 M aq. MeNH2, 37 ◦C, 2–5 h or 25% aq. NH3, 55 ◦C, 2–5 h; (3) 1 M
TBAF/THF, rt, 8–16 h.

The support-bound, fully protected precursors 10 and 12 were incubated with 2 M solution
of 4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO-NH2, 18a) in methanol at 42 ◦C for
24 h providing fully converted N4-TEMPO-cytidine- and N2-TEMPO-guanosine-containing RNAs,
respectively. However, the same transformation of O6-(4-chlorophenyl)inosine-oligomer 11 to
N6-TEMPO–adenosine–RNA turned out incomplete even after a prolonged incubation time and
temperature. All nucleobase substitutions were performed in one step with support cleavage and
the deprotection of base-labile protecting groups. After desilylation, the TEMPO-substituted RNA
oligonucleotides 19–21 were purified by anion-exchange HPLC or denaturing PAGE. The influence
of TEMPO subsituents on RNA conformation and the secondary structure of the hairpin and
duplex structure was investigated, demonstrating the potential of labeled oligomers as reporter
probes in pulsed EPR spectroscopy. Although the resulting spin-labeled RNAs were obtained
in good yields and high qualities, further work was undertaken to improve the preparation of
the precursor oligomers. To this purpose, Verdine’s 4-O-(p-chlorophenyl)uridine building blocks
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protected with 2′-O-TOM or 2′-O-Me group were used in the place of commercially available
2′-O-TBDMS phosphoramidite (Scheme 5) [52]. This change significantly improved the coupling
yields and shortened coupling times. In addition, 2′-OMe modification was expected to increase
the stability of nitroxide-labeled oligomers. For post-synthetic transformations, fully protected,
polystyrene-linked oligomers 22, 23 were incubated with a 2 M methanolic solution of TEMPO-NH2

(18a) or 3-amino-2,2,5,5-tetramethylpyrrolidin-1-oxyl (proxyl, 18b) at 42–55 ◦C for 24–48 h. Then, aq.
MeNH2 or aq. NH3 were added to complete the cleavage of base-labile protecting groups (this step
was skipped during the preparation of short TEMPO-labeled oligomers, which were deprotected
simultaneously with displacement). Fully deprotected TEMPO- (24a, 25a) and proxyl-labeled oligomers
(24b, 25b) ranging from 9 to 27 nt were purified by PAGE or anion-exchange HPLC. For proxyl-labeled
RNAs 24b, 25b, the formation of an N4-methylcytidine-containing side product was observed,
resulting from the substitution of the 4-O-chlorophenyl group in an unreacted precursor oligomer
with methylamine. The nitroxide-labeled RNAs carrying TEMPO or proxyl were utilized to obtain
functional 53-nt and 118-nt riboswitch RNAs by deoxyribozyme-catalyzed ligation as an alternative to
protein-based RNA ligation [52].

Commercially available 5′-O-DMTr-2′-O-TBDMS Verdine’s phosphoramidites were applied for
the incorporation of photolabile 2-(2-nitrophenyl)propyl (NPP) and 2-(2-nitrophenyl)ethyl (NPE)
“caging groups” (Scheme 6) [71]. Solid-phase syntheses of 15-nt precursor oligomers 10–12 were
performed according to standard coupling protocol. For displacement reaction, fully protected and
support-bound oligomers 10–12 were treated with 2.5 M NPP-NH2 (26a) in methanol (1–2 days,
25–42 ◦C) or NPE-NH2 (26b) in acetonitrile (2–5 days, 42–60 ◦C). The use of sterically hindered amine
26b required an extra cleavage step with methylamine or aq. NH3 for complete base deprotection.
In the case of inosine-containing oligomer 11 the conversion with NPE–NH2 turned out not to work.
Finally, oligomers containing both NPP and NPE groups were desilylated using TEA·3HF/TEA/NMP
mixture. An attempt to prepare 4-O-caged uridine- and 6-O-caged adenosine-containing oligomers by
incubation of 10, 11 with NPP–OH nucleophilic reagent (alcohol analog of NPP–NH2) in MeCN for
7 days at 42 ◦C (optionally in the presence of tertiary amine) proved to be ineffective. The presented
methodology enabled simplifying the synthesis of caged RNAs (compared to the standard monomer
approach), since the commercially available Verdine’s phosphoramidite was used. The expected results
of duplex destabilization caused by attached caging groups were achieved.
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Scheme 6. General scheme for post-synthetic incorporation of 2-(2-nitrophenyl)propyl (NPP) and
2-(2-nitrophenyl)ethyl (NPE) groups. Reagents and conditions: (1) 2.5 M solution of 26a in MeOH,
1–2 days, rt or 42 ◦C or 2.5 M solution of 26b in MeCN, 2–5 days, 42–60 ◦C; (2) 32% aq. NH3, rt, 40 h or
33% MeNH2/MeOH, rt, overnight; (3) TEA·3HF/TEA/NMP (4:3:6 v/v/v), 2 h, 42 ◦C.
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In 2003, Kierzek’s group employed 6-methylthiopurine riboside 7 (see Figure 4)
and 2-methylthio-6-chloropurine riboside 8 as convertible nucleosides for post-synthetic
nucleophilic aromatic substitution with primary alkylamines, leading to N6-alkyladenosine- and
2-methylthio-N6-alkyladenosine-modified oligoribonucleotides (7-, 8- and 17-mers), respectively
(Schemes 7 and 8) [60]. Among them, four naturally occurring tRNA modifications i6A, m6A, ms2i6A,
and ms2m6A were inserted. Both convertible oligomers 30 and 34 were synthesized automatically
on 1 µmol scale by the standard protocol of phosphoramidite chemistry on solid support (CPG,
Fractosil 500 or resins loaded with 5′-O-DMTr-2′-O-TBDMS-protected convertible nucleosides 7, 8).
Before conversion, the 6-methylthio group (6-SCH3) of support-linked 6-methylthiopurine-modified
oligoribonucleotide 30 (Scheme 7) was selectively and quantitatively activated by oxidation with
a 20 mM solution of monoperoxyphtalic acid (magnesium salt form, 2.5 h, rt) yielding a mixture of
oligomers 31 and 32 decorated with 6-methylsulfoxide (6-S(O)CH3) and 6-methylsulfonyl (6-S(O)2CH3)
groups, respectively. The oxidized oligomers 31, 32 (still attached to the support) were reacted
with various primary alkylamines. To get oligomers modified with N6-methyladenosine or
N6-isopentenyladenosine, 2 M MeNH2 in THF (12 h, rt) and isopentenylamine hydrochloride with
TEA in pyridine (12 h, 55 ◦C) were applied, respectively. Other amines, such as isoamylamine,
neopentylamine, 1-methylpropylamine, 1-methylbutylamine, and propargylamine were used as
a solution in acetonitrile (1:9 v/v) and left for 12 h at rt. After conversion, the samples were evaporated,
and the aq. NH3/EtOH (3:1 v/v, 8 h, 55 ◦C) was added for the complete removal of the base-labile
protecting groups. After desilylation, the fully deprotected oligomers were purified on silica gel
plates. The overall yields of N6-alkyladenosine-containing RNAs 33a–h were in the range of 40–77%
(13–34% for 17-mers). It was indicated that the synthesis yields were not dependent on the position of
convertible nucleoside in the RNA sequence but on the steric hindrance and the nucleophilic character
of the amino group in alkylamine conversion reagents.
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To prepare the 2-methylthio-N6-alkyladenosine-modified RNAs 35a–c (Scheme 8), several 6-
substituted purine ribosides such as dinitrothiophenyl-, pentafluorophenyl-, and chloro-substituted 
purines were tested as model convertible nucleosides [60]. Among them, 2-methylthio-N6-
chloropurine riboside 8 (see Figure 4) exhibited the highest reactivity with primary amines. 
Therefore, the 5′-O-DMTr-2′-O-TBDMS-protected convertible phosphoramidite of 8 was introduced 
into RNA sequences (7-, 8- and 17-mers) on the 1 µmol scale of the oligonucleotide synthesis. The 
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Scheme 7. General scheme for the synthesis of N6-alkyladenosine-containing oligomers 33a–h by
the post-synthetic modification of convertible oligomers bearing 6-methylthiopurine riboside 31 and
32. Reagents and conditions: (1) 20 mM solution of magnesium salt of monoperoxyphtalic acid,
dioxane/water (9:1 v/v), 2.5 h, rt; (2) 32% aq. ammonia 16 h, 55 ◦C (33a); 2 M MeNH2 (800 equiv) in
THF, 12 h, rt (33b); isopentenylamine hydrochloride (213 equiv), TEA (426 equiv), pyridine, 12 h, 55 ◦C
(33g); the other amines/MeCN (1:9 v/v; 500–1000 equiv of amine), 12 h, rt (33c–f,h); (3) aq. NH3/EtOH
(3:1 v/v), 8 h, 55 ◦C; (4) 1 M TEAF in pyridine, 48 h, 55 ◦C.

To prepare the 2-methylthio-N6-alkyladenosine-modified RNAs 35a–c (Scheme 8), several
6-substituted purine ribosides such as dinitrothiophenyl-, pentafluorophenyl-, and chloro-substituted
purines were tested as model convertible nucleosides [60]. Among them, 2-methylthio-N6-chloropurine
riboside 8 (see Figure 4) exhibited the highest reactivity with primary amines. Therefore,
the 5′-O-DMTr-2′-O-TBDMS-protected convertible phosphoramidite of 8 was introduced into RNA
sequences (7-, 8- and 17-mers) on the 1 µmol scale of the oligonucleotide synthesis. The trityl-off
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support-linked precursor 34 (Scheme 8) was treated with alkylamines: 2 M MeNH2 in THF (2–5 h,
55 ◦C) or isopentenylamine hydrochloride/TEA in pyridine (2–5 h, 55 ◦C). For complete removal of
base-labile protecting groups, the samples were additionally treated with aq. NH3/EtOH (3:1 v/v, 8 h,
55 ◦C). Displacement of the 6-chloro group with –NH2 involved the aq. ammonia and prolonged
reaction time (16 h, 55 ◦C). After desilylation, the fully deprotected oligomers were purified on silica
gel plates. The overall yields of 2-methylthio-N6-alkyladenosine-modified oligoribonucleotides 35a–c
range from 20% to 65% (16–24% for 17-mers).
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Scheme 8. General scheme for the synthesis of 2-methyltio-N6-alkyladenosine-containing oligomers
35a–c by the post-synthetic modification of convertible oligomers 34 modified with 6-chloro-2-methyl
thiopurine riboside. Reagents and conditions: (1) 32% aq. ammonia 16 h, 55 ◦C (for 35a); 2 M
MeNH2 (1000 equiv) in THF, 2–5 h, 55 ◦C (for 35b); isopentenylamine hydrochloride (213 equiv), TEA
(426 equiv), pyridine, 2–5 h, 55 ◦C (for 35c); (2) aq. NH3/EtOH (3:1 v/v), 8 h, 55 ◦C; (3) 1 M TEAF in
pyridine, 48 h, 55 ◦C.

The post-synthetic introduction of N6-alkylated adenosines and 2-methylthioadenosines
elaborated by Kierzek’s group seems to be the method of choice for obtaining several homologous
RNA oligomers, especially that the precursor synthons were stable during the synthesis of
3′-O-phosphoramidite/oligonucleotide and easily transformed to target N6-substituted adenosine-RNAs.

The post-synthetic SNAr reaction has shown to be attractive for the incorporation of 4-thiouridine
(s4U) into RNA oligomers. The preparation of s4U-RNAs by the classical approach requires a special
protection for 4-thiocarbonyl function in s4U-phosphoramidite to avoid the desulfuration by-product
produced during the oxidation step [72,73]. This inconvenience has been overcome by employing the
convertible nucleoside approach. Several examples of precursor ribonucleosides were reported
for s4U-RNA preparation, including 4-(1,2,4-triazol-1-yl)-2-pyrimidon-1-yl-β-D-ribofuranoside
(5, see Figure 4) [74–76], 4-O-(2-nitrophenyl)uridine (2, Figure 4) [76], and 4-O-(4-nitrophenyl)uridine
(3, Figure 4) [77].

The use of 4-(1,2,4-triazol-1-yl)-2-pyrimidon-1-yl-β-D-ribofuranoside convertible nucleoside 5
was demonstrated by Shah and Kumar [74,75] (Scheme 9A). The 5′-O-DMTr-2′-O-TBDMS-protected
phosphoramidite of 5 was incorporated into 5- or 7-nt oligonucleotides using standard phosphoramidite
chemistry with more than 98% coupling efficiency. The trityl-off, CPG-linked precursor 36 was converted
to s4U-RNA by treatment with 10% thioacetic acid (CH3C(O)SH) in acetonitrile (12 h, rt). Then, 10%
DBU in methanol (16 h, rt) was used to release the oligomer from the support and to remove the
base-labile protecting groups. The 2′-O-TBDMS groups were cleaved with TBAF to give the final
s4U-RNA 38.
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Scheme 9. (A) General scheme for the synthesis of 4-thiouridine-containing oligomer 38 via the
post-synthetic reaction of convertible oligomers 36 and 37 with thioacetic acid. Reagents and conditions:
(1) 10% thioacetic acid, MeCN, 12 h, rt; (2) 10% DBU/MeOH, 16 h, 25–30 ◦C; (3) 1 M TBAF/THF, 24 h, rt
or neat TEA·3HF, 8 h, rt or TEA·3HF/DMSO (1:1 v/v), 24 h, rt; (B) Preparation of 4-O-methyluridine-RNA
39. Reagents and conditions: (1) 10% DBU/MeOH, 16 h, 30 ◦C; (2) TEA·3HF/DMSO (1:1 v/v), 24 h, rt.

Thioacetic acid reagent was also employed by Komatsu and co-workers to obtain s4U-derivative
38 by the conversion of 4-O-(4-nitrophenyl)uridine-containing oligomer 37 prepared using
5′-O-DMTr-2′-O-TBDMS chemistry (Scheme 9A) [77]. The conversion and base–deprotection steps
were performed according to Shah’s procedure [74] in 94% yield. After desilylation and purification (RP
and IE HPLC), the overall yield of s4U-RNA oligomer 38 was determined as 10%. The 4-nitrophenyl
ether leaving group was also effectively displaced with methoxy substituent by the incubation of
precursor oligomer 37 with 10% DBU/MeOH at 30 ◦C for 16 h (Scheme 9B). Strong alkaline conditions
permitted the simultaneous cleavage of base-labile protecting groups and resin. Further desilylation
(TEA·3HF/DMSO, 1:1 v/v) and HPLC-purification afforded 4-O-methyluridine-RNA 39 in an overall
10% yield.

In 2004, Avino and co-workers prepared s4U-RNAs by the post-synthetic conversion of oligomers
containing 4-triazolyl-pyrimidine riboside 40 and 4-O-(2-nitrophenyl)uridine 41 with sodium hydrogen
sulfide NaSH (Scheme 10A) [76]. To avoid oligomer degradation under base conversion conditions,
the 5′-O-DMTr-2′-O-Fpmp-protection system was applied for monomeric units. The 6- and 10-nt
RNA oligomers were synthesized on a 1 µmol scale using CPG support. The trityl-on support-linked
precursors 40 and 41 were treated with a 0.2 M NaSH solution in DMF (3 h, rt) to achieve complete
displacement of the triazolyl group. Then, concentrated ammonia was added (4 h, 50 ◦C) to release
the oligomers from the support and remove the base-labile protecting groups. The obtained trityl-on
2′-protected-RNAs were purified by RP HPLC and then treated with 10 mM aq. HCl (pH 2.5–3,
12 h, rt), yielding ca. 10 OD of the final s4U-oligomer 42. It was found that the triazolyl derivatives
(phosphoramidite building block and precursor oligomer 40) have a limited shelf life (<3 months), while
the 4-O-(2-nitrophenyl)uridine derivatives appeared significantly more stable (shelf life > 3 years).
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Scheme 10. (A) General scheme for the synthesis of 4-thiouridine-containing oligomers 42 via the 
post-synthetic reaction of convertible oligomers 40, 41 with NaSH. Reagents and conditions: (1) 0.2 M 
NaSH/DMF, 3 h, rt; (2) conc. NH3, 4 h, 50 °C; (3) 10 mM aq. HCl (pH 2.5–3), overnight, rt. (B) General 
scheme for preparing the N4-methylated cytidine-RNAs 44a-b. Reagents and conditions: (1) gaseous 
methylamine, 2 h, 65 °C, 1 bar pressure (for 44a) or 40% aq. dimethylamine, 2.5 h, 40 °C (for 44b); (2) 
NMP/TEA/TEA3HF (6:3:4 v/v/v), 1.5 h, 70 °C; (3) 40% aq. AcOH, 30 min, rt. 

The convertible approach based on the 4-triazolyl pyrimidine nucleoside 5, which was initially 
introduced by Shah and co-workers [74] for s4U-RNA preparation (Scheme 9), was adopted by 
Guennewig [78] and Koch [20] to obtain the N4-methyl- and N4,N4-dimethylcytidine-modified 
oligonucleotides 44a–b (Scheme 10B). Using the “in solid-phase” approach, the fully protected CPG-
linked precursor oligomer 43 (prepared in trityl-on mode) was treated with gaseous methylamine or 
aq. 40% dimethylamine at 40–65 °C for approximately 2 h. The displacement conditions enabled the 
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performed with aq. ammonia for 30 min at 40 °C when dimethylamine converting reagent was used 
[20]). After desilylation, the crude RNAs were purified by RP HPLC and detritylated. The RNAs 44a–
b were again purified by RP HPLC and analyzed by ESI mass spectrometry. It was found that N4-
monomethylated cytidine-containing oligomer 44a does not affect the hybridization affinity, while 
the dimethylated cytidine analog 44b significantly reduces the binding affinity to target RNAs and 
can be applied in negative miRNA control [78]. In addition, the N4,N4-dimethylcytidine-modified 
RNA was used to identify critical 23S rRNA interactions in drug-dependent ribosome stalling [20]. 

3.2. Carbon–Carbon Bond-Forming Reaction via Sonogashira and Stille Couplings 

Palladium-catalyzed Sonogashira and Stille cross-coupling reactions between iodonucleobase-
modified oligomers and terminal alkynes or unsaturated stannanes, respectively, were employed for 
the post-synthetic functionalization of RNA by the formation of the new C-C bond. Contrary to the 
standard protocol of the post-synthetic approach, which involves the full-length oligonucleotide as 
substrate, the Sonogashira Pd-catalyzed cross-coupling reactions are performed on a column [79], 
after the incorporation of iodonucleoside phophoramidite. It means that the synthesis is interrupted 
after iodonucleoside insertion (without deprotection of the 5′-hydroxyl group), and the column is 
removed from the synthesizer. Then, the reagent mixture for cross-coupling (ethynyl reagent, CuI 
and Pd catalyst) is loaded to the column, and after 2–3 h of coupling, the column is washed and 
reinstalled on the synthesizer. The solid-phase synthesis is continued to obtain the desired full-length 
oligonucleotide, which is followed by its deprotection and release from resin. This on-column method 
has been found to present several advantages over solution derivatization such as a low consumption 

Scheme 10. (A) General scheme for the synthesis of 4-thiouridine-containing oligomers 42 via the
post-synthetic reaction of convertible oligomers 40, 41 with NaSH. Reagents and conditions: (1) 0.2 M
NaSH/DMF, 3 h, rt; (2) conc. NH3, 4 h, 50 ◦C; (3) 10 mM aq. HCl (pH 2.5–3), overnight, rt. (B) General
scheme for preparing the N4-methylated cytidine-RNAs 44a-b. Reagents and conditions: (1) gaseous
methylamine, 2 h, 65 ◦C, 1 bar pressure (for 44a) or 40% aq. dimethylamine, 2.5 h, 40 ◦C (for 44b);
(2) NMP/TEA/TEA·3HF (6:3:4 v/v/v), 1.5 h, 70 ◦C; (3) 40% aq. AcOH, 30 min, rt.

The convertible approach based on the 4-triazolyl pyrimidine nucleoside 5, which was initially
introduced by Shah and co-workers [74] for s4U-RNA preparation (Scheme 9), was adopted by
Guennewig [78] and Koch [20] to obtain the N4-methyl- and N4,N4-dimethylcytidine-modified
oligonucleotides 44a–b (Scheme 10B). Using the “in solid-phase” approach, the fully protected
CPG-linked precursor oligomer 43 (prepared in trityl-on mode) was treated with gaseous methylamine
or aq. 40% dimethylamine at 40–65 ◦C for approximately 2 h. The displacement conditions enabled
the effective substitution of the triazolyl group by alkyl and dialkyl amines, and the simultaneous
removal of base-labile protecting groups and support cleavage (optionally, alkaline deprotection was
performed with aq. ammonia for 30 min at 40 ◦C when dimethylamine converting reagent was
used [20]). After desilylation, the crude RNAs were purified by RP HPLC and detritylated. The RNAs
44a–b were again purified by RP HPLC and analyzed by ESI mass spectrometry. It was found that
N4-monomethylated cytidine-containing oligomer 44a does not affect the hybridization affinity, while
the dimethylated cytidine analog 44b significantly reduces the binding affinity to target RNAs and can
be applied in negative miRNA control [78]. In addition, the N4,N4-dimethylcytidine-modified RNA
was used to identify critical 23S rRNA interactions in drug-dependent ribosome stalling [20].

3.2. Carbon–Carbon Bond-Forming Reaction via Sonogashira and Stille Couplings

Palladium-catalyzed Sonogashira and Stille cross-coupling reactions between iodonucleobase-
modified oligomers and terminal alkynes or unsaturated stannanes, respectively, were employed for
the post-synthetic functionalization of RNA by the formation of the new C-C bond. Contrary to the
standard protocol of the post-synthetic approach, which involves the full-length oligonucleotide as
substrate, the Sonogashira Pd-catalyzed cross-coupling reactions are performed on a column [79],
after the incorporation of iodonucleoside phophoramidite. It means that the synthesis is interrupted
after iodonucleoside insertion (without deprotection of the 5′-hydroxyl group), and the column is
removed from the synthesizer. Then, the reagent mixture for cross-coupling (ethynyl reagent, CuI
and Pd catalyst) is loaded to the column, and after 2–3 h of coupling, the column is washed and
reinstalled on the synthesizer. The solid-phase synthesis is continued to obtain the desired full-length
oligonucleotide, which is followed by its deprotection and release from resin. This on-column method
has been found to present several advantages over solution derivatization such as a low consumption
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of ethynyl reagent, efficient Pd cross-coupling reaction, and a simple washing step to separate reagents
from the support-linked oligomer.

The post-synthetic Sonogashira coupling reactions were extensively exploited in the Engels group
to construct the RNA oligomers with nitroxide spin labels [65,80–82] and pyrene fluorophores [83,84].
The authors described the attachment of spin label 2,2,5,5-tetramethylpyrrolin-1-yloxyl-3-acetylene
(TPA) to 5-iodouridine or 2-iodoadenosine (both introduced as a 5′-O-DMTr-2′-O-TBDMS-protected
phosphoramidites) by on-column derivatization using deoxygenated solutions of Pd(0)(Ph3P)4, CuI
in DMF/TEA [80], or Pd(II)(PPh3)2Cl2, CuI in DCM/TEA [65,81]. However, the conditions typical for
5′-O-DMTr-3′-O-TBDMS phosphoramidite chemistry turned out to be harmful for TPA modification,
particularly iodine in pyridine/water (used in oxidation step) and acidic conditions of detritylation.
To eliminate this problem, the 5′-BzH-2′-O-ACE-protected monomeric units were used (Scheme 11).
The combination of the mild tert-butylhydroperoxide oxidant with the neutral fluoride for 5′-O-BzH
removal significantly improved the stability of the nitroxide spin label and increased the efficiency
from 4–10% for TBDMS to 35–50% for ACE chemistry [65,82]. The ACE-protected phosphoramidites
of 5-iodouridine, 5-iodocytidine, and 2-iodoadenosine were incorporated into 12-, 15-, and 16-nt RNA
oligomers, on a 0.2 µmol scale synthesis. The key reaction of Sonogashira cross-coupling involved
iodo-RNAs 45–47 (Scheme 11), TPA 48, and a solution of Pd(II)(PPh3)2Cl2 and copper (I) iodide
in DCM/TEA (3.5:1.5 v/v) (the cross-coupling was performed twice to obtain quantitative yields).
After 2.5 h, the column was reinstalled on the synthesizer to accomplish the synthesis of the RNA
oligomer. Fully assembled RNA was subjected to deprotection and purified by anion-exchange HPLC.
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Scheme 11. General scheme of a Sonogashira coupling reaction between iodonucleobase-modified
oligomers 45–47 and nitroxide spin-labeled 2,2,5,5-tetramethylpyrrolin-1-yloxyl-3-acetylene (TPA) 48.
Reagents and conditions: (1) Pd(II)(PPh3)2Cl2, CuI, deoxygenated DCM/TEA (3.5:1.5 v/v), rt, 2.5 h;
(3) Deprotection: (i) 0.4 M S2Na2, DMF/H2O (98:2 v/v), rt, 30 min; (ii) 40% aq. MeNH2, rt, 12 h;
(iii) TEMED/CH3COOH buffer (pH 3.8), 60 ◦C, 30 min.

The combination of ACE phosphoramidite chemistry and Sonogashira coupling was applied for the
preparation of pyrene-modified RNA oligomers 53a–b and 54a (Scheme 12) [83,84]. Two fluorophores,
1-ethynylpyrene 52a and 1-(p-ethynyl-phenylethynyl)-pyrene 52b, were attached by reaction with
5-iodocytidine- or 2-iodoadenosine-containing oligomers 46, 47 (prepared as 10- or 12-nt oligomers
on a 0.2 µmol scale) and the solution of Pd(0)(PPh3)4, CuI in DCM/TEA by on-column synthesis.
The coupling was performed twice for 2.5 h each to ensure quantitative reaction. Full-length oligomers
were deprotected using a standard order of reactions. The crude oligomers were purified by IE HPLC,
affording pure products 53a–b and 54a.
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46, 47 and alkynyl pyrenes 52a–b. Reagents and conditions: (1) Pd(0)(PPh3)4, CuI, DCM/TEA (3.5:1.5
v/v), rt, 2.5 h; (3) Deprotection: (i) 0.4 M S2Na2, DMF/H2O (98:2 v/v), rt, 1 h (ii) 40% aq. MeNH2, 55 ◦C,
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The on-column concept was applied by the group of Engels to the post-synthetic C–C bond-forming
reaction via palladium-mediated Stille cross-couplings (Scheme 13) [85]. The feasibility of Stille
coupling was tested for 5-iodouridine- and 2-iodoadenosine-RNA precursors prepared as 5- or
12-mers in three strategies: 2′-O-ACE (46, 47), 2′-O-TBDMS (55, 57), and 2′-O-TC (56) on 0.2
or 1 µmol scale. Iodo-oligomers were coupled with several tributylstannanes (RSnBu3, 58a–d)
such as vinyl-, furyl-, thienyl-, and benzothienyl(tributyl)-stannane. In contrast to Sonogashira
post-synthetic cross-coupling, the Stille reaction was performed on column after the completion
of automated RNA synthesis. The synthesizer column with fully assembled RNA was connected
with the column-syringe system that loaded the solution of tris(dibenzylideneacetone)dipalladium(0)
(Pd2(dba)3, 15 equiv) and tri-2-furylphosphine (P(furyl)3, 30 equiv) in dry DMF and then a solution
of alkylstannane (60 equiv) in DMF. The column with reaction solution was placed in the oven at
60 ◦C for 2–18 h. Then, the support-linked modified RNA (still closed in the synthesizer column) was
washed, dried, and subjected to deprotection. The ACE-protected, polystyrene-bound oligomers were
deprotected using the standard protocol. The TBDMS-protected, CPG-linked oligomers were treated
with conc NH3/EtOH (3:1 v/v, 35 ◦C, 18–24 h) to cleave the base-labile protecting groups and resin,
and then, they were desilylated. The TC chemistry was tested exclusively for 5-iodouridine-RNA.
The CPG-linked/TC-protected oligomer enclosed in the column was treated with 20% Et2NH/MeCN
(3 min, rt) to deprotect the phosphate groups. The residual blockage and CPG resin were cleaved
with 50% solution of ethylenediamine in dry toluene (2 h, rt), and finally, fully deprotected RNA
oligomer was eluted from the column with 0.1 M TEAA buffer. All obtained oligomers 59a–d and
60a–d were purified by IE HPLC. In a few cases, the desired products of Stille cross-coupling reactions
were accompanied by reduced deiodinated RNAs or methylated side products.
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(46,47, 55–57) and tributylstannanes RSnBu3 (58a–d). Reagents and conditions: (1) Pd2(dba)3

(15 equiv), P(furyl)3 (30 equiv), dry DMF, 60 ◦C, 2–18 h; (2) Deprotection: acid-labile
2′-O-bis(2-acetoxyethoxy)methyl ortoester protection (ACE) strategy: (i) 0.4 M S2Na2, DMF/H2O
(98:2 v/v), rt, 20 min; (ii) 40% aq. MeNH2, 55 ◦C, 10 min; (iii) TEMED/CH3COOH buffer (pH 3.8), 60 ◦C,
30 min; TBDMS strategy: (i) 37% aq. NH3/EtOH (3:1 v/v), 35 ◦C, 18–24 h; (ii) NMP/TEA/TEA·3HF (6:3:4
v/v/v), 60 ◦C, 90 min; TC strategy: (i) 20% Et2NH in MeCN, rt, 3 min; (ii) 50% NH2CH2CH2NH2 in dry
toluene, rt, 2 h; (iii) 0.1 M TEAA buffer.

3.3. Cycloaddition Reactions

Two types of post-synthetic cycloadditions were employed in the synthesis of nucleobase-modified
oligoribonucleotides, Cu(I)-catalyzed cycloaddition of azides and terminal alkynes (CuAAC strategy)
and inverse electron demand Diels-Alder cycloaddition (iEDDA).

The CuAAC reaction (pioneered by Rolf Huisgen [86] and optimized by Sharpless [87] and
Meldal [88]) has been exploited for the post-synthetic incorporation of 1,4-disubstituted 1,2,3-triazoles
to RNA oligomers by the reaction of ethynyl-modified oligoribonucleotide with an azido-containing
reagent. The reverse substrate system is not preferred because azido-modified RNA oligomers
interfere with the chemical conditions during automated RNA synthesis, particularly with P(III)
form. The representative sites for direct attachment of the ethylene group are positions C7 in the
7-deazapurine and C5 in the pyrimidine precursor nucleosides [50,89,90]. In some cases, the terminal
alkyne group was attached to the nucleobases via a linker attached to the exoamino group of guanosine
or N3 nitrogen of uridine [35,91,92].

In 2010, the Beal’s group applied a post-synthetic CuAAC strategy to introduce N2-modifed
2-aminopurine ribonucleosides into an RNA chain to design RNA constructs for siRNA
technology (Scheme 14) [35,91]. A 2-propargylaminopurine ribonucleoside was converted
to 5′-O-DMTr,2′-O-TBDMS β-cyanoethyl phosphoramidite and incorporated into 12- and
21-nt RNA oligomers by solid-phase synthesis. After deprotection, alkynyl oligomer 61
was conjugated with 2-azido-2-deoxy-D-mannose (62a), N-azidoacetyl-D-mannosamine (62b),
3′-azidothymidine (AZT, 62c), or azide of N-ethylpiperidine (62d). Click products 63a–d were
generated by incubating an aqueous solution of RNA oligomer 61 with the water-soluble
tris-[1-(3-hydroxypropyl)-1H-[1,2,3]triazol-4-yl)methyl]amine Cu(I)-stabilizing ligand (THPTA),
CuSO4, and sodium ascorbate (system for an in situ generation of catalytically active Cu(I) species),
and azide 62a–d (5 equiv) for 4 h at ambient temperature. Complete conversions were observed for
primary azides 62b,62d; however, the use of secondary azides 62a,62c reduced conversion yields by
50%. Click products 63a–d were purified by denaturing PAGE and confirmed by ESI-MS. Azide 62b
was also effectively employed for the post-synthetic preparation of the di-click 21-nt RNA oligomer.
Thermal denaturation studies indicated that oligomers 63b–d showed similar base pairing stability and
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specificity to adenosine-containing counterparts. [35,91]. Click products 63b and 63d displayed reduced
binding affinity to off-target proteins (RNA-dependent protein kinase and adenosine deaminases),
while RNAi activity was maintained [35].
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Scheme 14. Post-synthetic Cu(I)-catalyzed cycloaddition of azides and terminal alkynes (CuAAC)
reaction of N2-propargyl-2-aminopurine-RNA (61) with azides 62a–d. Reagents and conditions:
(i) 10 mM solution of 62a and 62b in water or 40% aq. DMSO solution of 62c or 0.5 M Tris-HCl solution of
62d (pH 8.0), CuSO4, sodium ascorbate, tris-[1-(3-hydroxypropyl)-1H-[1,2,3]triazol-4-yl)methyl]amine
Cu(I)-stabilizing ligand (THPTA), rt, 4 h.

Further studies of the Beal group focused on the isertion of several 7-substituted
8-aza-7-deazaadenosines into 12-nt siRNA constructs by azide-alkyne cycloaddition (Scheme 15) [89].
7-Ethynyl-8-aza-7-deazaadenosine-containing oligomer 64 was synthesized using standard
phosphoramidite chemistry (1.0 mmol scale) with the coupling time prolonged to 25 min for
a 7-ethynyl-modified monomeric unit (prepared as 5′-O-DMTr-2′-O-TBDMS, NH-dmf amidite with
TMS blockage on the ethynyl group to prevent partial hydrolysis during the alkaline deprotection step).
After deprotection, precursor oligomer 64 was incubated with aqueous solution of THPTA ligand,
CuSO4, sodium ascorbate, and azide 65a–f for 6.5 h at rt or 35 ◦C. Azides were dissolved in aq. Tris-HCl
buffer with pH 8.0 (65a), water (65b–d), or DMSO (65e, 65f). Click products 66a–f were purified by
denaturating PAGE and identified by MALDI-ToF MS. Study of the modification impact on RNA
properties revealed a substantial destabilization of RNA duplexes modified with sterically demanding
triazoles 66e and 66f. Oligomers with less hindrance (66a–d) indicated only a slight decrease of duplex
stability and a little effect of modification on the base-pairing specificity.
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Scheme 15. Post-synthetic CuAAC reaction of 7-ethynyl-8-aza-7-deazaadenosine-RNA (64) with azides
65a–f. Reagents and conditions: (i) THPTA, CuSO4, sodium ascorbate, 0.05 M solution of 65a in 0.5 M
Tris-HCl (pH 8.0), 0.5 M or 0.15 M solution of 65b–d in water or 0.15 M solution of 65e–f in DMSO, rt
(35 ◦C for 65f), 6.5 h.

Kellner and co-workers employed click chemistry to label unmodified RNAs with fluorescent
dyes (Scheme 16) [92]. For successful labeling, the unmodified RNAs 67 (prepared as synthetic RNA
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oligomers or yeast tRNAPhe in vitro transcript) were incubated with bifunctional azido-bromo-coumarin
68 in denaturating conditions (70% aq. DMSO, pH 8.5, 37 ◦C, 3 h) to provide products 69 with
chemoselectively N3-alkylated uridine. The azidocoumarin-modified RNA 69 was subjected to click
conjugation with fluorescent alkyne-containing AlexaFluor 647 (70a) or fluorescein (70b) in buffer of
pH = 8, in the dark, using Cu+ (generated in situ from sodium ascorbate and Cu2+) with a THPTA
ligand (rt, 2 h). Click products 71a–b were analyzed by PAGE electrophoresis.
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Scheme 16. Chemoselective labeling of RNA 67 with azide-containing coumarine and the following
click reaction of 69 with ethynyl-fluorescent dyes 70a–b. Reagents and conditions: (i) 100 mM phosphate
buffer (pH = 8.5), 70% DMSO, 37 ◦C, 3 h, under light protection; (ii) PUS buffer (100 mM Tris-HCl,
pH = 8.0, 100 mM NH4OAc, 1 mM MgCl2), 2.5 mM THPTA, 0.5 mM CuSO4, 5 mM sodium ascorbate,
alkyne-fluorescent dye at 50 µM concentration, rt, 2 h, under light protection.

The post-synthetic CuAAC reaction was employed by Kerzhner and co-workers to
introduce the nitroxide-spin labels into RNA oligomers for EPR/PELDOR measurements [50]
(Scheme 17). The 5′-O-DMTr-5-ethynyl-2′-deoxyuridine phosphoramidite (additionally protected
with a triisopropylsilyl group on ethynyl moiety) was effectively introduced to an RNA oligomer by
conventional solid-phase synthesis. Using the “in-solution” approach, the fully deprotected oligomer
72 was conjugated with azide-functionalized nitroxide 73 with CuI instead of a Cu2+-ascorbate system
(due to the reducible nature of nitroxide radicals) with the excess of THPTA in DMSO-H2O solution
for 30 min at 37 ◦C. The spin-labeled oligomer was purified by HPLC to afford the product 74 in total
72% yield. The same oligomer spin labeling was demonstrated by Kerzhner and co-workers in solid
phase [90]. In this case, the total reaction time was considerably longer (24 h), and the conversion yield
dropped to 36%.
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Scheme 17. Post-synthetic spin labeling of RNA oligomer 72 with the azide-functionalized nitroxide
73 by click chemistry. Reagents and conditions: (i) CuI, THPTA, DMSO-H2O, 30 min, 37 ◦C.

Recently, Nakamoto and co-workers have demonstrated the use of CuAAC reaction for the
incorporation of biotin to oligoribonucleotide modified with a novel bifunctional nucleoside analog
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containing aryl trifluoromethyl diazirine and ethynyl moieties (Scheme 18) [93]. Precursor oligomer
75 was prepared using 5′-O-DMTr-2′-O-TBDMS building blocks and a standard protocol of
phosphoramidite solid-phase synthesis and deprotection. The ethylene–RNA probe 75 was treated
with biotynyl-TEG-azide 76 (80 equivalent) in the presence of sodium ascorbate, CuSO4 and
tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) for 1 h at rt. The RP HPLC purified product
77 was identified by MALDI-ToF MS.

Molecules 2020, 25, x FOR PEER REVIEW 20 of 37 

containing aryl trifluoromethyl diazirine and ethynyl moieties (Scheme 18) [93]. Precursor oligomer 
75 was prepared using 5′-O-DMTr-2′-O-TBDMS building blocks and a standard protocol of 
phosphoramidite solid-phase synthesis and deprotection. The ethylene–RNA probe 75 was treated 
with biotynyl-TEG-azide 76 (80 equivalent) in the presence of sodium ascorbate, CuSO4 and tris[(1-
benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) for 1 h at rt. The RP HPLC purified product 77 was 
identified by MALDI-ToF MS. 

 
Scheme 18. Post-synthetic Cu-catalyzed azide-alkyne cycloaddition of oligomer 75 with biotynyl-
TEG-azide 76. Reagents and conditions: (i) sodium ascorbate, tris[(1-benzyl-1H-1,2,3-triazol-4-
yl)methyl]amine (TBTA), CuSO4, DMSO, 0.2 M phosphate buffer (pH 7.0), rt, 1 h. 

Beyond the CuAAC cycloaddition, the inverse electron demand Diels-Alder reaction (iEDDA) 
was employed for the post-synthetic labeling of norbornene-containing RNA oligomer 78 with 
disubstituted 1,2,4,5-tetrazine-fluorophore derivatives 79a–d (Scheme 19) [94]. The fast conjugation 
between the ring-strained olefin group as a dienophile and highly electron-deficient 1,2,4,5-tetrazine 
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Scheme 18. Post-synthetic Cu-catalyzed azide-alkyne cycloaddition of oligomer 75 with biotynyl-TEG-
azide 76. Reagents and conditions: (i) sodium ascorbate, tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]
amine (TBTA), CuSO4, DMSO, 0.2 M phosphate buffer (pH 7.0), rt, 1 h.

Beyond the CuAAC cycloaddition, the inverse electron demand Diels-Alder reaction (iEDDA) was
employed for the post-synthetic labeling of norbornene-containing RNA oligomer 78 with disubstituted
1,2,4,5-tetrazine-fluorophore derivatives 79a–d (Scheme 19) [94]. The fast conjugation between the
ring-strained olefin group as a dienophile and highly electron-deficient 1,2,4,5-tetrazine as a diene was
discovered by the Fox and Hilderbrand groups in 2008 [95,96]. To demonstrate the use of iEDDA strategy
in the post-synthetic labeling of RNAs, the norbornene modification was introduced into three different
oligoribonucleotides (12-, 21-, and 24-mers) using 5-norbornene-modified 5′-O-DMTr-2′-O-TBDMS
uridine phosphoramidite and standard conditions of RNA synthesis. Deprotected oligomers 78
were conjugated with a 2- or 3-fold excess of tetrazine-fluorophore derivatives 79a–d containing the
fluorophore Oregon Green 488 in aqueous solution (rt, 1 h). Cycloaddition products were identified
by PAGE and MS analysis. It was indicated that the overall yields of cycloaddition reactions were
comparable regardless of norbornene position (the single- or double-stranded regions of RNAs).
However, they were dependent on the steric effects of the disubstituted tetrazine derivatives with the
RNA oligomer (reduced yields were observed for cycloadditions with tetrazines 79c,d). A bioorthogonal
reaction of iEDDA between tetrazine-fluorophore 79a and 21-nt norbornene-modified RNA 78 (prepared
as a siRNA duplex) was effectively performed in mammalian cells. In contrast to already known
techniques, the fluorophore can be attached to RNA after the target binding, which minimizes the
distortion of RNA transport and the functions in the cells.
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Scheme 19. Inverse electron-demand Diels–Alder cycloaddition of tetrazine-Oregon Green 488
conjugates 79a–d with norbornene-modified RNA oligomer 78. Conditions: (i) water, rt, 1 h.

3.4. Derivatization of Amino-Modified Oligoribonucleotides via Formation of Amide Linkage

Amino-prefunctionalized oligoribonucleotides provide a very important class of substrates for the
post-synthetic modification/labeling of RNA oligomers. Site-specifically introduced amino-modified
units are usually conjugated via amide bond formation with active esters derived from the label
and N-hydroxysuccinimide (NHS), tetrafluorophenol (TFP), or N-hydroxybenzotriazole (HOBt).
The active esters react selectively with an aliphatic amino function in solution, after the deprotection
of RNA oligomers, without any risk of side reactions with 2′–OH and aromatic amino groups of
nucleobases. Based on this strategy, efficient methods for the incorporation of fluorescent dyes, flavin
mononucleotide derivative, as well as nitroxide and diazirine labels into RNA oligomers have been
developed for their application in the structural and functional analysis of RNA molecules [69,97,98].
Hydantoin RNA modification has also been reported as an example of intramolecular amide bond
formation produced by cyclization within the N6-threonylcarbamoyl functional group attached to an
adenosine precursor [63,64].

In 2011, the group of Muller employed amino-modified RNA oligomers 81a–c and 82a,c as
substrates for post-synthetic amino groups conjugation with fluorescent dyes (Alexa488, Cy5 and
ATTO647N) and flavin mononucleotide (FAM) (Scheme 20) [97]. Primary amino groups were attached
to the C5 position of uridine or C8 position of adenosine via a linker to increase the post-synthetic
conversion yields between amino nucleobases and bulky size labels. Two alkenyl- and one alkynylamino
linkers were utilized that varied in terms of length and flexibility (Scheme 20a–c).
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Scheme 20. Post-synthetic labeling of amino-modified oligomers 81a–c and 82a,c with active esters
(83, 84) of Alexa488, Cy5, ATTO647N, FMN, and diazirine. Reagents and conditions: (i) conjugation
with R1–TFP and R2,3–NHS esters: 81a–c/82a,c in 0.1 M borax buffer at pH 9.4 (for R1) or 8.7 (for R2,3),
dye in DMF, overnight, rt, under light protection; (ii) conjugation with R4–NHS (N-hydroxysuccinimide)
ester: FMN–NHS ester was generated in situ using TSTU (1.2 equiv), DIPEA (2.0 equiv), DMF, 1 h, rt;
(iii) conjugation with R5–NHS ester: 81a in siRNA buffer (Dharmacon), Na HEPES pH 7.5, diazirine–NHS
in DMSO (> 60 equiv), 2–4 h, rt.

To prepare the amino-modified oligomers 81a–c and 82a,c the standard phosphoramidite chemistry
was used with 5′-O-DMTr-2′-O-TBDMS-protected building blocks and CPG support (the aliphatic
amino group of the linkers was protected with trifluroacetyl). Oligomers were effectively deprotected
(conc. NH3/MeNH2-EtOH, 1:1 v/v, 2 h, rt, then TEA·3HF/DMF, 55 ◦C, 1.5 h) and purified by PAGE
electrophoresis. To attach the fluorescent dyes, precursor oligomers 81a–c and 82a,c were dissolved in
borax buffer at an approximate pH 9; then, freshly prepared solution of active TFP ester 83 (for Alexa488)
or NHS ester 84 (for Cy5 and ATTO647N) in DMF was added. The labeling reactions were carried out at rt
overnight in the dark. To conjugate the flavinmononucleotide derivative, the 5-aminoallyluridine-RNA
81a was treated with R4-NHS ester 84 generated in situ using TSTU condensing reagent and DIPEA in
DMF. Oligomers containing Alexa488, Cy5, and flavin mononucleotide derivative were purified using
denaturing PAGE (yields 15–54%), while ATTO647N-labeled oligomers were isolated by RP HPLC
(yields 40–50%). The structures of target oligomers were confirmed by MALDI-ToF mass spectrometry.

Recently, post-synthetic transformations of amino-modified oligoribonucleotides to
photo-crosslinkable diazirine-derivatives have been employed to investigate the regulation of
protein-RNA interactions by 6-methyladenosine [98]. For preparing the diazirine-containing oligomer
87a (Scheme 20), (E)-5-(3-aminoprop-1-en-1-yl)uridine-RNA 81a was suspended in siRNA buffer
(Dharmacon, Lafayette, Colorado, USA), then Na–HEPES (pH 7.5) and a solution of diazirine
NHS ester (>60 equiv) in DMSO were added. The reaction was vortexed and incubated at
ambient temperature for 2–4 h in the dark. The mixture was purified by RP HPLC and
analyzed by mass spectrometry. The developed transformation worked also for 3′-biotynylated
6-methyladenosine-modified amino RNA.
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The post-synthetic reaction of amino oligomers with active esters was utilized for RNA site-specific
spin labeling with nitroxide radicals for EPR measurements (Scheme 21) [69]. Amino-modified guanosine
or uridine were introduced into the terminal position of 10-nt oligomers via linkers attached to
the N7 position of G (89) or C5 position of U (90). The precursor oligomers were prepared by
the complementary addressed modification method (oligomer 89) [99] or by the post-synthetic
strategy (oligomer 90, see Scheme 3). Both amino-modified RNAs were spin labeled with new
2,5-bis(spirocyclohexane)-substituted nitroxide and conventional tetramethyl-substituted nitroxide
91b. The solution of NH2-bearing oligomer 89,90 in HEPES-KOH (pH 9.0) was mixed with the
respective derivative of NHS ester nitroxide 91a–b dissolved in DMSO (rt, 2 h). The final products
92a–b and 93a–b were separated by HPLC in approximately 70% of conversion yields.
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nucleosides (Scheme 22) [63,64]. The post-synthetic approach was the method of choice, since the 
hydantoin ring of ct6A/ms2ct6A turned out to be very susceptible to hydrolysis under conditions of 
phosphoramidite solid-phase RNA synthesis and deprotection. Oligomers 94a–b were synthesized 
on CPG support at a 2.5 µmol scale using Ultra Mild 5′-O-DMTr-2′-O-TBDMS-NH-tac-
phosphoramidite building blocks to retain the carbamoyl linkage in t6A/ms2t6A intact. The 
L-threonine residue was protected with TBDMS at the hydroxyl function and 2-(trimethylsilyl)ethyl 
(TMSE) at the carboxyl moiety in both t6A and ms2t6A phosphoroamidites. For the preparation of 
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Scheme 21. Post-synthetic labeling of amino-containing precursor oligomers 89, 90 with nitroxide
derivatives 91a,b. Reagents and conditions: (1) precursor oligomers 89, 90 in 50 mM HEPES-KOH
(pH 9.0), 20 mM active esters 91a,b in DMSO, rt, 2 h.

Two cyclic N6-threonylcarbamoyladenosines containing a hydantoin ring (ct6A and
2-methylthio-analog ms2ct6A) have been recently discovered at position 37 of anticodon loops in several
prokaryotic and eukaryotic tRNA sequences [6,7]. To determine the effect of hydantoin structure on the
biological activity of tRNAs, model 17-nt RNA oligomers containing ct6A and ms2ct6A were obtained
by the post-synthetic methodology based on the cyclization of linear t6A/ms2t6A precursor nucleosides
(Scheme 22) [63,64]. The post-synthetic approach was the method of choice, since the hydantoin ring
of ct6A/ms2ct6A turned out to be very susceptible to hydrolysis under conditions of phosphoramidite
solid-phase RNA synthesis and deprotection. Oligomers 94a–b were synthesized on CPG support at
a 2.5 µmol scale using Ultra Mild 5′-O-DMTr-2′-O-TBDMS-NH-tac-phosphoramidite building blocks
to retain the carbamoyl linkage in t6A/ms2t6A intact. The L-threonine residue was protected with
TBDMS at the hydroxyl function and 2-(trimethylsilyl)ethyl (TMSE) at the carboxyl moiety in both
t6A and ms2t6A phosphoroamidites. For the preparation of 94a–b, both precursor amidites were
coupled twice in extended time (15 min for t6A and 25 min for ms2t6A) and anhydrous conditions
of alkaline deprotection were applied to prevent the TMSE ester amonolysis (fluorolabile TMSE
group was cleaved during desilylation, simultaneously with TBDMS blockage). Fully deprotected
t6A/ms2t6A-RNAs 94a–b were purified by IE HPLC and subjected to post-synthetic cyclization with
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aq. DMF solution of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC·HCl) and
1-hydroxy-1H-benzotriazole (HOBt) added in the 5- or 10-fold molar excess to 94a and 94b precursor
oligomers, respectively. After the complete cyclization (1 h, rt) oligomers 95a–b were isolated by
centrifugation through Amicon in 80–90% conversion yields. The ct6A/ms2ct6A-oligomers 95a–b were
characterized by MALDI-ToF MS and nucleoside composition analysis.
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3.5. Transformation of Ester Groups

Recently, a new 5-pivaloyloxymethyluridine (Pivom5U) convertible nucleoside has been designed
for preparing the 5-aminomethyluridine (R5U)-modified RNA oligomers 97a–e (Scheme 23) [62].
The studies were focused on the naturally existing 5-aminomethyluridine derivatives such as nm5U,
mnm5U, inm5U, cmnm5U, and τm5U due to their crucial role in tuning the translation process
(all modified uridines are positioned at the first anticodon letter of numerous tRNAs) and poor
accessibility to oligomers containing these modifications [100,101].
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(Pivom5U)-RNA 96 to R5U-modified oligoribonucleotides 97a–e. Reagents and conditions:
(1) TEA/MeCN (1:1 v/v), 20 min, rt; (2) 30% aq. NH3 (97a), 8 M MeNH2/EtOH (97b), 0.4 M
NH2CH2CH=CMe2 in EtOH/H2O (4:1 v/v), TEA (97c), 1.5 M NH2CH2CO2

−NBu4
+/EtOH (97d), 1.5 M

NH2CH2CH2SO3
−NBu4

+/EtOH (97e), 1 h (for 97a–b) or 20 h (for 97c–e), 60 ◦C; (3) TEA·3HF/NMP
(1:1 v/v), 24 h, rt.

It was found that a sterically hindered pivaloyloxyl group (-OPiv) attached to the
C-5,1-pseudobenzylic carbon of uridine exclusively promotes the nucleophilic substitution at this
position under treatment with ammonia, primary alkylamines, or amino acids at elevated temperature,
leading to the quantitative transformation of Pivom5U to 5-aminomethyluridines [62,102].

The 5- and 17-nt RNA precursor oligomers 96 were synthesized by the standard protocol
of phosphoramidite chemistry on CPG support using a 5’-O-DMTr-2’-O-TBDMS system of
protection (Pivom5U–phosphoramidite were coupled twice). The post-synthetic transformation
of Pivom5U-modified oligomers 96 was conducted “in solid-phase” after the removal of β-cyanoethyl
groups (TEA/MeCN, 1:1 v/v, 20 min, rt), simultaneously with the alkaline deprotection of nucleobases
and resin cleavage. For this purpose, the CPG-linked Pivom5U-RNA 96 was incubated with
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nitrogen nucleophiles such as ammonia, primary amines (methylamine or isopentenyloamine),
or tetrabutylammonium salts of amino acids in ethanolic or aqueous solutions at 60 ◦C. To get oligomers
modified with 5-aminomethyluridine 97a and 5-methylaminomethyluridine 97b, Pivom5U-RNA 96
was incubated with aq. 30% ammonia or 8 M ethanolic solution of MeNH2, respectively for 1 h at 60 ◦C.
To obtain 5-isopentenylaminomethyluridine-RNA (97c), precursor oligomer 96 was treated with 0.4 M
solution of isopentenylammonium tosylate (600 equiv) and TEA (6000 equiv) in an EtOH–H2O mixture
for 20 h at 60 ◦C. The preparation of cmnm5U- and τm5U-RNAs required the use of glycine and taurine
as alkylamine conversion reagents. To increase their nucleophilic character as well as the solubility in
organic solvents, both amino acids were transformed to the tetrabutylammonium salt forms. Then,
Pivom5U-RNAs 96 were treated with 1.5 M ethanolic solution of amino acid salts (3000 equiv) for
20 h at 60 ◦C. After displacement reactions, the excess of salts was removed from oligomers 97c–e on
C18 cartridge. Finally, all the oligomers were desilylated and isolated by IE HPLC in 60–85% yields.
The developed strategy was also applied for the preparation of 5-cyanomethyluridine-modified RNA
(cnm5U-RNA) with potassium cyanide as a nucleophile; however, the conditions used for the complete
conversion of Pivom5U (20 h, 60 ◦C) caused the partial degradation of RNA.

3.6. Post-Synthetic Conversions of Sulfur-Containing RNA Oligomers

3.6.1. Post-Synthetic Conversion of 2-Thiouridine-Modified RNA Oligomers

A thiocarbonyl group in 2-thiouridines (s2Us) was found to be a reactive site for two post-synthetic
RNA conversions. The first strategy was based on the oxidative desulfuration of s2U-containing
oligomers leading to the formation of 4-pyrimidinone nucleosides (H2U) [61]. The second approach
involved the reaction of a nucleophilic substitution between alkyl halide and an s2U-oligomer where
the sulfur atom acts as a nucleophile agent, providing S-alkylated analogs of 2-thiouridine [12].

The strong tendency of 2-thiouridine (s2U) to desulfuration under oxidative conditions
was reported several times at the nucleoside and oligonucleotide levels [103–105]. The loss
of a sulfur atom led to the formation of uridine and/or 4-pyrimidinone nucleoside (H2U) in
a ratio that was dependent on the oxidizer (type, concentration), solvent, pH, and type of
5-substituent attached to the nucleobase. The observation that s2U-oligomers were desulfured
under conditions mimicking the oxidative stress in a cell [104,105] enhanced the need for a reliable
access to H2Us-modifed oligomers. The attempt to incorporate an H2U phosphoramidite into
the RNA chain turned out to be not straightforward by the classical approach because of
H2U-RNA instability under alkaline conditions [104]. In 2015, Chwialkowska and co-workers
published a selective post-synthetic transformation of oligomers modified with 2-thiouridine
and 5-substituted 2-thiouridines (R5s2U-RNA, 98a–f) exclusively to the 4-pyrimidinone-containing
derivatives (R5H2U-RNA, 99a–f, Scheme 24) [61]. Six types of R5s2U modifications were selected to
show the generality of the method: 2-thiouridine (s2U, R2 = H), 2′-O-methyl-2-thiouridine (s2Um,
R1 = OMe, R2 = H), 5-methyl-2-thiouridine (m5s2U, R2 = -CH3), 5-metoxycarbonylmethyl-2-thiouridine,
mcm5s2U, R2 = CH2COOMe), 5-methylaminomethyl-2-thiouridine (mnm5s2U, R2 = CH2NHCH3),
and 5-taurinomethyl-2-thiouridine (τm5s2U, R2 = CH2NHCH2CH2SO3H). Notably, all selected
2-thiouridines are naturally existing ribonucleosides present at the first (“wobble”) position of
numerous tRNA biomolecules.
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Precursor oligomers 98a–f were synthesized by phosphoramidite chemistry using
a 5′-O-DMTr,2′-O-TBDMS protection system for the preparation of monomeric units and
a special protocol of P(III)→P(V) oxidation and work-up to retain the s2-thiocarbonyl function
intact [100,101,106,107]. Synthetic R5s2U-modified precursor oligomers were of varied length (from 11
to 23 nts) with 2-thiouridines located both in single and double-stranded regions. Fully deprotected
and purified oligomers 98a–f were subjected to oxidative desulfuration by incubation in 2 mM
aqueous solution of KHSO4 (Oxone®, 10-fold molar excess) at 25 ◦C for 5–30 min. The reactions
were terminated by loading on a C18 Sep-Pack cartridge and a standard desalting process. It was
found that more than 30 min exposition of the R5H2U–RNA products to the oxidizing agent leads to
further unidentified oxidative lesions. The products 99a–f (obtained in conversion yields 87–95%)
were analyzed by MALDI-ToF mass spectroscopy, indicating the selectivity of the reaction toward the
2-thiocarbonyl function.

In 2012, highly lipophilic S-geranylated derivatives of 5-methylaminomethyl-2-thiouridine
(mnm5ges2U) and 5-carboxymethylaminomethyl-2-thiouridine (cmnm5ges2U) were identified at
the first anticodon position in bacterial tRNAs bearing Lys, Glu, and Gln [9]. To understand the
biological role of a unique S-geranyl modification, the model 2-geranylthiouridine-RNA oligomer
103 (ges2U-RNA, homologue of anticodon arm domain of E. coli tRNALys) was synthesized and
characterized (Scheme 25) [12]. Three chemical routes were elaborated for preparing the ges2U-RNA
oligomer, including two post-synthetic strategies based on the selective geranylation of CPG-linked
(Scheme 25A) or released/deprotected 2-thiouridine-modified precursor oligomers (Scheme 25B).
The synthesis of the s2U-RNA oligomer 100 was performed routinely, using a 5′-O-DMTr-2′-O-TBDMS
protection system and tert-butylhydroperoxide as an oxidizing reagent. In the first “in solid-phase”
method (Scheme 25A), detritylated, support-linked s2U-RNA 100 was deprived of β-cyanoethyl groups
from phosphate residues (TEA/MeCN, rt, 30 min) and then alkylated with > 200-fold molar excess of
geranyl bromide and an equimolar amount of triethylamine in ethanol (3 h, rt). The converted product
101 was subjected to alkaline deprotection and support cleavage under mild alkaline conditions (8 M
NH3/EtOH, rt, 8 h) to avoid substitution of the thioalkyl group with a nitrogen nucleophile, leading to
the formation of isocytidine derivatives [108]. After desilylation, ges2U-oligomer 103 was purified by
anion-exchange HPLC, affording a geranylated product in a total of 40% yield.
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In the second approach, post-synthetic s2→ges2 transformation was performed in solution 
(Scheme 25B) by the treatment of fully deprotected/released s2U-RNA oligomer 102 with EtOH-water 
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Scheme 25. (A) Post-synthetic geranylation of s2U-oligomer 100 in solid phase. Reagents and
conditions: (1) TEA/MeCN (1:1 v/v), rt, 20 min; (2) geBr (213 equiv), TEA (213 equiv), EtOH, rt, 3 h;
(3) 8 M NH3/EtOH, rt, 8 h; (4) TEA·3HF/NMP (1:1 v/v), rt, 24 h; (B) Post-synthetic geranylation of
s2U-oligomer 102 in solution. Reagents and conditions: (1) conc. NH3/EtOH (3:1 v/v), 40 ◦C, 16 h;
(2) TEA·3HF/NMP (1:1 v/v), rt, 24 h; (3) geBr (213 equiv), TEA (213 equiv), EtOH/H2O (1:1 v/v), rt, 3 h.

In the second approach, post-synthetic s2
→ges2 transformation was performed in solution

(Scheme 25B) by the treatment of fully deprotected/released s2U-RNA oligomer 102 with EtOH-water
solution of geBr and TEA. The mixture was shaken vigorously for 3 h at rt. Then, the oligomer was
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filtered through a NAP-G25 column and purified by IE HPLC to furnish pure ges2U-RNA 103 at
a total of 67% yield. The structure of ges2U-RNA product 103 was confirmed by MALDI-ToF mass
spectrometry and nucleoside composition analysis.

3.6.2. Post-Synthetic Conversion of 4-Thiouridine-Prefunctionalized RNA Oligomers

Due to the more nucleophilic character of the sulfur atom in s4U than other functional groups in
nucleic acids, the selective S-labeling was reported for both the entire s4U-tRNA molecules [109,110]
and s4U/s4dU-modified oligonucleotides [97,111–113]. The post-synthetic functionalization of s4U was
applied predominantly for the site-directed spin labeling of oligomers to extract the long-range distances
in RNA or protein–RNA complexes by EPR and NMR techniques [97,112–114]. Two general methods
of s4U-RNA functionalization with thiol-specific reagents were reported, namely by S-alkylation
(Scheme 26A) and mixed disulfide formation (Scheme 26B).
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Scheme 26. (A) Post-synthetic s4U-RNA nitroxide labeling with iodoacetamide spin label 105. Reagents
and conditions: (i) 100 mM phosphate buffer (pH 8.0), 100 equiv of 105 in H2O/EtOH (7:3 v/v), rt,
overnight, in the dark; (B) Post-synthetic s4U-RNA nitroxide labeling with methanesulfonylthioalkyl
reagents 107a–c. Reagents and conditions: (i) 100 mM phosphate buffer (pH 8.0), dithiothreitol (DTT),
rt, 30 min-2 h; (ii) 10 mM phosphate buffer (pH 6.8), or a mixture of 90 mM phosphate buffer (pH 8.0)
and DMF (9:1 v/v), rt, 12 h.

s4U-precursor oligomers 104 were prepared by the standard phosphoramidite chemistry using
5’-O-DMTr-2’-O-TBDMS-protected monomeric units and β-cyanoethyl protection for s4-thiocarbonyl
group to retain the thio-function intact during the P(III)→ P(V) oxidation step.

In the studies of post-synthetic appending of nitroxide labels to the thiocarbonyl group of s4U
residue, the iodo-containing proxyl spin label was employed (Scheme 26A) [112]. Fully deprotected
s4U-RNAs 104 (30- and 31-nt) were dissolved in 100 mM phosphate buffer (pH 8.0), treated with
solution of 3-(2-iodoacetamido)proxyl 105 in H2O/EtOH (7:3 v/v), and incubated overnight at rt in the
dark. S-Alkylated oligomers 106 were isolated (the NAP-10 column and ethanol precipitation) in 80%
yields on average. Similar procedures of s4U-labeling were employed by others [49,97,114] to gain
models for the structural and functional analysis of RNA.

The fast attachment of nitroxide radical to the s4-thiocarbonyl function of s4U-RNA oligomers was
achieved by applying the methanethiosulfonate spin label reagents 107a–c (Scheme 26B) [97,113,115,116].
“Free” s4U-precursor RNAs 104 (23- and 57-nt) were incubated with dithiothreitol (DTT) reducing agent
in 100 mM phosphate buffer (pH 8.0) for 30 min-2 h at rt. After the removal of DTT excess, the oligomers
were treated with appropriate 1-oxyl-2,2,5,5-tetramethylpyrroline- methanethiosulfonates 107a–c in
phosphate buffer overnight at rt to afford products 108a–c. Reagents 107a–c were found to be effective
for the thioalkyl transfer to the sulfur of 4-thiouridine with formation of the disulfide tethered group.
However, the labile nature of the disulfide bond requires the storage of labeled RNAs at −20 ◦C to
minimize the nitroxide radical detachment.
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3.6.3. Post-Synthetic Formation of Disulfide Crosslinks

The site-specific disulfide crosslinking of RNA represents a powerful tool for studying the structure,
folding, and function of RNA by locking RNA into a single folded and homogeneous structure. First,
disulfide crosslinks were found in cellular tRNAs between neighboring 4-thiouridines [117]. A synthetic
procedure for the site-specific insertion of the intrahelical disulfide crosslink into RNA oligomers
was based on the oxidation of thioalkyl-modified nucleobases positioned at the 3′- and 5′-ends of
oligomers, which after forming the duplex, were able to crosslink with the opposite strand [66,118,119].
The ethane-thiol tethers were attached to the exocyclic amino group of cytosines (Scheme 27A) or to
the N3 atom of uracils (Scheme 27B), which were both introduced to oligomers as S-protected mixed
disulfides 109 and 112, respectively. The synthesis of S-protected N4-(2-thioethyl)cytidines-modified
oligomers (8-nt model of hairpin) utilized the Verdine convertible nucleoside 1 (see Figure 4) and the
displacement reaction with cystamine reagent (details are given in Scheme 3) [66], whereas S-tert-butyl
N3-(2-thioethyl)uridines were transformed to 5′-O-DMTr-2′-O-TBDMS-protected phosphoramidite
as well as nucleoside-modified CPG resin, after which they were introduced to RNA (12- or 72-nts
models of hairpin or yeast tRNAPhe, respectively) by standard phosphoramidite chemistry [118,119].
The mixed disulfides 109, 112 were reduced with DTT under aqueous conditions (2–12 h, rt-55 ◦C)
to obtain the free thiols 110, 113. After the removal of DTT excess (precipitation, Qiagen cartridge,
or dialysis), dithiol-containing oligomers 110, 113 were redissolved in 25 mM ammonium acetate [66]
or 100 mM phosphate buffer (pH 8.0) [118,119] and exposed to air for 5–20 h at rt to form the disulfide
bonds. Denaturing PAGE isolation of the target RNA products 111, 114 revealed nearly quantitative
formation of disulfide crosslinks. Since the formation of disulfide crosslinks is mild, highly selective,
and does not alter the RNA structure or folding, it was found to be a valuable method for the structural
and biochemical evaluation of RNA molecules.
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Scheme 27. (A) General scheme for post-synthetic disulfide crosslinking formation between cytidines;
reagents and conditions: (i) DTT in H2O, 2 h, 55 ◦C; (ii) 25 mM NH4OAc, air oxidation, 20 h, rt;
(B) General scheme for post-synthetic disulfide crosslinking formation between uridines; reagents and
conditions: (i) DTT in 100 mM phosphate buffer (pH 8.0), 12 h, rt or 40 ◦C; (ii) 100 mM phosphate buffer
(pH 8.0), air oxidation, 5–12 h, rt.

The thiol-adenine-containing oligomer homologous with the branched region of pre-mRNA was
post-synthetically reacted with benzophenone reagent to indicate photo-crosslinks with proteins under
splicing conditions [120]. A two-step strategy was chosen to introduce the benzophenone reagent into
pre-mRNA substrates (Scheme 28). Firstly, a reactive thiol functionality was introduced into synthetic
10-nt RNA oligomer 115 using Verdine convertible inosine nucleoside 6 (see Figure 4), which permits
the installation of cystein disulfide tether at the N6 position of adenosine (see Scheme 3). After the
incorporation of synthetic 115 oligomer into full-length pre-mRNA molecules via the ligation procedure,
the disulfide was reduced to thiol-RNA 117 using DTT. The RNA construct 117 was subjected to
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derivatization with highly effective thiol-specific benzophenone maleimide photoreagent in 50% aq.
DMF for 1 h at rt.
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Scheme 28. Post-synthetic preparation of mRNA–benzophenone conjugate 118 via N6-(2-thioethyl)
adenosine-precursor 117. Reagents and conditions: (i) 5 mM DTT in 20 mM NaHCO3, 1 h, 30 oC;
(ii) 20 mM benzophenone maleimide in 50% aq. DMF, 1 h, rt; (iii) irradiation with a 302 nm lamp.

The obtained benzophenone-pre-mRNA 118 was incubated in HeLa nuclear extract under standard
splicing conditions and crosslinked with proteins by irradiation with a 302 nm lamp.

4. Conclusions

Every year, new strategies are discovered to synthesize modified oligonucleotides. Nevertheless,
there is still a growing demand for the development of new approaches, particularly toward RNA
oligomers, the preparation of which is more challenging than their DNA counterparts. Unlike enzymatic
procedures, the chemical synthesis of RNA oligomers offers the possibility of site-specific incorporation
of modified nucleosides, making RNA synthesis an important tool for many interdisciplinary
studies. The hereby presented concept of post-synthetic oligonucleotide modification represents
an important alternative for standard phosphoramidite chemistry, particularly when target modifying
groups/labels are unstable or reactive under conditions of solid-phase synthesis. The great advantage
of post-synthetic reactions is that one building block with a reactive group can react with a wide variety
of reagents, providing several variously modified oligomers of homologous sequences. In addition,
reported precursor oligomers can be easily adapted to incorporate new modifications using already
well-optimized post-synthetic reactions. Some of the post-synthetic transformations are bioorthogonal
and have been successfully employed to study and monitor RNA nucleic acids in their native
environment [121–123].
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CPG controlled pore glass
ct6A cyclic N6-threonylcarbamoyladenosine
dbf dibutylaminomethylene
DBU 1,8-diazabicyclo [5.4. 0]undec-7-ene
DCM dichloromethane
DIPEA N,N-diisopropylethylamine
dmf dimethylaminomethylene
DMTr 4,4′-dimethoxytrityl
DOD bis(trimethylsiloxy)cyclododecyloxysilyl
DTT dithiothreitol
EDC·HCl 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride
EPR electron paramagnetic resonance
ESI-MS electrospray ionization mass spectrometry
FMN flavin mononucleotide
Fpmp 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl
geBr geranyl bromide
ges2U 2-geranylthiouridine
H2U 4-pyrimidinone nucleoside
HEPES 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
HOBt N-hydroxybenzotriazole
i6A N6-isopentenyladenosine
iBu isobutyryl
IE HPLC ion-exchange high performance liquid chromatography
iEDDA inverse electron demand Diels-Alder cycloaddition
inm5U 5-(isopentenylaminomethyl)uridine
m5s2U 5-methyl-2-thiouridine
m6A N6-methyladenosine
MALDI-ToF-MS matrix-assisted laser desorption/ionization-time of flight mass spectrometry
mcm5s2U 5-metoxycarbonylmethyl-2-thiouridine,
mnm5ges2U 5-methylaminomethyl-2-geranylthiouridine
mnm5s2U 5-methylaminomethyl-2-thiouridine
mnm5U 5-methylaminomethyluridine
ms2C 2-methylthiocytidine
ms2ct6A 2-methylthio cyclic N6-threonylcarbamoyladenosine
ms2i6A 2-methylthio-N6-isopentenyladenosine
ms2m6A 2-methylthio-N6-methyladenosine
ms2t6A 2-methylthio-N6-threonylcarbamoyladenosine
msms2i6A 2-methylthiomethylenethio-N6-isopentenyladenosine
NHS N-hydroxysuccinimide
nm5U 5-aminomethyluridine
NMP N-methyl-2-pyrrolidone
NPE 2-(2-nitrophenyl)ethyl
NPP 2-(2-nitrophenyl)propyl
OPiv pivaloyloxyl
P(furyl)3 tri-2-furylphosphine
Pac phenoxyacetyl
PAGE polyacrylamide gel electrophoresis
Pd2(dba)3 tris(dibenzylideneacetone)dipalladium(0)
PELDOR pulsed electron-electron double resonance
Pivom5U 5-pivaloyloxymethyluridine
R5H2U 5-substituted 4-pyrimidinone nucleoside
R5s2U 5-substituted 2-thiouridine
R5U 5-substituted uridine
Rb ribose
RP HPLC reverse-phase high performance liquid chromatography
rt room temperature
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s2U 2-thiouridine
s2Um 2′-O-methyl-2-thiouridine
s4dU 4-thio-2′-deoxyuridine
s4U 4-thiouridine
SNAr nucleophilic aromatic substitution
t6A N6-threonylcarbamoyladenosine
Tac 4-(tert-butylphenoxy)acetyl
TBAF tetrabutylammonium fluoride
TBDMS tert-butyldimethylsilyl
TBTA tris[(1-benzy-1H-1,2,3-triazol-4-yl)methyl]amine
TC 1,1-dioxo-1l6-thiomorpholine-4-carbothioate
TEA triethylamine
TEA×3HF triethylamine trihydrofluoride
TEAA triethylammonium acetate
TEAF triethylammonium fluoride
TEG triethylene glycol
TEMED N,N,N′,N′-tetramethylethylenediamine
TEMPO 2,2,6,6-tetramethylpiperidin-1-oxyl
TEMPO-NH2 4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl
TFP tetrafluorophenol
THPTA tris-[1-(3-hydroxypropyl)-1H-[1,2,3]triazol-4-yl)methyl]amine
TMS trimethylsilyl
TMSE 2-(trimethylsilyl)ethyl
TOM triisopropylsilyloxymethyl
TPA 2,2,5,5-tetramethylpyrrolin-1-yloxyl-3-acetylene
Tris-HCl tris(hydroxymethyl)aminomethane hydrochloride
TSTU N,N,N′,N′-tetramethyl-O-(N-succinimidyl)uronium tetrafluoroborate
τm5U 5-taurinomethyluridine
τm5s2U 5-taurinomethyl-2-thiouridine
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